用户名: 密码: 验证码:
高三尖杉酯碱联合阿克拉霉素协同杀伤急性髓细胞白血病细胞的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:高三尖杉酯碱联合阿克拉霉素在体内外对急性髓细胞白血病细胞的协同杀伤作用研究
     目的:
     探讨高三尖杉酯碱与阿克拉霉素在体内外对AML细胞株细胞及原代AML细胞的杀伤作用及作用关系。
     方法:
     采用MTT法检测不同浓度HHT、ACR及按一定浓度比联合HHT和ACR对AML细胞生长的抑制作用。采用流式细胞仪Annexin V/PI双染色法、Hochest染色法检测不同浓度HHT、ACR及按一定浓度比联合HHT和ACR对AML细胞株细胞及原代AML细胞的诱导凋亡作用。采用CalcuSyn软件分析HHT与ACR在抑制AML细胞增殖及诱导凋亡上的作用关系。构建AML细胞荷瘤小鼠模型用于体内研究。当瘤体体积达到100-120mm3时随机分入对照组、HHT治疗组、ACR治疗组及HHT联合ACR治疗组。入组后监测瘤体大小。采用原位细胞凋亡检测试剂盒进行TUNEL染色检测瘤体组织原位凋亡。采用Micro-PET扫描对对照组及药物处理组小鼠体内瘤体活性进行实时观察。统计学分析,单一变量两组间比较采用t检验,多组间比较采用单因素方差分析。Kaplan-Meier法进行生存分析。以p值<0.05认为具有统计学差异。
     结果:
     (1)实验浓度HHT对THP-1细胞(急性单核细胞白血病细胞株)、Kasumi细胞(急性粒细胞白血病细胞株)的生长均具有明显的抑制作用,并呈浓度依赖性。(2)实验浓度ACR对THP-1细胞、Kasumi细胞的生长亦具有明显抑制作用,并呈浓度依赖性。(3)实验浓度HHT、ACR均能抑制原代AML细胞生长,随浓度增加,抑制作用增强。(4)1:2.5摩尔浓度比联合HHT与ACR能协同抑制THP-1细胞、Kasumi细胞及原代AML细胞的生长,并能协同诱导其凋亡。(5)采用THP-1细胞能成功构建荷瘤小鼠模型。HHT治疗、ACR治疗及联合HHT和ACR治疗均能延长THP-1荷瘤小鼠瘤体倍增时间。联合治疗较单药治疗能更明显地延长THP-1荷瘤小鼠瘤体倍增时间。联合HHT与ACR治疗组小鼠瘤体组织细胞凋亡较单药治疗组明显增加。(6)Micro-PET扫描结果显示HHT联合ACR治疗组THP-1荷瘤小鼠瘤体代谢活性较用药前有所下降。(7)仅联合HHT和ACR治疗后能延长THP-1荷瘤小鼠的生存时间。小结:
     (1)一定浓度比联合HHT和ACR在体外可协同抑制THP-1细胞、Kasumi细胞和原代AML细胞增殖及诱导其凋亡。(2)与单药相比,HHT联合ACR在体内可更明显地抑制THP-1荷瘤小鼠瘤体增殖及诱导凋亡,并可能更明显地抑制荷瘤小鼠体内的肿瘤活性。(3)体内研究显示HHT与ACR联合治疗可改善THP-1荷瘤小鼠的生存。
     第二部分:高三尖杉酯碱联合阿克拉霉素协同杀伤急性髓细胞白血病细胞的分子机制研究
     目的:
     探讨高三尖杉酯碱联合阿克拉霉素协同杀伤急性髓细胞白血病细胞的分子机制,为AML靶向联合治疗方案的设计提供实验依据。
     方法:
     采用Agilent单通道表达谱芯片筛选对照组、HHT、ACR、HHT联合ACR作用THP-1细胞后差异表达的基因。Real-Time PCR检测目的基因m RNA表达水平对芯片结果进行验证。Western Blot检测Caspase家族蛋白、Bcl-2家族蛋白表达变化、WNT通路关键蛋白、PI3K/AKT通路关键蛋白表达变化。为进一步验证靶向抑制WNT3a及AKT后能否模拟HHT与ACR对THP-1细胞的协同杀伤作用,我们采用脂质体转染技术转染WNT3a的si RNA干扰片段以沉默THP-1细胞WNT3a基因。再分别采用MTT法及流式细胞术Annexin V/PI双染色法检测WNT3a干扰后联合HHT或AKT抑制剂后对THP-1细胞生长抑制及诱导凋亡作用。进一步我们采用GSK-3p抑制剂上调THP-1细胞P-catenin表达,观察是否能逆转HHT联合ACR对THP-1细胞的生长抑制及诱导凋亡作用。由于WNT通路及PI3K/AKT通路在AML-LSC中存在异常活化,尤其是WNT通路中的β-catenin在AML-LSC自我更新中具有尤为重要的作用。我们的研究中HHT与ACR联合可协同抑制WNT信号及PI3K/AKT信号,并可共同下调β-catenin,因此我们采用流式细胞术初步分析了HHT、ACR单用及联合对AML患者骨髓单个核细胞中CD34+/CD38-干/祖细胞群的诱导凋亡作用,并采用CalcuSyn软件进行协同效应分析。
     结果:
     (1)芯片筛选结果显示多种WNT基因及PIK3CA基因在HHT组、ACR组和联合用药组表达存在差异。(2)定量PCR结果也证实36nM HHT作用THP-1细胞和Kasumi细胞1h后WNT3A基因m RNA表达先上调随后回落至用药前水平,而90nM ACR作用THP-1细胞和Kasumi细胞1h-12h后WNT3A基因m RNA表达明显下调,联合HHT和ACR作用1h-12h后WNT3A基因m RNA表达也明显下调。P-catenin基因m RNA表达变化也呈类似结果。HHT、ACR、HHT联合ACR作用THP-1、Kasumi细胞1h-12h后GSK-3p基因m RNA表达变化无明显规律。(3)实验浓度HHT及ACR单独作用均可激活Caspase9、Caspase3并引起PARP剪切。