用户名: 密码: 验证码:
骶前蝶形接骨板的设计研制与生物力学研究及有限元分析和临床对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     骶髂复合体由骶髂关节及周围韧带组成,形成吊桥结构稳定骨盆环,是骨盆的主要稳定结构,承载主要的应力负荷。但六分之一的骨盆骨折累及骶髂关节复合体,不同程度地损伤骶髂关节及周围韧带,进一步造成骨盆环的不稳定。因此,重建骶髂关节复合体的稳定性对于治疗骨盆骨折非常重要。
     Avila1941年首先提出前路手术入路以来,前路切开复位内固定术在骶髂关节损伤治疗中应用越来越广泛,尤其是在陈旧性骨盆骨折,前路手术已成为骶髂关节损伤的主要方法。目前,前路手术主要采取的内固定方式是重建钢板跨骶髂关节固定,采用两块三或四孔的重建板,跨骶髂关节成角固定。生物力学研究表明,传统重建板固定骶髂关节损伤稳定性良好。
     但传统骶髂关节重建板也存在一些缺点。比如:经前路手术创伤大,出血较多,且有较高的腰骶干及股外侧皮神经损伤风险。传统骶髂重建板最初采用两块钢板平行放置,因四边形的不稳定性,导致其生物力学不稳定,不能牢靠固定骶髂关节脱位。研究表明,两枚重建板成60度夹角时具有良好的生物力学稳定性。但因前路手术视野小,操作空间狭窄,难以确定夹角为60度。骶骨侧因安全范围小,容易发生腰骶干损伤或重建板放置位置错误。
     为了解决传统重建板的上述缺点,我们设计了一种新型骶髂关节内固定器械:骶前蝶形接骨板(SAPP)。它适合于前路手术治疗骶髂关节损伤。为明确骶前蝶形接骨板的最佳设计、生物力学稳定性及临床应用可靠性,我们分别进行了骶髂关节解剖学研究,有限元分析及生物力学研究和临床随机对照研究。
     第一部分:骶前蝶形接骨板的设计与依据
     1,设计依据
     1.1螺钉安全区域。
     骶骨翼高44.1±2.0mm,宽22.3±1.8mm,长49.4±1.4mm。耳状面为倒“L”形,上宽下窄,其短轴对骶骨翼平台,宽29.8±3.2mm;长轴对骶骨腹侧缘,长54.1±4.9mm。虽然骶骨翼平台的宽度为44mm,但其关节面宽度约为30mm。骶骨翼平台前四分之三为螺钉置钉的合适区域。髂骨骨质厚薄不均匀,根据骨盆地形图,髂骨厚度<5mm的区域为圆形,直径约5cm,位于骶髂关节附近。其上下均有厚度大于5mm的脊,两条脊的夹角约为90度。因此,骶前蝶形接骨板上下两翼应位于较厚的脊上,上下两翼部的夹角可设计为90度,长度为25mm。体部长度应为25mm。
     1.2神经安全区域。
     骶骨翼平台上L4神经根前支与骶髂关节线的距离比L5神经根前支、腰骶干近,其距离由背侧至腹侧为22.2±2.6mm~9.1±1.6mm。最腹侧距离L4神经根前支最近,小于普通钢板的宽度,不宜放置内固定。骶前蝶形接骨板的设计宽度为10mm,在骶骨翼平台上,除最腹侧外,L4神经根距离骶髂关节线的距离均大于10mm,可以安全放置骶前蝶形接骨板。
     2,设计规格及材料
     骶前蝶形接骨板(SAPP)的设计为半侧蝴蝶形,由上下翼部和体部组成。上下翼部与体部连接,分别成135度夹角,上下翼部夹角为90度。蝴蝶板宽度为10mm,上下翼部与体部的长度均为25mm。六枚钉孔采用滑动加压设计,均采用3.5mm直径螺钉。蝴蝶板体部有一个2.0克氏针的临时固定孔。体部、上下翼部中间部分板两侧有直径为2.0mm的半圆孔。设计材料为Ti-6Al-4V合金。3,设计可行性验证
     采用成人男性骨盆标本4具(8侧),全层切开腹壁,切断髂肌,去除腰大肌,充分显露骶髂关节,注意不要损伤神经,并确保神经在其原始位置。置入骶前蝶形接骨板。在体部内侧缘标记A(最前点)、B(中点)及C点(最后点)。测量A、B、C点与L4神经根前支、L5神经根前支的距离。结果:骶前蝶形接骨板内侧缘距离L4神经根的距离最近,距离L5神经根较远。其中骶前蝶形接骨板上C点(骶前蝶形接骨板内侧缘最腹侧点)距离L4神经根最近,距离为2.5±12mm。放置骶前蝶形接骨板时仍有一定的安全空隙。骶前蝶形接骨板骶骨侧的两枚螺钉深度在6mm左右,髂骨侧4枚螺钉深度在3.0mm左右,具有较好的把持力,避免了在髂骨薄弱处置钉,可以提供良好的生物力学稳定性。
     第二部分:骶前蝶形接骨板的有限元分析和生物力学研究
     第一章:骶前蝶形接骨板的有限元分析
     方法:
     通过山东省立医院医院伦理委员会审查,招募健康成人男性志愿者1名,男性,23岁,身高172cm,体重70Kg。通过三维CT扫描,得到骨盆的三维扫描图像,导入Mimics软件制作骨盆的三维模型并网格化。应用Solidworks软件绘制两种角度的骶前蝶形接骨板的模型SAPP90、SAPP60,绘制传统重建板模型(三孔),绘制两种螺钉:长螺钉50mm,短螺钉30mm,直径均为3.5mm。将骨盆三维模型及骶前蝶形接骨板、传统重建板、两种螺钉模型导入Abaqus软件中,设置各种材料的属性、杨氏模量等,设置骨盆韧带的数量、位置、刚度等。在双侧髋臼设置边界条件并在S1上终板施加600N载荷,进行模拟分析,得出各个模型的应力分布、位移分布,比较骶前蝶形接骨板和传统重建板固定骶髂关节脱位后的最大位移和旋转位移。
     结果:
     在S1椎体上终板施加600N的应力后,SAPP90模型的最大位移是0.618mm,旋转位移是0.404度,Von Mises应力值是186N。SAPP60模型的最大位移是0.730mm,旋转位移是0.561度,Von Mises应力值为275N。TP90模型的最大位移是0.886mm,旋转位移是0.769度,Von Mises应力值是251N。TP60模型的最大位移是0.778mm,旋转位移是0.748度,Von Mises应力值是523N。TP30模型的最大位移是0.979mm,旋转位移是0.895度,Von Mises应力值是241N。TP00模型的最大位移是1.101mm,旋转位移是0.936度,Von mises应力值是232N。完整骨盆模型的最大位移是0.478mm,旋转位移是0.298度,Vonmises应力是48.7N。右侧骶髂关节损伤模型的最大位移是1.992mm,旋转位移是3.146度,Von mises应力最大值221N,位于左侧骶髂关节线腹侧。
