用户名: 密码: 验证码:
缩放通道内自然对流和沸腾的强化传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对缩放通道内的自然对流及沸腾的流动和换热情况进行了研究,通过实验和数值模拟相结合的方式,研究了水和质量浓度为60%的糖液在内插旋流片缩放管内的自然对流和沸腾换热,并对缩放肋面对自然对流和沸腾的影响进行了研究。
     通过实验研究了水和糖液在内插旋流片的垂直缩放管及垂直光滑管内的自然对流流动及换热情况,重点研究了旋流片个数及旋转角度对流动及传热的影响,得到了不同旋流片个数及旋转角度下自然对流传热系数随管内传热温差的变化曲线。水和糖液在内插旋流片的光滑管和缩放管内的传热系数均远大于光滑管空管和缩放管空管,在实验条件范围内,旋流片个数的增加会提高自然对流的传热系数,但是提高的幅度会逐渐变小,同等旋流片个数下水和糖液的传热系数的差别较大,旋流片旋转角度的增加有利于水和糖液传热系数的提高。
     在实验研究的基础之上,对水和糖液在内插旋流片的垂直管内的自然对流进行了数值模拟。通过温度场与速度场的分析发现,介质在光滑管内流动时中心区域流体很难被加热,近壁区的热阻非常大,而内插旋流片后的缩放管,中心区域流体被充分加热,中心区域的水和糖液的轴向温度梯度很明显,介质流经旋流片后,中心区域流速升高明显,而且水的要比糖液大。通过对介质在内插旋流片缩放管内的流阻与传热性能分析,得到了阻力系数及传热系数随旋流片个数的变化曲线,并对不同旋流片个数下的综合强化传热性能进行了评价。对管内的轴向换热能力进行分析,发现介质在内插旋流片缩放管内的局部换热能力远大于光滑管。对缩放管和旋流片的复合强化传热机理进行了分析,周期性的缩放肋面和旋流片的自旋流作用使得介质的切向流速大大增加,有效的减薄了边界层,是传热得到强化的主要原因,同时分析了管内流体流动的速度场和温度梯度场的协同情况,发现介质在内插旋流片缩放管内的场协同情况优于光滑管,尤其是在刚流经旋流片的下游区域。
     通过实验对质量浓度为60%的糖液在内插旋流片的垂直管内的沸腾换热情况进行了研究,得到了不同旋流片个数和旋转角度下的糖液蒸发的沸腾曲线,发现管内插入旋流片后糖液的沸腾传热系数明显升高,并且旋流片个数的增加有助于沸腾传热系数的提高,以实验数据为基础得到了内插旋流片缩放管内糖液沸腾传热系数关联式。在实验研究基础之上,对用内插旋流片缩放管改造后的糖厂多效蒸发系统进行了节能优化,通过建立适当的计算模型,得到优化后的各效参数值,在总传热温差和总传热面积不变的情况下,实现了生蒸汽消耗量的减少,节能效果显著。
     采用数值模拟的方法对缩放通道内的流动沸腾现象进行了研究,考虑了流体热物性及相间传质传热的影响,研究发现缩放通道内的传热系数、流动压降及气相体积分率均高于光滑通道内的,通过非稳态模拟得到了缩放通道内流体气相体积分率随时间变化的分布图,研究了流速对流动沸腾传热的影响,通过分析得到缩放通道强化沸腾换热的主要原因是收缩肋面附近气泡脱离速度较快、运动较剧烈。
     通过数值模拟的方法研究了二维缩放方腔及缩放通道内的自然对流现象,重点考察了缩放肋面的肋高和缩放比对流体自然对流流动与换热的影响。研究给出了不同瑞利数下缩放方腔内的温度和速度矢量分布,在研究范围内瑞利数、肋高及缩放比的增加均能提高方腔内努赛尔数,在模拟数据基础之上得到了方腔内努赛尔数随瑞利数、肋高及缩放比变化的关联式。对缩放通道内的自然对流进行了分析,努赛尔数随肋高的增加呈现先增加后减小的趋势,阻力系数随肋高的增加而增加,努赛尔数随缩放比的增加而增加然后趋于恒定,缩放比的增加会减小阻力系数但是幅度不大。通过温度及速度分布、轴向换热能力的分析、场协同分析,解释了缩放肋面强化自然对流换热的原因。
The flow and heat transfer of natural convection and boiling in the converging anddiverging channel were researched in this paper. On the combination of experiment andnumerical simulation, the heat transfer of natural convection and boiling for water and60%sucrose solution in vertical converging-diverging (CD) tubes with regularly spaced twistedtapes (RSTT) were investigated. The effects of converging-diverging surfaces on naturalconvection and boiling were studied simultaneously.
