用户名: 密码: 验证码:
改良复合磷酸钙骨水泥诱导成骨作用的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:植骨是治疗骨缺损和骨不连最常用的方法,由于自体骨和同种异体骨来源有限且无可塑性等缺点使人工植骨材料成为当前研究的热点。最早在临床使用的可塑形较好的植入材料为聚甲基丙烯酸甲酯(PMMA),但是,由于PMMA固化时产生热量,可灼伤周围正常骨组织,又不能被机体吸收和重塑,阻碍骨折愈合,不适合作为创伤性骨缺损和骨不连的植骨材料。其后研究的可吸收的骨移植替代物主要有硫酸钙、磷酸钙羟基磷灰石等。硫酸钙类在体内降解较快,与新骨长入速度不一致,且质地较脆、机械强度有限,一般不用于治疗骨干部骨折的缺损。
     磷酸钙骨水泥具有优良的生物学和力学性能,但是普通的磷酸钙骨水泥的固化产物羟基磷灰石虽然含有微孔结构,其孔径大小多在微米以下至数微米之间,孔径不能允许细胞及血管的透过和生长,这类骨水泥在人体中非常稳定,吸收和降解通常仅发生在骨水泥的表面且吸收速率非常缓慢,且一般不具有诱导成骨活性,骨爬行替代时间较长,一定程度上限制了其临床应用价值。因此,有必要对其改进配方,使其更符合临床需要。
     我们通过优化普通磷酸钙骨水泥的配方,并与同种异体骨粉混合,以同种异体骨粉作为新骨长入的微孔结构研制了改良复合可吸收磷酸钙骨水泥(BCPC),动物实验显示该BCPC作为植骨材料可以诱导成骨。但一种新的植骨材料应用于临床之前,必须阐明其作用机制。本实验拟通过体外实验进一步研究该材料对兔骨髓间充质干细胞(Bonemesenchymalstemcells,BMSCs)的生长和诱导分化成骨作用,探索其临床应用价值。
     目的:通过体外实验观察改良复合磷酸钙骨水泥(BCPC)生物相容性,对兔BMSCs的生长和诱导成骨分化作用,以及其负载促骨形成因子的能力。
     材料和方法:实验分4组:①对照组;②普通磷酸钙骨水泥组(CPC组);③改良复合磷酸钙骨水泥组(BCPC组);④负载BMP组(加BMP的BCPC组)。将各组材料与传代至第三代的兔骨髓间充质干细胞在24孔板上复合培养,每日倒置相差显微镜下观察细胞生长情况,细胞计数并绘制细胞增殖曲线,碱性磷酸酶测试盒检测细胞合成碱性磷酸酶活性变化,扫描电镜观察细胞在材料表面的生长及长入情况。复合培养第10天各组取相同数目细胞,real-timePCR检测成骨及成软骨相关基因ALP、OSX、CollgenⅠ、CollagenⅡ、AggrecanmRNA表达情况,2-△△CT法比较这些基因mRNA表达差别。
     结果:与普通骨水泥比较,配制的BCPC具有更疏松的结构,细胞计数结果显示复合培养后各组细胞增殖无统计学差别,倒置显微镜观察细胞与载体边缘接触良好。复合培养第7天后,BCPC组及加BMP组表达更高的碱性磷酸酶活性,扫描电镜观察细胞在BCPC表面生长增殖良好,逐渐伸出伪足并长入材料孔隙,而CPC组细胞只在材料表面生长。复合培养第10天,BCPC组及加BMP组与CPC组及对照组比较,其成骨或成软骨相关基因ALP、OSX、CollagenⅠ、CollagenⅡ、AggrecanmRNA表达有统计学差别。结论:配制的改良复合磷酸钙骨水泥具有良好的生物相容性和一定的成骨诱导能力,其疏松的结构及更大的孔径结构适宜细胞长入,并可作为BMP因子的良好释放载体而增强其对骨髓间充质干细胞的诱导分化成骨作用。
Background: Bone grafting is the most commonly used method in treatment of bone defectsand nonunion. Since autogenous or allogeneic bone is limited in sourse and has poor quality ofplasticity, artificial bone graft material is becoming the research hotspot currently. The earliestapplicable artificial graft material in clinic with good plasticity was poly(methyl methacrylate)(PMMA), but PMMA could generate heat during curing which may burn the surrounding normalbone tissue, and it can not be absorbed and reshaped in the body which would impede fracturehealing. Therefore PMMA was not suitable as a bone graft material for traumatic bone defectsand bone nonunion. Subsequent arisen bone graft substitutes mainly included calcium sulfate,various calcium phosphates and so on. Calcium sulfate degradated fast in the body and wasinconsistent with the time for new bone grow. Its brittle texture and poor mechanical madecalcium sulfate generally not suitable for the treatment of defect in bone shaft.