     结论:
     在所有骶前蝶形接骨板及传统重建板的测试模型中,骶前蝶形接骨板(SAPP90)的垂直位移及旋转位移均最小,证明了设计的骶前蝶形接骨板(SAPP90)具有最好的生物力学稳定性。SAPP90模型的应力分布,集中在右侧骶髂关节及骶前蝶形接骨板上,以骶前蝶形接骨板下翼部螺钉处最大。在右侧骶髂关节脱位模型中,右侧骶髂关节无稳定结构,应力集中到左侧骶髂关节处。骶前蝶形接骨板重建了骨盆后环的稳定性,将应力分布在两侧,而非集中在健侧。传统重建板模型中,TP60的位移及旋转位移最小,TP00的位移及旋转位移最大,证明成60度夹角放置的传统重建板比其他角度的传统重建板有更好的生物力学稳定性,但生物力学稳定性小于骶前蝶形接骨板。
     第二章:骶前蝶形接骨板的生物力学研究
     方法:
     利用4具带有韧带的骨盆标本(成年男性)和16具成年男性完整骨盆模型(Sawbones1301-1),制作右侧骶髂关节损伤的模型,并将模型连接Instron生物力学测试仪和高精度非接触式磁栅位移测量系统。分别将自制骶前蝶形接骨板和传统重建板模型、钛合金(Ti-6Al-4V合金)制骶前蝶形接骨板和传统重建板模型安装在右侧骶髂关节损伤的模型上,以2mm/s的速度在S1上终板施加载荷,最大载荷设定为600N。测量自制骶前蝶形接骨板和传统重建板断裂时的最大应力和各自的应力-位移曲线。测量Ti合金制骶前蝶形接骨板和传统重建板在600N载荷下的垂直位移和旋转位移,计算其应力-位移曲线,比较分析骶前蝶形接骨板和传统重建板的生物力学稳定性。结果:
     在S1上终板施加速度为2mm/s的载荷后,自制骶前蝶形接骨板和传统重建板模型均在载荷小于600N时发生断裂。其断裂时的应力值:SAPP90模型为496.7±100.8N;SAPP60模型为398.6±79.9N,TP90模型为291.5±69.0N,TP60模型为294.9±68.1N,TP00模型为231.1±68.1N。各组间差异具有统计学意义(p=0.047)。
     在载荷为600N时,骶前蝶形接骨板(SAPP90Ti)的垂直位移是0.43±0.12mm,旋转位移是0.518±0.145度,位移-应力曲线:y=134.32x+45.474,R2=0.61。传统重建板(TP60Ti)的垂直位移是0.51±0.13mm,旋转位移是0.742±0.214度,位移-应力曲线:y=105.09x+62.808,R2=0.4。两组间最大位移和旋转位移差异有统计学意义(p=0.049,0.032)。结论:
     自制骶前蝶形接骨板和传统重建板模型的生物力学比较中,SAPP90能够承受最大的应力载荷,其位移-应力曲线斜率最大,证实其为最优设计方案。TP60在传统重建板中具有最大应力载荷,为最佳传统重建板设计。应用钛合金制作骶前蝶形接骨板(SAPP90)及传统重建板(TP60),进行生物力学测试,骶前蝶形接骨板的位移比较传统重建板更小,证明骶前蝶形接骨板比传统重建板具有更好的生物力学稳定性。
     第三部分骶前蝶形接骨板的临床对比研究
     方法:
     山东省立医院2012年1月至2013年6月治疗了29例30侧骶髂关节损伤,对其临床资料进行了回顾性分析,其中16例16侧骶髂关节损伤行骶前蝶形接骨板内固定,13例14侧骶髂关节损伤行传统重建板内固定。骶前蝶形接骨板组,男7例,女性9例,平均年龄为39.6±9.1岁,Tile B型骨折9例,C型7例;传统重建板组,男7例,女6例,平均年龄为39.1±13.5岁,Tile B型骨折8例,C型5例。两组间比较均无统计学差异。统计手术时间、出血量、钢板放置时间等,术后行X线检查及Matt a评分,随访时行X线检查及Majeed功能评分。
     结果:
     骶前蝶形接骨板组平均手术时间101.1±31.9min,出血1091.8±302.9ml,骶前蝶形接骨板放置时间6.3±3.1min。传统重建板组平均手术时间110.8±29.6min,出血1154.1±281.2ml,重建板放置时间14.9±1.6min。术后Matta评分,骶前蝶形接骨板组优5例,良8例,传统重建板组优4例,良6例。29例患者随访中出现腰骶干损伤1例,股外侧皮神经损伤7例,术中大出血2例,未出现术后感染。骶前蝶形接骨板组与对照组相比,钢板放置时间明显缩短(p=0.001),Tile B型手术出血量明显减少(p=0.024),其余差异无统计学意义(p>0.05)。
     结论:
     骶前蝶形接骨板治疗骶髂关节损伤获得了满意的复位结果和良好的固定效果,未发生接骨板断裂、腰骶干损伤及术后感染等并发症。同传统重建板相比较,骶前蝶形接骨板可以简化操作、缩短钢板放置时间、有利于旋转移位的复位、可以减少Tile B型骨折的手术出血量,不增加神经损伤风险及感染率。骶前蝶形接骨板适合于骶髂关节损伤前路手术治疗及固定,可以在临床上推广。
Background
     Sacroiliac complex consists of the sacroiliac joint and the surrounding ligaments. It forms a drawbridge structure to stabilize the pelvic ring. It is the major stable structure of the pelvis, carrying the main stress load. About one out of six pelvic fractures implicate the sacroiliac complex. It would result in sacroiliac joint injury and peripheral ligaments damage. It further impairs the instability of pelvic ring. Therefore, the reconstruction of the stability of sacroiliac joint complex is of great importance in the treatment of the pelvic fractures.