     The flow and heat transfer of natural convection for water and60%sucrose solution invertical converging-diverging tube and smooth tube with regularly spaced twisted tapes werestudied experimentally. The effects of number of twisted tapes and twisted angle on flow andheat transfer were mainly presented. The variation of natural convection heat transfercoefficient with temperature difference in tube side was obtained under different twisted angleand number of twisted angle. The heat transfer coefficient for water and sucrose solution invertical smooth tube and CD tube with RSTT are much bigger than that in barely smooth andCD tube. Within the scope of the experimental conditions, the natural convection heat transfercoefficient increases with the number of twisted tapes, but the degree of increase will becomegradually smaller. The heat transfer coefficient for sucrose solution is different from that forwater under same number of twisted tapes. The twisted tapes with higher degree of twistedangle are more benefit for heat transfer performance.
     Based on the experimental research, the natural convection for water and sucrose solutionin vertical smooth and CD tubes with RSTT was investigated numerically. Under the analysisof temperature field and velocity field, it is found that the fluid in the central region of smoothtube is difficult to be heated because of the high heat resistance in near-wall region. When theRSTT were inserted into CD tube, the fluid in the central region was heated sufficiently. Thevelocity increases obviously when the fluid flows through the RSTT, and there is obviousaxial temperature gradient for water and sucrose solution in central region. Through theanalysis of flow resistance and heat transfer performance for CD tube with RSTT, thevariation of resistance coefficient and heat transfer coefficient with number of twisted tapeswas obtained, and the performance of comprehensive heat transfer enhancement wasevaluated. The heat transfer performance along axial direction was researched. The resultsindicated that the local heat transfer coefficient along axial direction in a CD tube with RSTTwas bigger than that in a smooth tube. It is found that the tangential velocity increasessignificantly for the compound effects of periodically converging-diverging surfaces and twisted tapes. The heat transfer boundary layer becomes thinner because of the highertangential velocity, and then the heat transfer is enhanced. The synergy of temperaturegradient field and velocity field for fluid in tube side was investigated. Because of thecompound effects, the synergy in a CD tube with RSTT is better than that in a smooth tube,especially in the region where the fluid flows through the twisted tapes.
     The boiling heat transfer of60%sucrose solution in a vertical tube with RSTT wasinvestigated experimentally. The curves of boiling heat transfer for evaporation of sucrosesolution were obtained under different number of twisted tapes and different twisted angle. Itis found that the twisted tapes is benefit for the boiling heat transfer, and the boiling heattransfer coefficient increases as the number of twisted tapes. Moreover, the empirical formulafor sucrose solution in a CD tube with RSTT was obtained by the fitting of the experimentaldata. Based on the experimental study, the optimization of energy conservation formultiple-effect evaporation system was conducted. The evaporator of CD tubes with RSTThas higher boiling heat transfer coefficient. Therefore, the consumption of fresh streamreduced under the same total heat transfer temperature and same total heat transfer area. Theparameters for each effect were obtained after optimization by the appropriate numericalmodel.
     The flow boiling in a converging-diverging channel was investigated numerically. Theeffects of physical thermal properties on heat and mass transfer of the two phases wereconsidered. It is found that heat transfer coefficient, flow pressure drop and gas-phase volumefraction in a CD channel is bigger than that in a smooth channel. The distribution of gas-phasevolume fraction along the heated time was obtained by unsteady simulation. The effects ofvelocity on flow boiling were studied. Because of the more vigorous exercise and biggerbubble departure frequency of the bubbles near the converging surfaces, the boiling heattransfer in a CD channel is enhanced significantly.
     The natural convection in a CD square enclosure and a CD channel was researchednumerically. The effects of rib height and pitch ratio for CD surfaces on the naturalconvection and heat transfer were particularly studied. The distribution of temperature filedand velocity field in the CD square enclosure was presented under different Rayleigh number.Within the scope of the experimental conditions, the Nusselt number increases as the Rayleighnumber, rib height and pitch ratio. The empirical correlation for Nusselt number in theenclosure was obtained based on simulated data. For the natural convection in a CD channel,the Nusselt number increases as rib height and then decrease gradually. The resistance coefficient increases as rib height and rarely decreases as pitch ratio. Because of theenlargement of pitch ratio, the Nusselt number increases and then remains unchanged. Thereasons of heat transfer enhancement for natural convection in converging-diverging surfaceswere revealed by analysis of temperature field and velocity field, axial heat transferperformance and filed synergy.
引文
[1]中国的能源状况与政策[R].北京:中国人民共和国国务院新闻办公室,2007
    [2]王和德.2010年中国能源与世界能源生产和消费对比[J].煤炭工程,2012,s1:86-90
    [3]第十届全国人民代表大会第四次会议.《中华人民共和国国民经济和社会发展第十一个五年规划纲要》[EB/OL]. http://www.gov.cn/gongbao/content/2006/content_268766.htm,2006
    [4]第十一届全国人民代表大会第四次会议.《中华人民共和国国民经济和社会发展第十二个五年规划纲要》[EB/OL]. http://www.gov.cn/2011lh/content_1825838.htm,2011
    [5] Jaluria Y. Natural Convection[M]. Oxford: Pergamon Press,1980: chapter7.
    [6] Jaluria Y. Natural Convection Heat and Mass Transfer[M], Oxford: Pergamon Press,1980.