     Calcium phosphate bone cement is of excellent biological and mechanical properties and hasbe applicated widely in clinic. Although the curing product hydroxyapatite of ordinary calciumphosphate bone cement contains microporous structure, the pore size, however, usually variedfrom below micron to several microns and can not allow cells and blood vessels to grow into itsdeep surface. Furthermore this type of bone cement is very stable in the body.The absorption anddegradation usually only occurs on its surface and the absorption rate is very slow, it is belived tohas no osteoinductive activity and the“bone creeping substitution”process usually needs a longtime. These deficiency limits their clinical application to a certain extent.Therefore there is aneed to improve its formulation so as to make it more adaptive in clinic.
     We developed a modified absorbable calcium phosphate bone cement composite (Bone &Calcium phosphate cement, BCPC) through optimizating the formulation of common calciumphosphate cement and mixing it with allogeneic bone meal. Animal experiment had showed thatthis BCPC could induce bone formation when as a bone graft material. In this study, we planedto further study its proliferation and osteoblast differentiation effect on rabbit bone mesenchymalstem cells(BMSCs) in vitro so as to explore its clinical value.
     Objective To investigate in vitro the biocompatibility of modified calcium phosphate bone cement(BCPC) and its effect on the growth state and osteogenic differentiation of rabbit BMSCs,as well as its capacity for loading relative factors to promote bone formation.
     Methods The experiment included four different groups:①control group;②ordinary calciumphosphate bone cement group(CPC group);③modified composite calcium phosphate bonecement group(BCPC group);④BCPC added exogenous BMP factor group(BMP group).BMSCs of rabbit were co-cultured with vectors respectively in the four groups. Cells growth wasobserved by an inverted phase microscope everyday and through drawing the cell growth curve.The activity changement of alkaline phosphatase (ALP) was detected by an alkaline phosphatasetest kit and the growth state of BMSCs on the surface of vectors was observed by a scanningelectron microscpe. Real-time PCR was used to measure the expression of relative genemRNA(ALP、OSX、CollagenⅠ、CollagenⅡ、Aggrecan) for osteogenesis and chondroblast.
     Results There was no statistical difference of cell proliferation amone the four groups. TheBMSCs contacted well with the edges of vectors and had a good growth on the surface of thecarriers. Investigation through scanning electron microscpe showed the pseudopodias wasextended from the cells into the pores of BCPC,while in CPC group, cells growed only on thesurface of vector. Higher activity of ALP was detected in BMP group and BCPC group than theother two groups 7 days after co-culturing with vectors. In the 10th day after co-culturing, theexpression of relative gene mRNA(ALP、OSX、CollagenⅠ、CollagenⅡ、Aggrecan) forosteogenesis and chondroblast was significant higher in BCPC group and BMP group than thecontrol group.
     Conclusion The BCPC has good biocompatibility and can induce osteoblast to a certain degree.Its loose structure and the larger aperture enable cells to grow into its deep layers as well as afavorble delivery system of BMP factor to strengthen the effect of osteoblast differentiation ofthe BMSCs.
引文
[1] LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics[J]. Clin Mater,1993,14(1): 65-88.
    [2] Radin SR, Ducheyne P. The effect of calcium phosphate ceramic composition and structure onin vitro behavior. II. Precipitation[J]. J Biomed Mater Res,1993,27(1): 35-45.