     Since Avila first reported the anterior surgical approach in1941, it has become popular to perform the open reduction and internal fixation through the anterior approach in the treatment of sacroiliac joint injury. It is the main treatment strategy, especially in the old pelvic fracture. Nowadays, the reconstruction plate is the main internal instrumentation used in surgery through the anterior approach. It uses two reconstruction plates with three or four holes. The two plates are fixed across the sacroiliac joint with a60degree angle. Biomechanical studies have shown that it had great stability to fix the joint.
     However, the traditional reconstruction plate has some drawbacks. It might cause serious bleeding and injury of the lumbosacral trunk and the lateral femoral cutaneous nerve. At the beginning, two traditional reconstruction plates were placed in parallel. It is unstable, due to the instability of quadrilateral. Some studies reported that it was more biomechanically stabile to place the two reconstruction plates with60degree angle. But it is difficult to make sure the60degree angle in the small surgery field and the narrow space. Besides, due to the small safety region in the sacral side of sacroiliac joint, the complications occurs commonly, such as lumbosacral nerve injury and imprecise placement of plate.
     In order to solve the disadvantages of the conventional reconstruction plates mentioned above, we design a new internal fixation:the sacroiliac anterior papilionaceous plate (SAPP). It's applicable for the treatment of anterior sacroiliac joint injury. To investigate the design parameters, anatomy safety, biomechanical stability and reliability for clinical application, we carry out a series of study, including anatomy studies of the sacroiliac joint, finite element analysis, biomechanical studies and retrospective clinical study.
     Part I:The Design and Validation of the Sacroiliac Anterior Papilionaceous Plate
     1. The basis of design
     1.1Screw Secure Area
     The sacralis ala is44.1±2.0mm high,22.3±1.8mm wide and49,4±1.4mm long. The auricular surface is L shaped. Its short axis is29.8±3.2mm wide, parallel to the sacralis ala platform. The long axis is54.1±4.9mm long, parallel to the ventral margin of sacrum. The width of the sacral wing platform is44mm, while the width of the articular surface is approximately30mm. The front three-quarters of the platform is the suitable area to place screw. According to the pelvic terrain map, the iliac bone is less than5mm thick in a round area near the sacroiliac joint. The diameter of the round area is about5cm. There are two ridges forming a90degree angle beyond and beneath the round area. The wings of SAPP should place on the ridges, thus the wings is designed with90degree angle. The length of the body is25mm.
     1.2Nerve Safety Region
     On the sacral ala platform, the distance between the sacroiliac joint line and the anterior branches of L4nerve root is closer than L5nerve root and the lumbosacral nerve trunk. It is22.2±2.6mm9.1±1.6mm from the dorsal to ventral. The narrowest distance is less than the width of the common plate, it is not appropriate to place internal fixation. The width of SAPP is designed as10mm, which is less than the distance from the anterior branches of L4nerve root to the sacroiliac joint line on the platform. Thus, the SAPP can be placed safely.
     2. Design Specifications and Materials
     The sacroiliac anterior papilionaceous plate (SAPP) is designed as semi-butterfly shape, consists of the upper and lower wings and the body portion. The wings connect with the body respectively, forming135degree angle and the two wings are90degree angle across each other. The width of the plate is10mm. The length of the body portion and the wings are25mm. There're6screw holes whose diameter is3.5mm. There is a temporary fixing hole on the body portion. At the two sides of the plate, there are3pairs of semi-circular aperture with a diameter of2. Omm. The material is Ti-6A1-4V alloy.
     3. Validation of the Design Feasibility
     4cadaver pelvis specimens of adult male (8sides) were included. Incite the abdominal wall, cut off the iliac muscle, remove the major psoas muscle, and fully reveal the sacroiliac joint. Carefully not damage the nerves and ensure the nerves in their original location. Then place the SAPP. Point A (the most forward point), point B (midpoint) and point C (the last point) were labeled on the medial edge of the body. The distance between A, B, C and anterior branches of L4, L5nerve root were measured.
     Results:SAPP had no touching with nerves. The distance between the medial edge of the plate and L4nerve root is shorter than L5. Point C (the most ventral point of the medial edge of the plate) is nearest to the L4nerve root (about2.5±1.2mm). Thus, it's safe to place the plate. The depth of two sacral-side screws was about6mm and the depth of four iliac-side screws was about3mm. Screws could be placed avoiding the weak area of the ilium. It makes sure the well screw purchase. They can provide good biomechanical stability.