    [7] Gebhart B, Jaluria Y, Mahajan R L, et al. Buoyancy-induced flows and transport[M]. New York:Hemisphere,1988:699-723.
    [8] Gebhart B. Transient response and disturbance growth in vertical buoyancy-driven flows[J]. Journal ofheat transfer,1988,110(4b):1166-1174.
    [9] Varol Y, ztop H F, zgen F, et al. Experimental and numerical study on laminar natural convection ina cavity heated from bottom due to an inclined fin[J]. Heat and Mass Transfer,2012,48(1):61-70.
    [10] Yao L S. Natural convection along a vertical complex wavy surface[J]. International Journal of Heatand Mass Transfer,2006,49(1):281-286.
    [11] Abu-Nada E, Masoud Z, Oztop H F, et al. Effect of nanofluid variable properties on natural convectionin enclosures[J]. International Journal of Thermal Sciences,2010,49(3):479-491.
    [12] Khan W A, Aziz A. Natural convection flow of a nanofluid over a vertical plate with uniform surfaceheat flux[J]. International Journal of Thermal Sciences,2011,50(7):1207-1214.
    [13]宋姗姗,郭雪岩. Boussinesq近似与封闭腔体内自然对流的数值模拟[J].力学季刊,2012,33(1):60-67.
    [14]张敏,晏刚,陶锴.内置发热体的封闭方腔自然对流换热数值模拟[J].化工学报,2010,61(6):1373-1378.
    [15] Hsu Y.Y., Graham R.W. An analytical and experimental study of the thermal boundary layer andebullition cycle in nucleate boiling[R]. Washington DC: National Aeronautics and Space Administration,1961.
    [16] Forster H K, Greif R. Heat transfer to a boiling liquid-mechanism and correlations[J]. Journal of HeatTransfer,1959,81(1):43-53.
    [17] Han C Y, Griffith P. The mechanism of heat transfer in nucleate pool boiling[R]. Cambridge, Mass.:MIT Division of Sponsored Research,1962.
    [18] Snyder N R, Edwards D K. Summary of conference on bubble dynamics and boiling heat transfer[J].JPL Memo,1956,20:20-137.
    [19] Graham R W, Hendricks R C. Assessment of convection, conduction, and evaporation in nucleateboiling[R]. Washington DC: National Aeronautics and Space Administration,1967.
    [20] Judd A. L., Hwang K. S. A comprehensive model for nucleate pool boiling heat transfer includingmicro layer evaporation[J]. J. Heat Transfer,1976,98:p623
    [21] Thume J R. Enhanced Boiling Heat Transfer[M]. New York: Hemisphere Publishing Corporation,1990.
    [22] Bankoff S. G. Entrapment of gas in the spreading of a liquid over a rough surface[J]. AIChE Journal,1958,4(1):24-26.
    [23] Griffith P, William J D. Chem Eng Prog Symp Ser.1960,56(49):49.
    [24] Yatabe J M, Westwater J W. Bubble growth rates for ethanol-water and ethanol-isopropanolmixtures[C]//Chem Eng Prog Symp Ser.1966,62(64):17-23.
    [25]吴锦元,徐洪峰,王树楹.垂直管内降膜沸腾传热的研究[J].化学工程,1990,18(05):23-26.
    [26]方振鑫,罗小平,熊少武,贾玉梅.缩放管管外流动沸腾换热的数值模拟与场协同分析[J].节能技术,2007,25(04):296-299.
    [27]张亚君,欧阳荣,邓先和,等.强化传热管内的自然对流沸腾换热[J].华南理工大学学报:自然科学版,2004,32(1):41-43+48.
    [28] Chu K H, Enright R, Wang E N. Structured surfaces for enhanced pool boiling heat transfer[J].Applied Physics Letters,2012,100(24):241603.
    [29] Forrest E, Williamson E, Buongiorno J, et al. Augmentation of nucleate boiling heat transfer andcritical heat flux using nanoparticle thin-film coatings[J]. International Journal of Heat and Mass Transfer,2010,53(1):58-67.
    [30]崔海亭,彭培英.强化传热新技术及其应用[M].北京:化学工业出版社,2006:1-2
    [31]韩冰,徐之平.强化换热的方法及新进展[J].能源研究与信息,2009,24(4):233-237.
    [32] Bergles A E.ExHFT for fourth generation heat transfer technology[J].Experimental Thermal andFluid Science,2002,26(2-4):335-344.
    [33] Liebenberg L., Meyer J.P. In-tube passive heat transfer enhancement in the process industry[J].Applied Thermal Engineering,2007,27(16):2713-2726
    [34] Elshafei EAM, Safwat Mohamed M., Mansour H., et al. Experimental study of heat transfer inpulsating turbulent flow in a pipe [J]. International Journal of Heat and Fluid Flow,2008,29(4):1029-1038
    [35] Kalinin E. K., Dreytser G. A., Zakirov S. G., et al. Improvement of heat transfer in tubular heat transferexchangers by the use of grooved tubes [J]. Heat Transfer-Soviet Research,1981,13(4):30-40
    [36]兰州石油机械研究所.换热器(第二版)[M].北京:中国石化出版社,2013.