HHT联合ACR可更明显激活Caspase9、Caspase3及PARP。(4)实验浓度HHT作用3h即可下调THP-1细胞和Kasumi细胞Bcl-x1、Mcl-1蛋白表达并上调Bax蛋白,但HHT对两种细胞Bcl-2蛋白表达无明显影响。ACR则在短时间内明显下调Bcl-2蛋白和Bcl-x1蛋白表达,而在作用较长时间才下调Mcl-1蛋白及上调Bax蛋白。(5)36nM HHT作用3h-24h后对THP-1细胞和Kasumi细胞WNT3a蛋白表达无明显影响,但作用3h即可明显下调PI3K110、P-AKT和β-catenin蛋白并上调GSK-3p蛋白。90nM ACR作用两种AML细胞株细胞3h后即明显下调WNT3a蛋白表达及(3-catenin蛋白,但对P13K110、P-AKT及GSK-3p蛋白表达无明显影响。36nM HHT联合90nM ACR可同时抑制THP-1细胞、Kasumi细胞WNT3a. β-catenin、PI3K110及P-AKT蛋白表达。(6)沉默THP-1细胞WNT3a基因后再联合HHT或AKT抑制剂能增加HHT及AKT抑制剂对THP-1细胞的生长抑制及诱导凋亡作用。一定浓度比联合AKT抑制剂与ACR亦能协同抑制THP-1细胞生长并协同诱导其发生凋亡。(7)采用GSK-3β抑制剂部分上调THP-1细胞β-catenin后能部分逆转实验浓度HHT联合ACR对THP-1细胞的生长抑制作用,但对HHT、ACR单药引起的生长抑制作用无明显改善。GSK-3p抑制剂作用对HHT、ACR、HHT联合ACR对THP-1细胞的诱导凋亡作用无明显逆转。(8)实验浓度HHT联合ACR可能可以协同诱导AML患者骨髓中CD34+/CD38-细胞凋亡。
     小结:
     (1)实验浓度HHT作用AML细胞株细胞不同时间对WNT3a基因、β-catenin基因表达无明显下调,而ACR及HHT联合ACR作用后明显下调WNT3a基因和β-catenin基因mRNA的表达,与芯片结果一致。(2)HHT及ACR最终可能通过Caspase9激活的内源性凋亡途径而在体外诱导AML细胞株细胞发生凋亡。HHT联合ACR能更明显激活Caspase9.Caspase3。(3)HHT可上调THP-1细胞及Kasumi细胞Bax蛋白表达但对Bcl-2蛋白无明显影响;ACR则可明显下调THP-1细胞及Kasumi细胞Bcl-2蛋白表达。HHT联合ACR能更明显地下调AML细胞株细胞Bcl-2蛋白、Bcl-xl蛋白表达,同时上调Bax蛋白表达。(4)HHT可抑制AML细胞株细胞及原代AML细胞的PI3K/AKT通路活性,并可能进一步抑制其下游信号分子如Mcl-1,同时上调Bax蛋白而诱导AML细胞株细胞发生凋亡。HHT还可能通过减低AKT活性后解除其对GSK-3β的抑制而间接下调P-catenin蛋白表达。(5)ACR可抑制AML细胞株细胞和原代AML细胞WNT3a、β-catenin蛋白的表达,并可能通过进一步抑制WNT通路下游靶分子CyclinDl、C-myc而发挥对AML细胞株细胞的生长抑制作用及诱导凋亡作用。(6)HHT联合ACR可同时抑制AML细胞株细胞及原代AML细胞的P13K/AKT信号及WNT/β-catenin信号。(7)HHT可抑制THP-1荷瘤小鼠瘤体细胞PI3K、P-AKT、β-catenin蛋白表达。ACR可抑制THP-1荷瘤小鼠瘤体细胞WNT3a、β-catenin蛋白表达。HHT联合ACR可同时抑制THP-1荷瘤小鼠瘤体细胞P13K、P-AKT、WNT3a、β-catenin蛋白表达。(8)沉默WNT3a可明显增加HHT或AKT抑制剂对THP-1细胞的杀伤作用。采用GSK-3β抑制剂上调P-catenin表达后可能部分逆转HHT联合ACR对THP-1细胞生长的抑制作用。(8)HHT联合ACR在体外也可能协同诱导AML患者骨髓中的白血病干/祖细胞凋亡。
     结论:
     实验浓度HHT与ACR联合在体外能协同抑制AML细胞株细胞及原代AML细胞生长,并协同诱导其凋亡。
     实验浓度HHT与ACR联合在体内也可能通过诱导AML细胞荷瘤小鼠瘤体细胞凋亡而减慢瘤体增长速度,从而延长小鼠生存时间。
     HHT可能通过抑制AML细胞的PI3K/AKT活性而抑制其生长并诱导凋亡。ACR可能通过抑制AML细胞的WNT/β-catenin通路活性而抑制其生长并诱导凋亡。
     HHT联合ACR可能通过同时抑制PI3K/AKT通路及WNT/β-catenin通路而发挥协同杀伤AML细胞的效应。β-catenin作为上述两条信号通路的共同作用分子可能是HHT与ACR协同杀伤AML细胞的分子靶点之一。
Section1:The synergistical cytotoxicity in vitro and vivo induced by homoharringtonine and aclarubicin in acute myeloid leukemia cells
     Objective:
     The aim of this section was to investigate the antitumor effect relationship of HHT and ACR against AML cell lines and primary AML cells. And then to determine whether a synergistically cytotoxicity of HHT and ACR were confirmed in vitro and vivo.