     Part II:The Finite Element Analysis and Biomechanical
     Study of Sacroiliac Anterior Papilionaceous Plate
     Chapter I:Finite Element Analysis
     Methods:One healthy volunteer (adult male,23-year-old, height172cm, weight70kg) was recruited. It gained permission from the ethical approval of the hospital ethics committee. Images of the pelvis were obtained by three-dimensional CT scans. Import the images into Mimics software to make three-dimensional model of the pelvis and meshing. Use Solidworks software to draw SAPP models (SAPP90and SAPP60), traditional reconstruction plate models (three holes) and two screws (long screw:50mm long; short screw:30mm long; both with a diameter of3.5mm). The three-dimensional pelvis model, plate models and screw models were imported into Abaqus software. Set properties and Young's modulus of various materials. Set the number, location and stiffness of the pelvic ligaments. Set the boundary conditions in the bilateral acetabulum, bear600N load on the Sl upper endplate. Then get the stress distribution and displacement distribution of each modal. Compare the maximum displacement and rotational displacement angle between the models.
     Results:After the application of600N stress on the Sl endplate, the maximum displacement of SAPP90model was0.618mm, the rotational displacement was0.404degrees and the Von Mises stress was186N. For SAPP60, it was0.730mm,0.561degrees and275N respectively. For TP90model, it was0.886mm,0.769degrees and251N respectively. For TP60mode, it was0.778mm,0.748degrees and523N, respectively. For TP30model, it0.979mm,0.895degrees and241N. For TP00model is1.101mm,0.936degrees and232N. The maximum displacement of the whole pelvic model is0.478mm, the rotational displacement is0.298degrees, and Von mises stress is48.7N. The maximum displacement of the right sacroiliac joint injury model is1.992mm, the rotational displacement is3.146degrees; maximum of Von mises stress is221N, located on the ventral of left sacroiliac joint line.
     Conclusion:In all the testing models, SAPP90model had the minimal vertical displacement and the rotational displacement. It indicated that SAPP90had the best biomechanical stability. The stress distribution of SAPP90model focused on the plate, especially the lower screws. However, in the right sacroiliac joint dislocation model, stress focused on the left sacroiliac joint, due to no stable structure at the right side. The SAPP could reconstruct the stability of the posterior pelvic ring. It distributes the stress on both the sides. Among the traditional reconstruction plate models, TP60has the smallest vertical and rotation displacement and TP00has the biggest. It indicated traditional reconstruction plate with a60degree angle had better biomechanical stability than other TPs, but it is weaker than that SAPP.
     Chapter II:Biomechanical Test
     Methods:The right sacroiliac joint injury models were made by4pelvis specimens with ligaments (adult male) and16complete pelvis model (adult male, Sawbones1301-1). The models were connected to Instron biomechanical tester and precision non-contact magnetic grid displacement measurement system. The right sacroiliac joint was fixed with SAPP and TP separately. Then applied load on the S1endplate with speed of2mm/s, and the maximum load was set as600N. Measure the maximum stress and displacement when the SAPP and TP (wood-make) broke. Measure vertical displacement and rotational displacement of Ti-alloy-made SAPP and traditional reconstruction plate and calculate the stress-displacement curve. Compare and analyze the biomechanical stability of the sacroiliac anterior papilionaceous plate and the traditional reconstruction plate.
     Results:All wood made SAPP and traditional reconstruction plate ruptured when the load was less than600N. The stress value at the time of break was109.4±22.2N for SAPP90;87.8±17.6N for SAPP60,64.2±15.2N for TP90,64.9±10.2N for TP60,50.9±15.0N for TP00. Difference between the groups was statistically significant (p=0.047).
     When the load was600N, for SAPP90Ti, the vertical displacement was0.43±0.12mm, the rotational displacement was0.518±0.145degrees, the displacement-stress curve was:y=134.32x+45.474, R2=0.61. For TP60Ti, the vertical displacement was0.51±0.13mm, the rotational displacement was0.742±0.214mm, the displacement stress curve was:y=10.509x+62.808, R2=0.46. The difference of maximum displacement and rotation between two groups was statistically significant (p=0.049,0.032, respectively).
     Conclusion:
     According to the biomechanical comparison between wood-made SAPP and TP, SAPP90was able to beat the maximum stress load. Its displacement maximum stress curve slope is the greatest. It is indicated to be the optimal design. TP60bore the maximum stress load among the TPs. According to the biomechanical testing of Ti-alloy made SAPP90Ti and TP60Ti, SAPP90Ti had smaller vertical displacement and rotation displacement than TP60Ti. It indicated SAPP90Ti had better biomechanical stability than TP60Ti.
     Part III:The Clinical Application of Sacroiliac
     Anterior Papilionaceous Plate
     Objective:to evaluate clinical application and short term outcome of Sacroiliac Anterior Papilionaceous Plate (SAPP) in treatment of sacroiliac joint disruption.
     Method:16consecutive patients with sacroiliac joint disruption associated with pelvic fracture enrolled in our hospital between2012.01. and2013.06. Detailed physical examination, X-rays, CT and FAST were performed before surgery. Operation was carried out after the patients'condition permitted usually7to14days after accident. All the16patients underwent SAPP fixation.13patients enrolled in last year as control group underwent reconstruction plate. Operation time, blood loss, placing time of SAPP were recorded. X ray films were performed after surgery to evaluate reduction condition by Matta criteria. X ray films and Majeed outcome were performed in follow up.
     Results:29patients were included in this study,16patients with16sacroiliac disruptions were treated by SAPP and13patients with14sacroiliac disruptions were treated by reconstruction plate. According to the Tile classification, there were17Type B and12Type C. For SAPP group, operation time was101.1±31.9min, blood loss1091.8±302.9ml, Placing time of SAPP was6.3±3.1min. For control group, operation time was110.8±29.6min, blood loss was1154.1±281.2ml, placing time of reconstruction plate was14.9±1.6min. According to Matta criteria, there were9excellent,14good,5fair,1poor. There were1lumbosacral nerve injury,7lateral femoral cutaneous nerve injury,2massive blood loss occurred, while none posterior infection occurred. Compared with control group, SAPP group experienced shorter placing time of SAPP, and less blood loss in type B pelvic fracture.