    [37]贾檀,陆应生,庄礼贤,等.横纹管的传热与流体力学特性研究[J].化工学报,1990,41(5):612-617.
    [38]徐志明,杨善让,甘云华.横纹管污垢性能的实验研究[J].中国电机工程学报,2005,25(5):159-163.
    [39]林纬,喻九阳,吴艳阳,等.横纹管脉冲流流动与换热数值分析[J].武汉工程大学学报,2011,33(5):89-93.
    [40]王泓伟,张志英.波纹管式换热器的特性研究[J].氮肥设计,1994,32(6):47-49
    [41]曾敏,王秋旺,屈治国,等.波纹管内强制对流换热与阻力特性的实验研究[J].西安交通大学学报,2002,03:237-240.
    [42]肖金花,钱才富,王凤林.波纹管对高黏度介质的强化传热研究[J].北京化工大学学报,2007,34(1):53-57
    [43]谭秀娟,王尊策,孔令真,等.套管式换热器波纹管的数值模拟及结构参数优化[J].化工机械,2013,01:77-81.
    [44]邓先和,邓颂九,叶国兴.螺旋槽管管壳式换热器的传热与流阻研究[J].化学工程,1991,1:001.
    [45]吴锦京,曹侃,魏新利.螺旋槽管管内传热与流动性能的数值模拟研究[J].郑州大学学报(工学版),2013,34(2):32-36.
    [46]李军,王晨,桑芝富,等.结构参数对螺旋槽管传热与阻力性能影响的研究[J].化工机械,2011,38(001):97-103.
    [47]于丹,陈永昌,马重芳,等.螺旋槽管污垢特性及其影响因素的实验研究[J].中国科学:技术科学,2011,41(6):821-825.
    [48]赵国辉,隋军.管壳式换热器技术进展[J].化学工业与工程技术,2000,21(4):12-14
    [49]马晓驰.国内外新型高效换热器[J].化工进展,2001,20(1):49-51
    [50]陈颖,邓先和,丁小江.缩放管内湍流对流换热(Ⅱ)—结构优化[J].化工学报,2004,55(11):1764-1767
    [51]靳遵龙,董其伍,刘敏珊,等.缩放管结构优化数值研究[J].郑州大学学报:工学版,2010,31(4):105-107.
    [52]陈志静,王大成,冯敏.不同结构参数缩放管传热综合性能的数值模拟[J].压力容器,2013,30(11):37-41.
    [53]陈颖,邓先和,丁小江等.强化缩放管内湍流对流换热[J].化工学报,2004,55(9):1528-1531.
    [54] Shabanian S. R., Rahimi M., Shahhosseini M., et al. CFD and experimental studies on heat transferenhancement in an air cooler equipped with different tube inserts [J]. International Communications in Heatand Mass Transfer,2011,38(3):383–390
    [55] Promvonge P., Eiamsa-ard S. Heat transfer enhancement in a tube with combined conical-nozzleinserts and swirl generator [J]. Energy Conversion and Management,2006,47(18-19):2867–2882
    [56] Kumar C N, Murugesan P. Review on Twisted Tapes Heat Transfer Enhancement[J]. InternationalJournal of Scientific&Engineering Research,2012,3(4):1-9.
    [57] Saha S K, Dutta A. Thermohydraulic study of laminar swirl flow through a circular tube fitted withtwisted tapes[J]. Journal of Heat Transfer,2001,123(3):417-427.
    [58] Chang S W, Jan Y J, Liou J S. Turbulent heat transfer and pressure drop in tube fitted with serratedtwisted tape[J]. International Journal of Thermal Sciences,2007,46(5):506-518.
    [59] Inasaka F, Nariai H. Evaluation of subcooled critical heat flux correlations for tubes with and withoutinternal twisted tapes[J]. Nuclear Engineering and Design,1996,163(1):225-239.
    [60] Kumar A, Prasad B. N. Investigation of twisted tape inserted solar water heaters—heat transfer,friction factor and thermal performance results[J]. Renewable Energy,2000,19(3):379-398.
    [61] Eiamsa-ard S, Thianpong C, Promvonge P. Experimental investigation of heat transfer and flowfriction in a circular tube fitted with regularly spaced twisted tape elements[J]. InternationalCommunications in Heat and Mass Transfer,2006,33(10):1225-1233.
    [62] Eiamsa-Ard S, Thianpong C, Eiamsa-Ard P, et al. Convective heat transfer in a circular tube withshort-length twisted tape insert[J]. International Communications in Heat and Mass Transfer,2009,36(4):365-371.
    [63] Eiamsa-Ard S, Wongcharee K, Sripattanapipat S.3-D Numerical simulation of swirling flow andconvective heat transfer in a circular tube induced by means of loose-fit twisted tapes[J]. InternationalCommunications in Heat and Mass Transfer,2009,36(9):947-955.
    [64] Eiamsa-Ard S, Thianpong C, Eiamsa-Ard P. Turbulent heat transfer enhancement bycounter/co-swirling flow in a tube fitted with twin twisted tapes[J]. Experimental Thermal and FluidScience,2010,34(1):53-62.