     Methods:
     MTT assay was used to investigate the effects of HHT, ACR and combination of HHT and ACR on the THP-1cells, Kasumi cells and primary AML cells. Cell apoptosis was measured by Hochest nuclear staining and flow cytometry using the Annexin V-FITC/PI apoptosis assay kit, according to the manufacturer's instructions. The combination index (CI) was calculated using Chou-Talalay method (Calcusyn software, Biosoft) for determining whether the effects of drug combinations were synergistic, additive, or antagonistic. CI<1, CI=1, and CI>1indicate synergism, additive effect, and antagonism, respectively. To examined the in vivo interaction between HHT and ACR THP-1engraft tumor were allowed to grow in female SCID mice before randomization in four groups:placebo, HHT, ACR and HHT plus ACR. Mice were treated with1mg/kg HHT, and/or3mg/kg ACR daily for5days by intraperitoneal injection. Placebo group received equal volume of PBS. The volume of engraft tumor was measured every two days by using the formula:π/6length×width2. Apoptosis of tumor tissue was evaluated by TUNEL in situ hybridization. The metabolic rate of engraft tumor was determined using micro-PET CT. Survival was analyzed by Kaplan-Meier method and compared with x2test.
     Results:
     (1) The results of MTT assay showed a dose-and time-depended growth inhibition by both HHT and ACR in THP-1cells and Kasumi cells. The IC50at24h of HHT for THP-1cells and Kasumi-1cells were71.70±8.77nM and57.37±6.97nM respectively. The IC50at24h of ACR for THP-1cells was171.10±6.05nM, and for Kasumi-1cells was146.80±8.65nM.(2) Simultaneously, a dose-depended growth inhibition was observed following treatment with HHT or ACR in primary AML cells for24hours.(3) Compared with single agent, combining HHT and ACR caused significant stronger growth inhibition in THP-1cells, Kasumi cells and primary AML cells. The combination index value at ED50was0.42for THP-1cells,0.69for Kasumi-1cells and0.34-0.55for primary AML cells.(4) Dose-depended apoptosis induced by HHT or ACR was confirmed by annexin V-FITC/PI apoptosis analysis in THP-1cells, Kasumi cells and primary AML cells.(5) Compared with exposure to single agent, more apoptosis positive THP-1cells were detected when cells were simultaneously exposure to HHT and ACR for12hours. The same phenomenon was observed in Kasumi cells and primary AML cells. The CI at ED50was0.32for THP-1cells,0.15for Kasumi-1cells, and within ranges of0.05to0.24for primary AML cells.(6) To evaluate the in vivo anti-tumor effect of HHT alone, ACR alone and combined HHT and ACR, AML xenograft tumor was established by subcutaneous injection of THP-1cells into the dorsal tissue of SCID mice. Significant tumor grow delay (TGD) was observed in mice treated with combined HHT and ACR. In addition, TUNEL assay showed increased apoptosis in groups treated with combining HHT and ACR. Micro-PET analysis showed a stable metabolic rate of xenograft tumor in HHT group and ACR group at3days after the end of injection. A decreased metabolic rate of xenograft tumor was only observed in a mice treated with combining HHT and ACR.(7) The mice received combination of HHT and ACR obtained a statistical longer mean survival time than the placebo mice. Kaplan-Meier survival analysis showed a favorable survival in combined HHT/ACR group.
     Section2:The mechanisms of synergistically cytotoxity induced by HHT and ACR in acute myeloid leukemia cells
     Objective:
     In this section, we try to explore the targets of synergistically cytotoxity induced by combined HHT/ACR in AML cells. The results will contribute to raise new targeted therapy strategies of AML.