     Conclusion:As a new instrument, Sacroiliac Anterior Papilionaceous Plate (SAPP) could be well applied in treatment of sacroiliac disruption. Compared with reconstructed plate, SAPP obviously shorten placing time and facilitated placing procedure, while did not increase blood loss, neurological risk and infection rate and did not need different incision and reduction method.
引文
1. 周东生.骨盆创伤学(第二版).山东科学技术出版社.2011;第七章:136-152.
    2. 王满宜.骨盆与髋臼骨折值得注意的问题.中华骨科杂志.2011:31(11):1181-1182.
    3. 张英泽.临床创伤骨科学流行病学.人民卫生出版社.2009:316.
    4. Pascarella R, Rizzi L, Castelli C, Politano R. Surgical Treatment of Pelvic Fractures. Trauma Surgery.2014;1:65-72.
    5. Heetveld MJ, Harris I, Schlaphoff G, Sugrue M. Guidelines for the management of haemodynamically unstable pelvic fracture patients. ANZ Journal of Surgery.2004;74(7):520-529.
    6. Giannoudis PV, H. C. P. Damage control orthopaedics in unstable pelvic ring injuries. Injury.2004;35(7):671-677.
    7. Dong J, Zhou D. Management and outcome of open pelvic fractures: a retrospective study of 41 cases. Injury.2011;42(10):1003-1007.
    8. Rothenberger D, Velasco R, Strate R, Fischer RP, Perry Jr JF. Open pelvic fracture:A lethal Injury. Journal of Trauma-Injury Infection & Critical Care.1978;18(3):184-187.
    9. 周东生,吴军卫,王伯珉,李连欣,郝振海.伴有直肠肛管损伤的开放性骨盆骨折的治疗.中华创伤骨科杂志.2009;7:614-618.
    10. Abitbol MM. Obstetrics and posture in pelvic anatomy. Journal of Human Evolution.1987;16(3):243-255.
    11. Gansslen A, Pohlemann T, Paul C, Lobenhoffer P, Tscherne H. Epidemiology of pelvic ring injuries. Injury.1996;27(S1):13-20.
    12. Cole J, Blum DA, Ansel LJ. Outcome After Fixation of Unstable Posterior Pelvic Ring Injuries. Clinical Orthopaedics & Related Research.1996;329(1):160-179.
    13. Tile M. Fractures of the pelvis and acetabulum. Williams&Wilkins Baltimore.1984:213-229.
    14. Tile M. Pelvic ring fractures:should they be fixed?. J Bone Joint Surg (Br) 1988;70 (1):1-12.
    15. Berber 0, Amis AA, Day AC. Biomechanical testing of a concept of posterior pelvic reconstruction in rotationally and vertically unstable fractures. J Bone Joint Surg Br. 2011;93(2):237-244.
    16. Oh WK, Hwang SM. Surgical Fixation of Sacroiliac Joint Complex in Unstable Pelvic Ring Injuries.. Hip Pelvis.2012;24(2):139-147.
    17. Kellam JF, McMurtry RY, Paley D, Tile M. The unstable pelvic fracture. Operative treatment. Orthop Clin North Am. 1987;18(1):25-41.
    18. Scaglione M, Parchi P, Digrandi G, Latessa M, Guido G. External fixation in pelvic fractures. MUSCULOSKELETAL SURGERY. 2010:94(2):63-70.
    19. 周东生,穆卫东,王鲁博,王伯珉,王甫.暂时性腹主动脉阻断术在骨盆骨折大出血急救中的应用.中华创伤骨科杂志.2007;10(9):912-914.
    20. Wang G, Zhou D, Shen W-J, et al. Management of Partial Traumatic Hemipelvectomy. Orthopedics.2013;36(11):e1340-e1345.
    21. Hu S, Xu H, Guo H, Sun T, Wang C. External fixation in early treatment of unstable pelvic fractures. Chin Med J. 2012; 125 (8):1420-1424.
    22. Matta J, Saucedo T. Internal Fixation of Pelvic Ring Fractures. Clinical Orthopaedics & Related Research.1989;242:83-97.
    23. Enninghorst N, Toth L, King KL, McDougall D, Mackenzie S, Balogh ZJ. Acute Definitive Internal Fixation of Pelvic Ring Fractures in Polytrauma Patients:A Feasible Option. Journal of Trauma-Injury Infection & Critical Care.2010;68(4):935-941.
    24. 黄涛,周东生,吕荷荣,王鲁博.骶骨棒微创小切口治疗骶骨纵行骨折.中国矫形外科杂志.2006;16:1218-1220.
    25. 贾健,王建民,何杨,et al.骨盆损伤中移位骶骨骨折的手术治疗.中华骨科杂志.2009:29(12):1168-1176.
    26. Albert MJ, Miller ME, MacNaughton M, Hutton WC. Posterior Pelvic Fixation Using a Transiliac 4.5-mm Reconstruction Plate: A Clinical and Biomechanical Study. Journal of Orthopaedic Trauma.1993;7 (3):226-232.
    27. Shuler TE, Boone DC, Gruen GS, Peitzman AB. Percutaneous iliosacral screw fixation:early treatment for unstable posterior pelvic ring disruptions, journal of Trauma. 1995:38(3):453-458.
    28. Avila L. Primary pyogenic infection of the scaroiliac articulation. A new approach to the joint. Report of seven cases. J Bone Joint Surg.1941;23:922-928.