    [65]王杨君,邓先和.内插旋流片的管内流动与换热的数值模拟[J].化工学报,2007,58(10):2455-2461.
    [66]张琳,钱红卫,宣益民,等.内置扭带换热管三维流动与传热数值模拟[J].机械工程学报,2005,41(7):66-70.
    [67]张琳,钱红卫,俞秀民,等.内置旋转扭带换热管的传热强化机理[J].机械工程学报,2007,43(1):139-143.
    [68]张华,周强泰.光管内插入扭带传热与流动阻力的试验研究[J].节能技术,2005,23(2):122-125.
    [69]唐志伟,闫桂兰,高丽丽.管内插入扭带的强化传热数值模拟[J].工程热物理学报,2008,29(7):1211-1214.
    [70]郭剑,杨昆,刘伟.圆管插入十字形扭带强化传热数值模拟[J].工程热物理学报,2009,30(7):1216-1218.
    [71]吴双应,辛明道.扭带管内油的受迫对流换热实验[J].重庆大学学报:自然科学版,1995,18(1):113-117.
    [72] García A.,Vicente P.G.,Viedma A.Experimental study of heat transfer enhancement with wire coilinserts in laminar-transition-turbulent regimes at different Prandtl numbers[J].International Journal of Heatand Mass Transfer,2005,48(21-22):4640-4651
    [73] García A,Solan J P,Vicente P G,et al.The influence of artificial roughness shape on heat transferenhancement: Corrugated tubes, dimpled tubes and wire coils[J].Applied Thermal Engineering,2012,35:196-201
    [74] Shoji Y, Sato K, Oliver D R. Heat transfer enhancement in round tube using wire coil: influence oflength and segmentation[J]. Heat Transfer—Asian Research,2003,32(2):99-107.
    [75] Promvonge P. Thermal performance in circular tube fitted with coiled square wires [J]. EnergyConversion and Management,2008,49(5):980–987
    [76] Promvonge P. Thermal augmentation in circular tube with twisted tape and wire coil turbulators[J].Energy Conversion and Management,2008,49(11):2949–2955
    [77]罗林聪,张冠敏,田茂诚,等.环形通道内置螺旋线圈过冷流动沸腾传热特性[J].化工学报,2012,63(10):3086-3093.
    [78]姚寿广,周根明.内插螺旋线圈管的强化传热试验及结构优化研究[J].动力工程,1998,18(5):29-31.
    [79]刘晓华,祁胜杰.螺旋线圈强化管内单相流体传热的研究[J].石油化工高等学校学报,2001,14(3):57-59.
    [80] Hong M, Deng X, Huang K, et al. Compound heat transfer enhancement of a converging-divergingtube with evenly spaced twisted-tapes[J]. Chinese Journal of Chemical Engineering,2007,15(6):814-820.
    [81]赵晓曦,邓先和,陆恩锡.菱形翅片管的强化传热特性[J].化工科技,2002,10(5):1-3
    [82]赵晓曦,邓先和,陆恩锡.螺旋折流板菱形翅片管换热器的传热与流阻性能[J].化工学报,2003,54(3):388-391
    [83]赵晓曦,邓先和,陆恩锡.空心环支承菱形翅片管油冷凝器传热性能[J].石油化工设备,2003,32(1):1-3
    [84]张正国,王世平,林培森.花瓣形翅片管的强化传热研究概况[J].石油化工设备,1997,6(4):11-14
    [85]周兴求,王世平.双组分混合物在花瓣形翅片管上的冷凝传热[J].华南理工大学学报:自然科学版,1998,26(6):121-126.
    [86]邓先和,王世平,林培森,等.花瓣状翅片管套管间润滑油强化传热性能[J].化工学报,1994,45(2):253-256.
    [87] Mi Sandar Mon, Ulrich Gross. Numerical study of fin-spacing effects in annular-finned tube heatexchangers[J]. Int. J. Heat Mass Transfer,2004,47(8-9):1953-1964.
    [88] Lai Chi-Yuan, Kou Hong-Sen, Lee Ji-Jen. Optimum thermal analysis of annular fin heat sink byadjusting outer radius and fin number[J]. Appl. Therm. Eng.,2006,26(8-9):927–936
    [89] Cihat Arslanturk, Simple correlation equations for optimum design of annular fins with uniformthickness[J]. Appl. Therm. Eng.,2005,25(14-15):2463-2468
    [90]冯金兰,张杰.圆形翅片管束的换热与阻力特性试验研究[J].东北电力技术,2008(8):14-17.
    [91]焦凤,邓先和,孙大力,等.管束排列及管间距对换热器传热性能的影响[J].石油学报(石油加工),2013,29(5):836-843.
    [92]曾文明,钱颂文.折流杆换热器振动特性和壳程传热强化的研究[J].化工炼油机械,1983,12(2):1-6.
    [93]马雷,王英双,杨杰,等.折流杆换热器的数值模拟及优化设计[J].工程热物理学报,2011,32(003):462-464.