    [3] Lin FH, Lin CC, Liu HC, et al. Sintered porous DP-bioactive glass and hydroxyapatite as bonesubstitute[J]. Biomaterials,1994, 15(13): 1087-98.
    [4] Landi E, Celotti G, Logroscino G, et al. Carbonated hydroxyapatite as bone substitute[J]. J EuroCeram Soc, 2003, 23(15): 2931-2937.
    [5] Levai JP, Boisgard S. Acetabular reconstruction in total hip revision using a bone graftsubstitute:Early clinical and radiographic result[J]. Clin Orthop Relat Res,1996,(330): 108-14.
    [6]. Fernández E, Vlad MD, Gel MM, et al. Modulation of porosity in apatitic cements by theuse of alpha-tricalcium phosphate-calcium sulphatedihy dratemictures[J]. Biomaterials, 2005,26(17): 3395-3404.
    [7]. Theiss F, Apelt D, Brand B, et al. Biocompatibility and resorption of a brushite calciumphosphate cement[J]. Biomaterials, 2005, 26(21): 4383-4394.
    [8]. Kuboki Y, Jin Q, Kikuchi M, et al. Geometry of artificial ECM: sizes of pores controllingphenotype expression in BMP-induced osteogenesis and chondrogenesis[J]. Connect Tissue Res,2002, 43(2-3): 529-34.
    [9] Miao X. Porous Calcium Phosphate Ceramics Prepared by Coating Polyurethane Foams withCalcium Phosphate Cements[J]. Materials Letters, 2004, 58: 397-402.
    [10] Blom EJ,Klein N.Transforming growth factor-beta l incorporated during setting in calciumphosphate cement stimulates bone cell differentiation in vitro[J].Joumal of Biomedical MaterialsResearch,2000,50(1):67-74.
    [11] Jensen SS, Yeo A, Dard M,et al. Evaluation of a novel biphasic calcium phospha- te instandardized bone defects: a histologic and histomorphometric study in the man- dibles ofminipigs[J]. Clin Oral Implants Res,2007,18(6): 752-60.
    [12] Qi X, Ye J, Wang Y. Improved injectability and in vitro degradation of a calcium phosphatecement containing poly(lactide-co-glycolide) microspheres[J]. Acta Biomater,2008,4(6):1837-45.
    [13] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-timequantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001, 25(4): 402-8.
    [14] Manjubala M, Sivakumar M, Sureshkumar RV, et al. Bioactive and osseointegration studyof calcium phosphate ceramic of different chemical composition[J]. J Biomed Mater Res(ApplBiomater), 2002, 63(12): 200-208.
    [15] Flautre B, Maynou C, Lemaitre J, et al. Bone colonization of beta-TCP granulesincorporated in brushite cements[J]. J Biomed Mater Res, 2002, 63(4): 413-7.
    [16] Munting E, Mirtchi AA, Lema?tre J. Bone repair of defects filled with a phosphocalcichydraulic cement: an in vivo study[J]. J Mater Sci Mater Med, 1993, 4(5): 337–344.
    [17] Constantz BR, Barr BM, Ison IC, et,al. Histological, chemical, and crystallographic analysisof four calcium phosphate cements in different rabbit osseous sites[J]. J Biomed Mater Res(Appl Biomater), 1998, 43(7): 451–461.
    [18] GisepA, Wieling R, Bohner M, et al. Resorption patterns of calcium-phosphate cements inbone[J]. J Biomed Mater Res, 2003, 66A: 532-540.
    [19] Khairoun I, Magne D, Gauthier O, et al. In vitro characterization and in vivo propertyes of acarbonated apatite bone cement[J]. J Biomed Mater Res, 2002, 60(?): 633-642.
    [20] BruijinJD, Bovell YP, Davies JE, et al. Osteoclastic resorption of calcium phosphates ispotentiated in postostgenic culture condions[J]. J Biomed Mater Res, 1994, 28(14): 105-112.
    [21] LeGeros RZ, Skakae T, Bautista C, et al. Magnesium and carbonate in enamel and syntheticapatites[J]. Adv Dent Res,1996, 10(6): 225-23.