    29. Simpson LA, Waddell JP, Leighton RK, Kellam JF, Tile M. Anterior approach and stabilization of the disrupted sacroiliac joint. The Journal of Trauma.1987;27(12):1332-1339.
    30. 曹其勇,王满宜,吴新宝,朱仕文,吴宏华.前路跨骶髂钢板治疗骨盆后环损伤.中华医学杂志.2008:88(13):898-900.
    31. Leigthon RK, Waddell JP. Techniques for reduction and posterior fixation through the anterior approach. Clin Orthop. 1996:329:115-120.
    32. Pan ZJ. Biomechanical research on anterior double-plate fixation for vertically unstable sacroiliac dislocations. Orthopaedic surgery.2009;1(2):127-131.
    33. Bodzay T, Szita J, Mano S, et al. Biomechanical comparison of two stabilization techniques for unstable sacral fractures. J Orthop Sci.2012;17(5):574-579.
    34. 李连欣,周东生.骨盆骨折合并腰骶丛压迫性损伤的早期诊断与手术治疗.中华骨科杂志.2010:30(4):391-395.
    35. 王国栋,周东生,谭国庆,李连欣,李庆虎.骶髂前路蝶形钢板与传统重建钢板治疗骶髂关节损伤的比较研究.中华骨科杂志.2013:33(5):541-548.
    36. 李连欣,周东生,杨永良,郝振海,王永会.髂腹股沟微创小切口内固定治疗髋臼前柱或耻骨支骨折.中华骨科杂志.2012;32(5):467-470.
    37. Alla SR, Roberts CS, Ojike NI. Vascular risk reduction during anterior surgical approach sacroiliac joint plating. Injury. 2013;44(2):175-177.
    38. 李连欣,周东生,王鲁博,王伯珉,穆卫东,王甫.腹主动脉球囊阻断术治疗骨盆骨折大出血.中华骨科杂志.2011;5:487-490.
    39. Atlihan D, Tekdemir I, Ates Y, Elhan A. Anatomy of the anterior sacroiliac joint with reference to lumbosacral nerves. Clin Orthop Relat Res.2000;376:236-241.
    40. Yinger K, Scalise J, Olson SA, Bay BK, Finkemeier CG. Biomechanical Comparison of Posterior Pelvic Ring Fixation. Journal of Orthopaedic Trauma.2003;17(7):481-487.
    41. Ragnarsson B, Olerud C, Olerud S. Anterior square-plate fixation of sacroiliac disruption. Acta Orthop Scand 1994; 64 (2):136-142.
    42. Olerud S, Hamberg M. The anterior approachto the dislocated sacroiliac joint. Reduction and fixation with a square plate. Recent Development in Orthopaedic Surgery (Eds. Noble, J. Galasko, CSB) Manchester University Press, Man-Chester. 1987:175-181.
    43. 张奉琪,潘进社,张英泽,彭阿钦,李亚洲,王慧娟.骨盆骨折骶髂关节分离前路钢板固定的应用解剖.中国临床解剖学杂志.2004:24(2):120-121.
    44. 李伟元,李洪恩.骶髂关节及相关的解剖观测和临床意义.解剖与临床.2004:9(2):71-73.
    45. 郭世绂.临床骨科解剖学(第一版).天津:天津科学技术出版社.1988:307.
    46. Ebraheim NA, Padanilam TG, Waldrop JT, Yeasting RA. Anatomic consideration in the anterior approach to the sacroiliac joint. Spine.1994; 19 (6):721-725.
    47. Salsabili N, Valojerdy MR, Hegg DA. Variations in thickness of articular cartilage in the human sacroiliac joint. Clin Anat. 2005;8(6):388-389.
    48. 王先泉,张伟,孙水,张进禄,王健,李伟.骨盆的地形图.中国临床解剖学杂志.2006:24(5):485-488.
    49. 王先泉,张进禄,周东生.沿骨盆界限放置内固定物的临床解剖学研究.中国临床解剖学杂志.2005;23(2):153-156.
    50. 潘兵,张兆健.髋臼区的横断层解剖及意义.中国临床解剖学杂志.1994:12(2):138-140.
    51. 武兴国,谌业光,黄健,et al.骶髂关节骨折脱位前路手术的应用解剖.中国临床解剖学杂志.2011;29(4):396-398.
    52. 许世宏.骶髂关节的相关应用解剖与前路钢板内固定术的临床应用研究.山东大学硕士学位论文.2006:5-15.
    53. Hansen HC, McKenzie-Brown AM, Cohen SP, Swicegood JR, Colson JD, Manchikanti L. Sacroiliac joint interventions:a systematic review. Pain Physician.2007;10(1):165-184.
    54. 樊亚军,曹继敏,杨华斌,陈志宏,李雷.Fe含量对Ti-6Al-4V钛合金力学性能的影响.金属热处理.2013;38(3):21-23.
    55. 樊亚军,曹继敏,杨华斌,李雷,罗斌莉.氧含量及加工方法对医用Ti-6Al-4V钛合金丝组织与性能的影响金属热处理.2012;37(12):86-88.
    56. Erdemir A, Guess TM, Hallorana J, Tadepalli SC, Morrison TM. Considerations for reporting finite element analysis studies in biomechanics. Journal of Biomechanics.2012;45(4):625-633.
    57. Hughes TJR. The finite element method:Linear static and dynamic finite element analysis. Prentice-Hall (Englewood Cliffs, N. J.) 1987:803.
    58. Anderson AE, Peters CL, Tuttle BD, Weiss JA. Subject-Specific Finite Element Model of the Pelvis:Development, Validation and Sensitivity Studies. J Biomech Eng 2005;127(3):364-373.
    59. Ivanov AA, Kiapour A, Ebraheim NA. Lumbar fusion leads to increases in angular mo tion and stress across sacroiliac joint: a finite element study. Spine.2009;34(5):162-169.