    [94]严良文,王志文.波形折流杆换热器的工业实验研究[J].华东理工大学学报:自然科学版,2004,30(4):478-480.
    [95]严良文,吴金星,王志文.波形折流杆与弓形折流板换热器的综合性能比较[J].压力容器,2004,21(4):10-12.
    [96]邓先和,邓颂九.管壳式换热器管间支撑物[P].中国:89218385.3,1990
    [97]邓先和,张亚军,潘朝群,等.旋流网板支承管束的管南式换热器及其强化传热方法[P].中国,ZL200410051657.7,2005
    [98]周水洪,邓先和,李志武.旋流网板换热器强化传热机理分析[J].硫酸工业,2007(6):16-19.
    [99]王杨君,邓先和,李志武,等.旋流片支撑管束的传热与流阻性能[J].化工学报,2007,58(1):21-26.
    [100]吴金星,朱登亮,魏新利,等.螺旋肋片自支撑换热器强化换热试验研究[J].热能动力工程,2008,23(2):157-160.
    [101]焦凤,邓先和,戴玉.自支撑矩形缩放管壳侧不同插入物的强化传热效果[J].华南理工大学学报:自然科学版,2013,41(7):87-93.
    [102]焦凤,邓先和.矩形自支撑缩放管换热器强化传热的结构优化[J].化工学报,2013,64(7):2376-2385.
    [103]徐国想,邓先和,许兴友,等.换热器传热强化性能评价方法分析[J].淮海工学院学报,2005,14(2):42-44.
    [104] Webb R L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heatexchanger design[J]. International Journal of Heat and Mass Transfer,1981,24(4):715-726.
    [105] Bergles A E, Bunn R L, Junkhan G H. Extended performance evaluation criteria for enhanced heattransfer surfaces[J]. Letters in Heat and Mass Transfer,1974,1(2):113-120.
    [106] Bejan A. Entropy Generation Minimization[M], Boca Raton: CRC Press,1996.
    [107] Bejan A. Entropy Generation through Heat and Fluid Flow[M], New York: Wiley,1982.
    [108]朱明善.能量系统的火用分析[J].北京:清华大学出版,1988.
    [109]何雅玲,陶文铨.强化单相对流换热的基本机制[J].机械工程学报,2009,45(3):27-38.
    [110] Guo Z.Y., Li D. Y. Wang B. X. A novel concept for convective heat transfer enhancement [J].International Journal of Heat and Mass Transfer,1998,41(14):2221-2225
    [111]过增元.对流换热的物理机制及控制:速度场与热流场的协同[J].科学通报,2000,45(19):2118-2112
    [112] Guo Z Y, Wang S. Novel concept and approaches of heat transfer enhancement[C]. Proceedings ofSymposium on Energy Engineering in the21st Century (SEE2000).2000,1:118-126
    [113]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[D].北京:清华大学,2003
    [114]孟继安,陈泽敬,李志信,等.管内对流换热的场协同分析及换热器强化[J].工程热物理学报,2003,24(4):652-654
    [115]孟继安,陈泽敬,李志信,等.交叉缩放椭圆管换热与流阻实验研究及分析[J].工程热物理学报,2004,25(5):813-815
    [116] Tao W. Q., He Y. L., Wang Q. W., et al. A unified analysis on enhancing single phase convectiveheat transfer with field synergy principle[J]. International Journal of Heat and Mass Transfer,2002,45(24):4871-4879
    [117]陈颖,邓先和,丁小江.缩放管内湍流对流换热(Ⅰ)—场协同控制机理[J].化工学报,2004,55(11):1759-1763
    [118]武俊梅,陶文铨.纵向涡强化换热的数值研究及场协同原理分析[J].西安交通大学学报,2006,40(7):757-761.
    [119]周俊杰,陶文铨,王定标.场协同原理评价指标的定性分析和定量探讨[J].郑州大学学报:工学版,2006,27(2):45-47.
    [120]杨昆,刘伟.管内层流充分发展段等效热边界层的构造及其场协同分析[J].工程热物理学报,2007,28(2):283-285.
    [121]王娴,宋富强.场协同理论在椭圆型流动中的数值验证[J].工程热物理学报,2002,23(1):59-62.
    [122]马良栋,孙德兴,张吉礼.内环肋管道强化换热的场协同分析[J].哈尔滨工业大学学报,2005,37(3):299-302.
    [123]黄德斌,邓先和,朱冬生,等.气流横向冲刷管束换热的场协同数值模拟验证[J].华南理工大学学报(自然科学版),2005,33(7):32-36.
    [124]傅耀,王彤,谷传纲.圆管内对流换热的场协同理论分析[J].中国电机工程学报,2008,28(17):70-75.
    [125] Chen J C P, Chou C C. Cane sugar handbook: a manual for cane sugar manufacturers and theirchemists[M]. New York: John Wiley&Sons,1993.
    [126] Billet R. Evaporation technology: principles, applications, economics[M]. New York: VCHVerlagsgesellschaft,1989.