     Methods:
     Differential expression of genome genes were detected by Agilent single-channel cDNA microarray screening in THP-1cells exposure to HHT, ACR and combined HHT/ACR respectively. SAS software was used to filter out the distribution of the differential genes in signaling pathways. The level of mRNA expression of significant genes was evaluated using Real-Time PCR. After THP-1and Kasumi cells were treated with HHT, ACR and combined HHT/ACR for the indicate times, whole cell lysates were used for immunoblot. The protein level of caspase9, caspase3, PARP, bcl-2family, wnt3a, β-catenin, P-β-catenin, GSK-3p, PI3K110, P-AKT, c-myc and cyclinDl were detected. The protein levels of wnt3a, β-catenin, PI3K110, P-AKT were also evaluated by western blot in primary AML cells treated with HHT, ACR and HHT plus ACR. To further verify whether targeting wnt3a and AKT could obtain a similar cytotoxity with HHT plus ACR in AML cells, we try to silence the wnt3a gene of THP-1cells by transfecting WNT3a siRNA fragment to THP-1cells using liposomal. Transfection effect of siRNA was evaluated by Flow cytometry. In order to indicate whether the cytotoxity induced by combined HHT/ACR could be partially inhibited by GSK-3β inhibitor, we detected the growth inhibition and apoptosis triggered by HHT, ACR and HHT plus ACR with or without CHIR-99021, a GSK-3β inhibitor. It has been reported that the excessively activation of WNT signal and PI3K/AKT signal, especially β-catenin, had a close relationship with the proliferation of AML leukemia stem cell (LSC). In order to explore whether combined HHT/ACR could synergistically induce apoptosis of AML-LSC, we examined the ratio of Annexin V positive cells in CD34+/CD38" cells by FACS.
     Results:
     (1) Microarray analysis showed different gene expression in WNT signaling pathway between THP-1cells treated with HHT and ACR.(2) Obvious down-regulated mRNA levels of WNT3a and β-catenin were observed in THP-1cells and Kasumi cells when they exposure to ACR and combined HHT/ACR for1or3hours. However, HHT failed to inhibit the mRNA level of WNT3a and β-catenin in THP-1cells and Kasumi cells. On the contrary, up-regulating mRNA levels of WNT3a and β-catenin were detected in the two cell lines after exposure to HHT for1hours.(3) Caspase9, caspase3and PARP were activated by HHT, ACR and combined HHT/ACR in THP-1cells and Kasumi cells. These supported that endogenous apoptotic signal was involved in the apoptosis induced by HHT and ACR in AML cell lines.(4) Different effects on Bcl-2family proteins were measured between HHT and ACR. We showed HHT to increase Bax expression and decrease Mcl-1and Bcl-xl expression in THP-1cells and Kasumi cells at3hours. However, there was no modification of Bcl-2expression in the two cell lines treated with HHT. On the contrary, ACR could reduce Bcl-2and Bcl-xl expression as early as3hours, and there was no increased Bax expression in THP-1cells and Kasumi cells before24hours. In addition, down-regulating of Mcl-1expression induced by HHT was earlier than that induced by ACR. Combination of HHT and ACR could simultaneously decrease Bcl-2protein expression and increase Bax protein expression in THP-1cells and Kasumi cells.(5) Decreased expression of PI3K110and P-AKT protein were observed in THP-1and Kasumi cells treated with HHT for3h. In contrast, no significant difference in the expression of two proteins was observed in90nM of ACR-treated cells. Treatment of the two AML cells with HHT resulted in a remarkable inhibition of protein expression of β-catenin, whereas expression of WNT3a remained stable at protein levels. Western Blot analysis also showed ACR could obviously inhibit WNT3a and β-catenin protein levels in THP-1cells and Kasumi cells after3hours exposure. As expected, combined HHT and ACR simultaneously reduced expression of PI3K, P-AKT, WNT3a and β-catenin at protein level in THP-1and Kasumi cells. Similar results have also been proved in primary AML cells.(6) To determine whether silencing of wnt3a enhanced the effects of HHT or AKT inhibitor on apoptosis and growth inhibition, the cytotoxicity of HHT and triciribine(an AKT inhibitor) were evaluated in THP-1cells treated with specific siRNA and cells treated with unrelated siRNA. A significant more growth inhibition triggered by HHT and triciribine was obtained in cells transfected with wnt3a siRNA than in cells transfected with scrambled siRNA. Similarly, silencing of wnt3a could increase cell apoptosis induced by HHT and triciribine in THP-1cells.(7) Similar synergistically growth inhibition and inducing apoptosis were examined in THP-1cells treated with combination of triciribined and ACR.(8) The growth inhibition caused by combined HHT/ACR could be partially inhibited by CHIR-99021in THP-1cells.(9) Combined HHT/ACR may be synergistically induced apoptosis of CD34+/CD38-cells in vitro.
     Summary:
     HHT and ACR individually could inhibit cell growth and induce cell apoptosis of AML cells in a dose-dependent manner in vitro. Simultaneous exposure to HHT and ACR on THP-1, Kasumi and primary AML cells resulted in strong synergistic anti-proliferative effect and apoptosis inducing in vitro and in vivo. Combination of HHT and ACR may be result in a favorable survival in AML xenograft mice.
     Different effects on PI3K/AKT signal and WNT/β-catenin signal were observed in AML cells exposure to HHT and ACR respectively. Combined HHT and ACR simultaneously reduced expression of PI3K, P-AKT, WNT3a and β-catenin at protein level in AML cells. So we speculate that a possible mechanism of synergistically cytotoxity induced combinated HHT/ACR is simultaneously inhibit the activity of PI3K/AKT pathway and WNT/β-catenin pathway in AML cells. As a common factor of PI3K/AKT pathway and WNT/β-catenin pathway, β-catenin could be involved in the synergistically anti-tumor effects induced by combinated HHT/ACR in AML cells.