    60. Majumder S, Roychowdhury A, Pal S. Effects of body configuration on pelvic injury in backward fall simulation using 3D finite element models of pelvis-fem ur-soft tissue complex.. Biomechanics,.2009:42(10):1475-1482.
    61. Garcia JM, Doblare M, Seral B, Seral F, Palanca D, Gracia L. Three-dimensional finite element analysis of several internal and external pelvis fixations. J Biomech Eng.2000;122(5):516-522.
    62. Crawforda RP, Cannd CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone.2003;33(4):744-750.
    63. Magne P. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dental Materials. 2007:23(5):539-548.
    64. Cheung JT-M, Zhang M, Leung AK-L, Fan Y-B. Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. Journal of Biomechanics.2005;38(5):1045-1054.
    65. Wu JZ, Herzog W, Epstein M. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues. Journal of Biomechanics.1997;31 (2):165-169.
    66. Regensburg NI, Kok PHB, Zonneveld FW, et al. A New and Validated CT-Based Method for the Calculation of Orbital Soft Tissue Volumes. Invest. Ophthalmol. Vis. Sci.2008;49(5):1758-1762.
    67. Zhao Y, Li J, Wang D, Liu Y, Tan J, Zhang S. Comparison of stability of two kinds of sacro-iliac screws in the fixation of bilateral sacral fractures in a finite element model. Injury. 2012:43:490-494.
    68. Phillips ATM, Pankaj P, Howie CR, Usmanic AS, Simpson AHRW. Finite element modelling of the pelvis:Inclusion of muscular and ligamentous boundary conditions. Medical Engineering & Physics.2007:29:739-748.
    69. Dakin GJ, Alonso JE, Mann KA, Eberhardt AW, Arbelaez RA, Molz FJ. Elastic and Viscoelastic Properties of the Human Pubic Symphysis Joint:Effects of Lateral Impact Loading. J Biomech Eng 2000:123(3):218-226.
    70. Melenka JM, Babuska I. The partition of unity finite element method:Basic theory and applications. Computer Methods in Applied Mechanics and Engineering.1996;139(1-4):289-314.
    71. Moensa D, Hanss M. Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances. Finite Elements in Analysis and Design. 2011:47(1):4-16.
    72. Brekelmans WA, Poort HW, Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand. 1972;43(5):301-317.
    73. Wang X, Sanyal A, Cawthon PM, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. Journal of Bone and Mineral Research. 2012;27(4):808-816.
    74. Koivumaki JEM, Thevenot J, Pulkkinen P, et al. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone.2012;50(4):824-829.
    75. Eberle S, Gerber C, G. von Oldenburg, Augat P. Stronger Implant Does Not Cause Stress-Shielding in the Fixation of Hip Fractures-Validated Finite Element Analysis and Cadaver Tests. World Congress on Medical Physics and Biomedical Engineering.2010;25(4):224-226.
    76. Mtlller R, Kampschulte M, Khassawna TE, et al. Change of mechanical vertebrae properties due to progressive osteoporosis: combined biomechanical and finite-element analysis within a rat model. Medical & Biological Engineering & Computing 2014;52(4):405-414.
    77. Huang H-L, Hsu J-T, Fuh L-J, Tu M-G, Ko C-C, Shen Y-W. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant:A non-linear finite element study. Journal of Dentistry.2008;36:409-417.
    78. P.J. P. Finite element models in tissue mechanics and orthopaedic implant design. Clinical Biomechanics. 1997;12(6):343-366.
    79. Trabelsi N, Yosibash Z, Wutte C, Augat P, Eberle S. Patient-specific finite element analysis of the human femur—A double-blinded biomechanical validation. Journal of Biomechanics. 2011; 44 (9):1666-1672.
    80. Straitl DS, Wang Q, Dechow PC, et al. Modeling elastic properties in finite-element analysis:How much precision is needed to produce an accurate model? The Anatomical Record. 2005;283A(2):275-287.
    81. Ainsworth M, Oden JT. A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering.1997;142(1-2):1-88.
    82. Macneal RH, Harder RL. A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design.1985; 1 (1):3-20.
    83. Keyak JH, Fourkas MG, Meagher JM, Skinner HB. Validation of an automated method of three-dimensional finite element modelling of bone. Journal of Biomedical Engineering.1993;15(6):505-509.
    84. Shim V, Bohme J, Vaitl P, Klima S, Josten C, Anderson I. Finite element analysis of acetabular fractures—development and validation with a synthetic pelvis. Journal of Biomechanics. 2010; 43 (8):1635-1639.
    85. Vavalle NA, Moreno DP, Rhyne AC, Stitzel JD, Gayzik FS. Lateral Impact Validation of a Geometrically Accurate Full Body Finite Element Model for Blunt Injury Prediction. Annals of Biomedical Engineering.2013;41(3):497-512.
    86. Burkhart TA, Andrews DM, Dunning CE. Finite element modeling mesh quality, energy balance and validation methods:A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics.2013;46(9):1477-1488.
    87. Panagiotopoulou 0, Kupczik K, Cobb SN. The mechanical function of the periodontal ligament in the macaque mandible:a validation and sensitivity study using finite element analysis. Journal of Anatomy.2011;218(1):75-86.
    88. Tabaie SA, Bledsoe JG, Moed BR. Biomechanical Comparison of Standard Iliosacral Screw Fixation to Transsacral Locked Screw Fixation in a Type C Zone II Pelvic Fracture Model.. Journal of orthopaedic trauma.2013;27(9):521-526.
    89. Shim V, Boheme J, Josten C, Anderson I. Use of Polyurethane Foam in Orthopaedic Biomechanical Experimentation and Simulation. Polyurethane.1st ed:In Tech.2012:171-200.
    90. Heaver C, Mart S, Nightingale P, Sinha A, Davis ET. Measuring limb length discrepancy using pelvic radiographs:the most reproducible method. Hip International.2013;23(4):391-394.