    [127] Kim H. B., Tadini C. C., Singh R. K. Heat transfer in a plate exchanger during pasteurization oforange juice[J]. Journal of Food Engineering,1999,42(2):79–84.
    [128] Delplace F., Leuliet J. C. Modelling fouling of a plate heat exchanger with different flowarrangements by whey protein solutions[J]. Food and Bioproducts Processing,1995,73(C3):112–120.
    [129] Ribeiro C. P., Cano Andrade M. H. A heat transfer model for the steady-state simulation ofclimbing–falling-film plate evaporators[J]. Journal of Food Engineering,2002,54(4):309–320.
    [130] Pacheco C. R. F., Frioni L. S. M. Experimental results for evaporation of sucrose solution using aclimbing/falling film plate evaporator[J]. Journal of Food Engineering,2004,64(4):471-480
    [131] Jorge L.M.M., Righetto A.R., Polli P.A., et al. Simulation and analysis of a sugarcane juiceevaporation system[J]. Journal of Food Engineering,2010,99(3):351-359
    [132]龙嘉年,程达芳. T型翅片板喷淋式降膜蒸发器传热性能研究[J].化学工程,1996,24(1):43-46
    [133]汪蕊,贺小华.薄膜蒸发器内流体流动模拟[J].南京工业大学学报,2004,26(1):72-77
    [134] Davis G D V. Natural convection of air in a square cavity: A bench mark numerical solution [J].International Journal for Numerical Methods in Fluids,1983,3(3):249-264.
    [135] Kuehn T H, Goldstein R J. An experimental and theoretical study of natural convection in the annulusbetween horizontal concentric cylinders [J]. Journal of Fluid Mechanics,1976,74(04):695-719.
    [136] Mohamad A A, EI-Ganaoui M, Bennacer R. Lattice Boltzmann simulation of natural convection in anopen ended cavity [J]. International Journal of Thermal Sciences,2009,48(10):1870-1875
    [137] Kuznetsov A V, Nield D A. Natural convective boundary-layer flow of a nanofluid past a verticalplate[J]. International Journal of Thermal Sciences,2010,49(2):243-247.
    [138] Abu-Nada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontalconcentric annuli using nanofluids[J]. International Communications in Heat and Mass Transfer,2008,25(5):657-665.
    [139] Hong Meng-na, Deng Xian-he, Huang Kuo, et al. Compound heat transfer enhancement of aconverging-diverging tube with evenly spaced twisted-tapes [J]. Chinese Journal of Chemical Engineering,2007,15(6):814-820
    [140] Sherman F S. Viscous Flow [M]. New York: McGraw Hill,1990:71-72.
    [141]刘晓辉,鲁墨森,谭婷婷.铜-康铜测温热电偶的制作和标定[J].落叶果树,2009,41(5):34-37.
    [142]尾花英朗(日)著.热交换器设计手册(上)[M].徐中权译.北京:烃加工出版社,1987:362
    [143]陶文铨编著.传热学[M].西安:西北工业大学出版社,2006:277-281.
    [144] Moffat R.J.. Using uncertainty analysis in the planning of an experiment[J]. Journal of FluidsEngineering,1985,107(20):173-178.
    [145] MacAdams W H. Heat Transmission [M]. New York: McGraw Hill,1954:176-178.
    [146] Jaluria Y. Natural Convection[M]. Oxford: Pergamon Press,1980:525-526.
    [147] Davis L P, Perona J J. Development of free convection flow of a gas in a heated vertical open tube[J].International Journal of Heat and Mass Transfer,1971,14(7):889-903.
    [148] De Vahl Davis G. Natural convection of air in a square cavity: a bench mark numerical solution[J].International Journal for Numerical Methods in Fluids,1983,3(3):249-264.
    [149] Pesso T, Piva S. Laminar natural convection in a square cavity: low Prandtl numbers and largedensity differences[J]. International Journal of Heat and Mass Transfer,2009,52(3):1036-1043.
    [150] Yu S H, Lee K S, Yook S J. Natural convection around a radial heat sink[J]. International Journal ofHeat and Mass Transfer,2010,53(13):2935-2938.
    [151] Ramakrishna K, Rubin S G, Khosla P K. Laminar natural convection along vertical square ducts[J].Numerical Heat Transfer,1982,5(1):59-79.
    [152] Aung W, Fletcher L S, Sernas V. Developing laminar free convection between vertical flat plates withasymmetric heating [J]. International Journal of Heat and Mass Transfer,1972,15(11):2293-2308.
    [153] Jang J H, Yan W M, Liu H C. Natural convection heat and mass transfer along a vertical wavysurface [J]. International Journal of Heat and Mass Transfer,2003,46(6):1075-1083.
    [154] Kuehn T H, Goldstein R J. An experimental and theoretical study of natural convection in the annulusbetween horizontal concentric cylinders[J]. Journal of Fluid mechanics,1976,74(4):695-719.
    [155] Fluent6.3.26User’s guide [CP].Fluent Incorporated,2006
    [156] Gray D D, Giorgini A. The validity of the Boussinesq approximation for liquids and gases [J].International Journal of Heat and Mass Transfer,1976,19(5):545-551.