引文
1. Fernandez HF, Sun Z, Yao X, Litzow MR, Luger SM, Paietta EM, Racevskis J, Dewald GW, Ketterling RP, Bennett JM, Rowe JM, Lazarus HM, Tallman MS. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med.2009 Sep 24;361(13):1249-1259.
    2. Lowenberg B, Ossenkoppele GJ, van Putten W, Schouten HC, Graux C, Ferrant A, Sonneveld P, Maertens J, Jongen-Lavrencic M, von Lilienfeld-Toal M, Biemond BJ, Vellenga E, van Marwijk Kooy M, Verdonck LF, Beck J, Dohner H, Gratwohl A, Pabst T, Verhoef G; Dutch-Belgian Cooperative Trial Group for Hemato-Oncology (HOVON); German AML Study Group (AMLSG); Swiss Group for Clinical Cancer Research (SAKK) Collaborative Group. High-dose daunorubicin in older patients with acute myeloid leukemia. N Engl J Med.2009 Sep 24;361(13):1235-1248.
    3. Chen Y, Cortes J, Estrov Z, Faderl S, Qiao W, Abruzzo L, Garcia-Manero G, Pierce S, Huang X, Kebriaei P, Kadia T, De Lima M, Kantarjian H, Ravandi F. Persistence of cytogenetic abnormalities at complete remission after induction in patients with acute myeloid leukemia:prognostic significance and the potential role of allogeneic stem-cell transplantation. J Clin Oncol.2011 Jun 20; 29(18):2507-2513.
    4. Jin J, Jiang DZ, Mai WY, Meng HT, Qian WB, Tong HY, Huang J, Mao LP, Tong Y, Wang L, Chen ZM, Xu WL. Homoharringtonine in combination with cytarabine and aclarubicin resulted in high complete remission rate after the first induction therapy in patients with de novo acute myeloid leukemia. Leukemia,2006, 20(8):1361-1367.
    5. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships:the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul,1984; 22:27-55.
    6. Feldman E, Arlin Z, Ahmed T, Mittelman A, Puccio C, Chun H, Cook P, Baskind P. Homoharringtonine is safe and effective for patients with acute myelogenous leukemia. Leukemia.1992 Nov; 6(11):1185-1188.
    7. Hansen OP, Pedersen-Bjergaard J, Ellegaard J, Brincker H, Boesen AM, Christensen BE, Drivsholm A, Hippe E, Jans H, Jensen KB, et al. Aclarubicin plus cytosine arabinoside versus daunorubicin plus cytosine arabinoside in previously untreated patients with acute myeloid leukemia:a Danish national phase III trial. The Danish Society of Hematology Study Group on AML, Denmark. Leukemia. 1991 Jun;5(6):510-516.
    8. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146:3-15.
    9. Fadok VA, Voelker DR, Campbell PA, et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophage. J Immunol 1992,148:2207-2216.
    10.Vermes I, Haanen C, Steffens-Nakken H, et al. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptosis cells using fluorescein labeled Annexin V. J Immunol Meth 1995,184:39-51.
    11. Yinjun L, Jie J, Weilai X, Xiangming T. Homoharringtonine mediates myeloid cell apoptosis via upregulation of pro-apoptotic bax and inducing caspase-3-mediated cleavage of poly (ADP-ribose) polymerase (PARP). Am J Hematol,2004,76(3):199-204.
    12. Tang R, Faussat AM, Majdak P, Marzac C, Dubrulle S, Marjanovic Z, Legrand O, Marie JP. Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells. Mol Cancer Ther 2006; 5(3):723-731.
    13. Hajji N, Mateos S, Pastor N, Dominguez I, Cortes F. Induction of genotoxic and cytotoxic damage by aclarubicin, a dual topoisomerase inhibitor. Mutat Res.2005; 583(1):26-35.
    14. P. Mayer, Y. Carpentier, M.C. Gorisse, B. Desoize. Culture conditions modulates the effects of aclacinomycin A on growth, differentiation, and apoptosis of HL60 cells. Anticancer Res,1994,14:2331.
    15. Chen Y, Hu Y, Michaels S, Segal D, Brown D, Li S. Inhibitory effects of omacetaxine on leukemic stem cells and BCR-ABL-induced chronic myeloid leukemia and acute lymphoblastic leukemia in mice. Leukemia.2009 Aug; 23(8):1446-1454.
    16. Barret JM, Kruczynski A. Etievant C, Hill BT. Synergistic effects of F 11782, a novel dual inhibitor of topoisomerases I and Ⅱ, in combination with other anticancer agents. Cancer Chemother Pharmacol.2002 Jun; 49(6):479-486.
    17. Hengartner MO. The biochemistry of apoptosis. Nature 2000,407:770-6.
    18. Green D, Reed JC. Mitochondria and apoptosis. Science 1998,281:1309-12.
    19. Krammer PH. CD95's deadly mission in the immune system. Nature 2000, 407:789-95.
    20. H.Walczak and P.H. Krammer. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Experimental Cell Research,2000,256:58-66.
    21. Woo M, Hakem R, Soengas MS, et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 1998,12:806-19.
    22. Burkle A. Physiology and pathophysiology of poly(ADP-ribosyl)ation. Bioessays 2001,23:795-806.
    23. Tong WM., Cortes U, Wang ZQ. Poly (ADP-ribose) polymerase:a guardian angel protecting the genome and suppressing tumorigenesis. Biochim Biophys Acta 2001,1552:27-37.