    91. Varga E, Hearn T, Powell J, Tile M. Effects of method of internal fixation of symphyseal disruptions on stability of the pelvic ring. Injury.1995;26(2):75-80.
    92. 谭国庆.张力带钢板重建骨盆后环稳定性的生物力学研究.山东大学博士学位论文.2012:23-28.
    93. Standring S. Gray's Anatomy:The Anatomical Basis of Clinical Practice.2008(368-374).
    94. 原林,高梁斌.骨盆的解剖和生物力学.中华创伤骨科杂志.2001:3(2):144-146.
    95. Burgess AR, Eastridge BJ, Young JW, et al. Pelvic ring disruptions:effective classification system and treatment protocols. Journal of Trauma-Injury, Infection, and Critical Care,.1990;30 (7):848-856.
    96. Yip C, Kwok E, Sassani F, Jackson R, Cundiff G. A biomechanical model to assess the contribution of pelvic musculature weakness to the development of stress urinary incontinence. Computer methods in biomechanics and biomedical engineering 2012;17(2):163-176.
    97. Tile M. Acute pelvic fractures:I. Causation and classification. Journal of the American Academy of Orthopaedic Surgeons. 1996; 4 (3):143-151.
    98. Vleeming A, Schuenke MD, Masi AT, Carreiro JE, Danneels L, Willard FH. The sacroiliac joint:an overview of its anatomy, function and potential clinical implications. Journal of anatomy.2012;221 (6):537-567.
    99. Henry SM. Pelvic Fracture. In Geriatric Trauma and Critical Care 2014;Springer New York:263-269.
    100. Bowen V, Cassidy JD. Macroscopic and microscopic anatomy of the sacroiliac joint from embryonic life until the eighth decade. Spine.1981; 6 (6):620-628.
    101. 王永珍,郭强苏,吴晋宝,郑学明.国人骶髂关节面测定及其应力与负荷的关系.解剖学报.1988:19(4):342-347.
    102. Forst SL, Wheeler MT, Fortin JD, Vilensky JA. The sacroiliac joint:anatomy, physiology and clinical significance. Pain Physician.2006;9 (1):61-67.
    103. Vleeming A, Volkers ACW, Snijders CJ, Stoeckart R. Relation between form and function in the sacroiliac joint:part II: biomechanical aspects. Spine,.1990;15(2):133-136.
    104. Steinke H, Hammer N, Slowik V, et al. Novel insights into the sacroiliac joint ligaments.. Spine.2010;35(3):257-263.
    105. Eichenseer PH, Sybert DR, Cotton JR. A finite element analysis of sacroiliac joint ligaments in response to different loading conditions. Spine.2011;36(22):1446-1452.
    106. Le Goff B, Berthelot JM, Maugars Y. Ultrasound assessment of the posterior sacroiliac ligaments. Clinical and experimental rheumatology.2010;29 (6):1014-1017.
    107. 徐松,贾蕾,江超,邝满元,王岐本.骶结节韧带和骶棘韧带的解剖学测量及其意义.中国临床解剖学杂志.2011;29(1):39-41.
    108. Luk KD, Ho HC, Leong JC,. The iliolumbar ligament. A study of its anatomy, development and clinical significance.. Journal of Bone & Joint Surgery, British Volume.1986; 68(2):197-200.
    109. Giannoudis PV, Xypnitos FN, Kanakaris NK. Sacroiliac Joint Fusion. In Practical Procedures in Elective Orthopaedic Surgery Springer London.2012:29-34.
    110. Flint L, Cryer HG. Pelvic fracture:the last 50 years. Journal of Trauma-Injury, Infection, and Critical Care,. 2010;69(3):483-488.
    111. Choy WS, Kim KJ, Lee SK, Park HJ. Anterior pelvic plating and sacroiliac joint fixation in unstable pelvic ring injuries. Yonsei medical journal.2012; 53 (2)-.422-426.
    112. 谭国庆,周东生,傅佰圣,薛建学,何吉亮.尿道会师同期骨盆骨折复位内固定治疗骨盆骨折合并后尿道断裂.中华创伤杂志.2011;27(4):300-303.
    113. Bellabarba C, Schildhauer TA, Vaccaro AR, Chapman JR. Complications associated with surgical stabilization of high-grade sacral fracture dislocations with spino-pelvic instability. Spine.2006;31(115):580-588.
    114. 周东生,王先泉,王伯珉,王鲁博.耻骨联合分离/耻骨上下支骨折合并骶骨骨折的治疗.中华创伤骨科杂志.2004;6(4):372-375.
    115. Cullinane DC, Schiller HJ, Zielinski MD, et al. Eastern Association for the Surgery of Trauma practice management guidelines for hemorrhage in pelvic fracture-update and systematic review. Journal of Trauma and Acute Care Surgery 2011;71(6):1850-1868.
    116. 孙远南,张玲娣,蒋国军.骨科I类切口手术预防性使用抗菌药物干预前后效果分析.中华临床感染病杂志.2012;5(4):230-231.
    117. Matta JM, Tornetta P. Internal Fixation of Unstable Pelvic Ring Injuries. Clinical Orthopaedics& Related Research. 1996:329:129-140.
    118. Majeed SA. Grading the outcome of pelvic fractures. J Bone& Joint Surg [Br].1989;7-B:304-306.
    119. Fan XH, Zhen P, Gao MX, et al. Characteristics of treating dislocation and fracture of sacroiliac joint through anterior and posterior approches. China journal of orthopaedics and traumatology.2013;26(12):1048-1050.
    120. Oh KJ, Choi JH. Intrapelvic Anterior Plate Fixation for Crescent Fracture-Dislocation of Sacroiliac Joint. Journal of the Korean Fracture Society.2013;26(3):184-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700