    [157]王杨君,邓先和,洪蒙纳,等.管内周期性自旋流强化传热的结构优化[J].化工学报,2006,57(11):2554-2561
    [158]洪宇翔,邓先和,张连山.管间高黏度流体的有效传热温差缓变特性[J].化工学报,2012,63(2):441-447.
    [159] Webb R L, Eckert E R G. Application of rough surfaces to heat exchanger design [J]. InternationalJournal of Heat and Mass Transfer,1972,15(9):1647-1658.
    [160] Hong meng-na, Deng xian-he. Local characteristics in converging-diverging tube with delayingself-sustaining swirl flow [J]. Journal of Chemical Industry and Engineering,2009,60(8):1944-1949.
    [161] Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement [J].International Journal of Heat and Mass Transfer,1998,41(14):2221-2225.
    [162] Guo Z Y, Tao W Q, Shah R K. The field synergy (coordination) principle and its applications inenhancing single convective heat transfer [J]. International Journal of Heat and Mass Transfer,2005,48(1):1797-1807.
    [163]林瑞泰.沸腾换热[M].北京:科学出版社,1988:18-138.
    [164] Pacheco C R F, Frioni L S M. Experimental results for evaporation of sucrose solution using aclimbing/falling film plate evaporator[J]. Journal of Food Engineering,2004,64(4):471-480.
    [165] Jorge L M M, Righetto A R, Polli P A, et al. Simulation and analysis of a sugarcane juice evaporationsystem[J]. Journal of Food Engineering,2010,99(3):351-359.
    [166]方振鑫,罗小平,熊少武,等.缩放管管外流动沸腾换热的数值模拟与场协同分析[J].节能技术,2007,25(4):296-299+355.
    [167] Kumar A, Prasad B N. Investigation of twisted tape inserted solar water heaters—heat transfer,friction factor and thermal performance results[J]. Renewable Energy,2000,19(3):379-398.
    [168]邓先和.壳程流体纵向冲刷型管壳式换热器传热强化问题的研究[D].广州:华南理工大学,1990.
    [169]罗小平.壳程轴流型换热器流阻和传热的预测及结构优化[D].广州:华南理工大学,1996.
    [170]靳遵龙,董其伍,刘敏珊,等.缩放管流体流动与传热性能数值研究[J].冶金能源,2009,28(3):12-14.
    [171] Kumar C N, Murugesan P. Review on twisted tapes heat transfer enhancement[J]. InternationalJournal of Scientific and Engineering Research,2012,3(4):1-9.
    [172]陶文铨.传热学[M].西安:西北工业大学出版社,2006:277-281.
    [173] Mostinski I L. Calculation of heat transfer and critical heat flux in boiling liquids based on the law ofcorresponding states[J]. Teploenergetika,1963,10(4):66-71.
    [174] Lissane E S, Giri F, Unbehauen H. Modelling, identification and control of sugarevaporation–theoretical design and experimental evaluation[J]. Control Engineering Practice,1999,7(8):931-942.
    [175]李申华.多效蒸发新系统计算机模拟及其软件开发[D].广州:华南理工大学,2001.
    [176]林庆生.糖业沸点升高的计算式[J].甘蔗糖业,1990,1:55-56.
    [177]甘蔗糖厂设计手册[M].北京:轻工业出版社,1982.
    [178]陈维钧,许斯欣.糖汁加热与蒸发[M].北京:中国轻工业出版社,2001.
    [179]王小军,陈炳德,黄彦平,等.加热上升管内过冷流动沸腾数值模拟[J].化工学报,2007,58(6):1353-1358.
    [180] Mukherjee A, Kandlikar S G. Numerical simulation of growth of a vapor bubble during flow boilingof water in a microchannel[J]. Microfluidics and Nanofluidics,2005,1(2):137-145.
    [181]李祥东,汪荣顺,黄荣国,等.垂直圆管内液氮流动沸腾的理论模型及数值模拟[J].化工学报,2006,57(3):491-497.
    [182] Lai J C, Farouk B. Numerical simulation of subcooled boiling and heat transfer in vertical ducts[J].International Journal of Heat And Mass Transfer,1993,36(6):1541-1551.
    [183]林瑞泰.沸腾换热[M].北京:科学出版社,1988:14-25
    [184]郭雷.微细通道流动沸腾换热机理及实验研究[D].济南:山东大学,2011.
    [185]林瑞泰.沸腾换热[M].北京:科学出版社,1988:304
    [186] De Vahl Davis G. Natural convection of air in a square cavity: a bench mark numerical solution[J].International Journal for Numerical Methods in Fluids,1983,3(3):249-264.
    [187] Fusegi T, Hyun J M, Kuwahara K, et al. A numerical study of three-dimensional natural convection ina differentially heated cubical enclosure[J]. International Journal of Heat and Mass Transfer,1991,34(6):1543-1557.
    [188] De Vahl Davis G, Jones I P. Natural convection in a square cavity: a comparison exercise[J].International Journal for numerical methods in fluids,1983,3(3):227-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700