    24. Bharti AC, Takada Y, Aggarwal BB. PARP cleavage and caspase activity to assess chemosensitivity. Methods Mol Med,2005,11:69-78.
    25. L. Khemtemourian, M. A. Sani, K. Bathany, G. Grobner, and E. J. Dufourc. Synthesis and secondary structure in membranes of the Bcl-2 anti-apoptotic domain BH4. Journal of Peptide Science,2006,12(1):58-64.
    26. M. Simonen, H. Keller, and J. Heim. The BH3 domain of Bax is sufficient for interaction of Bax with itself and with other family members and it is required for induction of apoptosis. European Journal of Biochemistry,1997,249:85-91.
    27. H. F. Yang-Yen. Mcl-1:a highly regulated cell death and survival controller. Journal of Biomedical Science,2006,13(2):201-204.
    28. D. P. Stewart, B. Koss, M. Bathina, R. M. Perciavalle, K. Bisanz, and J. T. Opferman. Ubiquitin-independent degradation of antiapoptoticMCL-1. Molecular and Cellular Biology,2010,30(12):3099-3110.
    29. A. M. Petros, E. T. Olejniczak, and S. W. Fesik. Structural biology of the Bcl-2 family of proteins. Biochimica et Biophysica Acta,2004,1644:83-94.
    30. L. D.Walensky. BCL-2 in the crosshairs:tipping the balance of life and death. Cell Death and Differentiation,2006,13(8):1339-1350.
    31. M. Andreeff, S. Jiang, X. Zhang et al. Expression of Bcl-2-related genes in normal and AML progenitors:changes induced by chemotherapy and retinoic acid. Leukemia,1999,13 (11):1881-1892.
    32. T. Karakas, U. Maurer, E. Weidmann, C. C. Miething, D. Hoelzer, and L. Bergmann. High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia. Annals of Oncology,1998,9(2):159-165.
    33. T. Kohler, C. Schill, M.W.Deininger et al. High bad and bax mRNA expression correlate with negative outcome in acute myeloid leukemia (AML). Leukemia, 16(1):22-29.
    34. Y. L. Ong, M. F. McMullin, K. E. M. Bailie, T. R. J. Lappin, F. G. C. Jones, and A. E. Irvine. High bax expression is a good prognostic indicator in acute myeloid leukaemia. British Journal of Haematology,2000,111(1):182-189.
    35. Irish JM, Anensen N, Hovland R, Skavland J, Borresen-Dale AL, Bruserud O, Nolan GP, Gjertsen BT. Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood,2007,15;109(6):2589-2596.
    36. Dartsch DC, Schaefer A, Boldt S, Kolch W, Marquardt H. Comparison of anthracycline-induced death of human leukemia cells:programmed cell death versus necrosis. Apoptosis,2002,7(6):537-548.
    37. LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ,2003,10:66-75.
    38. Takeda K, Stagg J, Yagita H, Okumura K, Smyth MJ. Targeting deathinducing receptors in cancer therapy. Oncogene,2007,26:3745-3757.
    39. Horinaka M, Yoshida T, Nakata S, Shiraishi T, Tomosugi M, Yoshikawa S, Wakada M, Sakai T. Aclarubicin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis through death receptor 5 upregulation. Cancer Sci,2012,103(2):282-287.
    40. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm:Wnt signaling in cancer. Biochim Biophys Acta,2003,1653 (1):1-24.
    41. Kikuchi A. Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci,2003,94(3):225-229.
    42. Nemeth MJ, Bodine DM. Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways. Cell Res,2007,17(9):746-758.
    43. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR 3rd, Nusse R. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature,2003,423:448-452.
    44. Reya T, Duncan AW, Allies L, Domen J, Scherer DC, Willert K, Hintz L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature,2003, 423:409-414.
    45. Baba Y, Garrett KP, Kincade PW. Constitutively active beta-catenin confers multilineage differentiation potential on lymphoid and myeloid progenitors. Immunity,2005,23:599-609.
    46. Baba Y, Yokota T, Spits H, Garrett KP, Hayashi S, Kincade PW. Constitutively active beta-catenin promotes expansion of multipotent hematopoietic progenitors in culture. J Immunol,2006,177:2294-2303.
    47. Luis TC, Naber, B. A., Roozen, P. P. Brugman, M. H., de Haas, E. F., Ghazvini, M., et al. Canonical Wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell,2011,9 (4):345-356.
    48. Weerkamp F, Baert MR, Naber BA, Koster EE, de Haas EF, Atkuri KR, et al. Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci USA,2006,103(9):3322-3326.
    49. Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM. Deletion of beta-catenin impairs T cell development. Nat Immunol,2003,4(12):1177-1182.
    50. Scheller M, Huelsken J, Rosenbauer F, Taketo MM, Birchmeier W, Tenen DG et al. Hematopoietic stem cell and multilineage defects generated by constitutive b-catenin activation. Nat Immunol,2006,7:1037-1047.
    51. Simon M, Grandage VL, Linch DC, Khwaja A. Constitutive activation of the Wnt/b-catenin signalling pathway in acute myeloid leukemia. Oncogene,2005,24: 2410-2420.
    52. Brandts CH, Sargin B, Rode M, Biermann C, Lindtner B. Schwable J et al. Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation. Cancer Res, 2005,65:9643-9650.
    53. Valencia A, Roman-Gomez J, Cervera J, Such E, Barragan E, Bolufer P, et al. Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia. Leukemia,2009,23(9):1658-1666.
    54. Jost E, Schmid J, Wilop S, Schubert C, Suzuki H, Herman JG, et al. Epigenetic inactivation of secreted Frizzled-related proteins in acute myeloid leukaemia. Br J Haematol,2008,142(5):745-753.
    55. Chim CS, Chan WWL, Pang A, Kwong YL. Preferential methylation of Wnt inhibitory factor-1 in acute promyelocytic leukemia:an independent poor prognostic factor. Leukemia,2006,20:907-909.
    56. Ysebaert L, Chicanne G, Demur C, De Toni F, Prade-Houdellier N, Ruidavets JB, Mansat-De Mas V, Rigal-Huguet F, Laurent G, Payrastre B, Manenti S, Racaud-Sultan C. Expression of beta-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia,2006, 20(7):1211-1216.
    57. Xu J, Suzuki M, Niwa Y, Hiraga J, Nagasaka T, Ito M, Nakamura S, Tomita A, Abe A, Kiyoi H, Kinoshita T, Naoe T. Clinical significance of nuclear non-phosphorylated beta-catenin in acute myeloid leukaemia and myelodysplastic syndrome. Br J Haematol,2008,140(4):394-401.
    58. Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH. Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem, 2001,276:17479-17483.
    59. Sharma M, Chuang WW, Sun Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J Biol Chem,2002,277:30935-30941.
    60. Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem,2007,282(15):11221-11229.
    61. Ponce DP, Maturana JL, Cabello P, Yefi R, Niechi I, Silva E, Armisen R, Galindo M, Antonelli M, Tapia JC. Phosphorylation of AKT/PKB by CK2 is necessary for the AKT-dependent up-regulation of β-catenin transcriptional activity. J Cell Physiol,2011,226(7):1953-1959.
    62. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood,2003,102:972-980.
    63. Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia:its significance as a prognostic variable. Leukemia,2003,17:995-997.
    64. Meng H, Yang C, Jin J, Zhou Y, Qian W. Homoharringtonine inhibits the AKT pathway and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Leuk Lymphoma,2008,49(10):1954-1962.
    65. Tong H, Ren Y, Zhang F, Jin J. Homoharringtonine affects the JAK2-STAT5 signal pathway through alteration of protein tyrosine kinase phosphorylation in acute myeloid leukemia cells. Eur J Haematol,2008,81(4):259-266.
    66. Kubota Y, Ohnishi H, Kitanaka A, Ishida T, Tanaka T. Constitutive activation of PI3K is involved in the spontaneous proliferation of primary acute myeloid leukemia cells:direct evidence of PI3K activation. Leukemia,2004, 18(8):1438-1440.
    67. Vergez F, Green AS, Tamburini J, Sarry JE, Gaillard B, Cornillet-Lefebvre P, Pannetier M, Neyret A, Chapuis N, Ifrah N, Dreyfus F, Manenti S, Demur C, Delabesse E, Lacombe C, Mayeux P, Bouscary D, Recher C, Bardet V. High levels of CD34+CD381ow/-CD123+blasts are predictive of an adverse outcome in acute myeloid leukemia:a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study.Haematologica.2011 Dec;96(12):1792-1798.
    68. Witte KE, Ahlers J, Schafer I, Andre M, Kerst G, Scheel-Walter HG, Schwarze CP, Pfeiffer M, Lang P, Handgretinger R, Ebinger M. High proportion of leukemic stem cells at diagnosis is correlated with unfavorable prognosis in childhood acute myeloid leukemia. Pediatr Hematol Oncol.2011 Mar; 28(2):91-99.
    69. Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol.2007 Nov;25(11):1315-21.
    70. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood.2001; 98(8):2301-2307.
    71. de Figueiredo-Pontes LL, Pintao MC, Oliveira LC, Dalmazzo LF, Jacomo RH, Garcia AB, Falcao RP, Rego EM. Determination of P-glycoprotein, MDR-related protein 1, breast cancer resistance protein, and lung-resistance protein expression in leukemic stem cells of acute myeloid leukemia. Cytometry B Clin Cytom.2008; 74(3):163-168.
    72. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA. The Wnt/b-Catenin Pathway Is Required for the Development of leukemia stem cells in AML. Science.2010; 327:1650-1653.
    73. Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D, So CW. β-Catenin Mediates the Establishment and Drug Resistance of MLL Leukemic Stem Cells. Cancer Cell.2010;18(6):606-618.
    74. Koch U, Wilson A, Cobas M, Kemler R, Macdonald HR, Radtke F. Simultaneous loss of beta-and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood.2008; 111(1):160-164.
    75. O.H. Yilmaz, R. Valdez, B.K. Theisen, W. Guo, D.O. Ferguson, H. Wu, S.J. Morrison. Pten dependence distinguishes haematopoietic stem cells from leukaemiainitiating cells. Nature.2006; 441:475-482.
    76. Kharas MG, Okabe R, Ganis JJ, Gozo M, Khandan T, Paktinat M, Gilliland DG, Gritsman K. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood.2010 Feb 18; 115(7):1406-1415.
    77. Cheong JW, Min YH, Eom JI, Jeung HK, Kim JS. Inhibition of CK2(alpha) and PI3K/AKT synergistically induces apoptosis of CD34+CD38-leukaemia cells while sparing haematopoietic stem cells. Anticancer Res.2010; 30(11): 4625-4634.
    78. Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, Jordan CT. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105(11):4163-4169.
    1. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells.2001, Nature 414:105-111.
    2. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med,2006,355: 1253-1261.
    3. Dalerba P, Cho RW, Clarke MF. Cancer stem cells:models and concepts. Annu Rev Med,2007,58:267-284.
    4. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med,1997,3:730-737.
    5. Dick JE. Stem cell concepts renew cancer research. Blood,2008,112:4793-4807.
    6. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature.1994 Feb 17; 367(6464):645-648.
    7. Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007 Nov;25(11):1315-21.
    8. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood.2001,98(8):2301-2307.
    9. de Figueiredo-Pontes LL, Pintao MC, Oliveira LC, Dalmazzo LF, Jacomo RH, Garcia AB, Falcao RP, Rego EM. Determination of P-glycoprotein, MDR-related protein 1, breast cancer resistance protein, and lung-resistance protein expression in leukemic stem cells of acute myeloid leukemia. Cytometry B Clin Cytom.2008; 74(3):163-168.
    10. Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia, 2000,14:1777-1784.
    11. Taussig DC, Pearce DJ, Simpson C, et al. Hematopoietic stem cells express multiple myeloid markers:implications for the origin and targeted therapy of acute myeloid leukemia. Blood,2005,106:4086-4092.
    12. Testa U, Riccioni R, Diverio D, et al. Interleukin-3 receptor in acute leukemia. Leukemia,2004,18:219-226.
    13. Florian S, Sonneck K, Hauswirth AW, et al. Detection of molecular targets on the surface of CD34+/CD38- stem cells in various myeloid malignancies. Leuk Lymphoma,2006,47:207-222.
    14. Yalcintepe L, Frankel AE, Hogge DE. Expression of interleukin-3 receptor subunits on defined subpopulations of acute myeloid leukemia blasts predicts the cytotoxicity of diphtheria toxin interleukin-3 fusion protein against malignant progenitors that engraft in immunodeficient mice. Blood,2006,108:3530-3537.
    15. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med,2006,12:1167-1174.
    16. Wang PL, O'Farrell S, Clayberger C, Krensky AM. Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J Immunol,1992,148:2600-2608.
    17. Hosen N, Park CY, Tatsumi N, et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci USA,2007,104:11008-11013.
    18. Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol,2001,11:130-135.
    19. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA. The Wnt/b-Catenin Pathway Is Required for the Development of leukemia stem cells in AML. Science.2010; 327:1650-1653.
    20. Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D, So CW. (3-Catenin Mediates the Establishment and Drug Resistance of MLL Leukemic Stem Cells. Cancer Cell.2010;18(6):606-618.
    21. Koch U, Wilson A, Cobas M, Kemler R, Macdonald HR, Radtke F. Simultaneous loss of beta-and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood.2008;111(1):160-164.
    22. O.H. Yilmaz, R. Valdez, B.K. Theisen, W. Guo, D.O. Ferguson, H. Wu, S.J. Morrison. Pten dependence distinguishes haematopoietic stem cells from leukaemiainitiating cells. Nature.2006; 441:475-482.
    23. Kharas MG, Okabe R, Ganis JJ, Gozo M, Khandan T, Paktinat M, Gilliland DG, Gritsman K. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood.2010 Feb 18; 115(7):1406-1415.
    24. Cheong JW, Min YH, Eom JI, Jeung HK, Kim JS. Inhibition of CK2(alpha) and PI3K/AKT synergistically induces apoptosis of CD34+CD38-leukaemia cells while sparing haematopoietic stem cells. Anticancer Res.2010; 30(11):4625-4634.
    25. Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, Jordan CT. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood,2005; 105(11): 4163-4169.
    26. Jin L, Lee EM, Ramshaw HS, et al. Monoclonal antibody-mediated targeting of CD 123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell,2009,5:31-42.
    27. Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell,2009,138: 271-285.
    28. Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell,2009, 138:286-299.
    29. Guzman ML, Swiderski CF, Howard DS, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA,2002, 99(25):16220-16225.
    30. Romano MF, Lamberti A, Bisogni R, et al. Enhancement of cytosine arabinoside-induced apoptosis in human myeloblastic leukemia cells by NF--kappa B/Rel-specific decoy oligodeoxynucleotides, Gene Ther,2000,7(14), 1234-1237.
    31. Kwok BH, Koh B, Ndubuisi MI, et al. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem Biol, 2001,8 (8):759-766.
    32. Hehner SP, Hofmann TG, DrOge W, et al. The anti-inflammatory sesquiterpene lactone parthenolide inhibits NF-kappa B by targeting the I kappa B kinase complex. J Immunol,1999,163 (10):5617-5623.
    33. Riccioni R, Senese M, Diverio D, et al. M4 and M5 acute myeloid leukaemias display a high sensitivity to Bortezomib-mediated apoptosis. Br J Haematol,2007, 139(2):194-205.
    34. Guzman ML, Li X, Corbett CA. et al. Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl,2-methyl,1,2, 4-thiadiazolidine,3,5 dione(TDZD-8). Blood,2007,110(13):4436-4444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700