    [22]. Reddi AH, Huggins C. Biochemical sequences in the transformation of normal fibroblastsin adolescent rats [J]. Proc Natl Acad Sci USA, 1972, 69(21): 1601-1605.
    [23].裴国献.同种异体骨移植[M].北京:科学技术文献出版社. 2007, 89-90.
    [24].Karageorgiou V, Kaplan D. Porosity of 3d biomaterial scaffolds and osteogenesis[J].Biomaterials, 2005, 26(2): 5474-5491.
    [25]刘列,任海霞,薛民权,等.异体骨和异体骨骨水泥在骨骼重建方面的临床观察[J].实用骨科杂志,2004,10(6):506-507。
    [26] WR Qian H, ZhuW. A norel tumor cell line cloned from mutated human embryonic bonemorrow mesenchymal stem cells [J]. Oncology Reports, 2004, 12(3): 501-508.
    [27] Dahir GA, Cui Q, Anderson P, et al. Pluripotential mesenchymal cells repopulate bonemarrow and retain osteogenic properties[J].Clin Orthop, 2000, 379(S): 134-145.
    [28]杨芬,杨乃龙.两种体外分离成人骨髓间充质干细胞方法的比较[J].中国组织工程研究与临床康复,2008,12(3):473一476。
    [29]Paniushin OV, Domaratskaia EI, Starostin Vl.Mesenchymal stem cells:Sourcss, phenotypeand diferentiation potential[J]. Izv Akad Nauk Ser Biol, 2006, ?(1): 6-25.
    [30] Kassem M. Masenchymal stern cells: biological characteristics and potential clinicalappllcation[J]. Cloning Stem Cells, 2004, 10(4): 369-374.
    [31] Kronenwett R. Haas R Differentiation potential of stem cells from bone marrow [J]. MedKlin (Munich), 2006, 101(1): 182-185.
    [32] Pittenger MF, Mackay AM, Becksc, et al. Multilineage potential of adult humanmesenchymal stem cells[J]. Seience,1999, 284(5411): 143一147.
    [33] Kneser U, Voogd A, Ohnolz J, et a1. Fibrin gel-immobilized primary osteoblast in calciumphosphate bone cement: in vivo evaluation with regard to application as injectable biologicalbone substitute[J]. Cells Tissues Organs. 2005; 179(4): l58-l69.
    [34]罗毅,李奇,林荔军,等.新型多孔型磷酸钙骨水泥骨内移植的生物学特点:生物相容性、骨传导性及可降解性[J].中国组织工程研究与临床康复.2007;11(18):3496-3499。
    [35]孙明林,胡蕴玉,贾新斌,等.磷酸钙骨水泥/骨形态发生蛋白复合人工骨的生物相容性[J].第四军医大学学报,2001,22(11):1006-1009。
    [36] Ingham E, Green TR, StoneMH, et a1. Production of TNF and boneresorbing activity by macrophages in response to different types of bonecement particles[J]. Biomaterials 2000; 21(10): l005-1013.
    [37] Sabita S, Stephen DG. Screening of in vitro cytotoxicity by the adhesive test[J]. Biomateials,1990; 11(3): 133-136.
    [38] Liu CS, Wang W, ShenW, et a1. Evaluation of the biocompatibility of a nonceramichydroxyapatite[J]. J Endon 1997; 23(8): 490-493.
    [39]赵晓伟。自制磷酸钙骨水泥分子生物相容性初探。济宁医学院学报,2007,30(2):l20-l2l。
    [40]黄留玉,PCR最新技术原理、方法及应用[M]。北京化学工业出版社,2005。
    [41] FrankO,HeimM,JakobM,et al.Real-time quantitative RT-PCR analysis of human Bonemarrow stromal cells during osteogenie differentiation in vitro[J]. Cell Biochem, 2002, 85(4):737一746.
    [42] schmittgenTD, Zakrajsek BG Mills AG, et al. Quantitative reverse transcriptionPolymerase chain reaction to study mRNA decay:comparison of end point and Real-timemethods[J]. Anal Biochem, 2000, 285(2): 194-204.
    [43] Budhia S,Haring LF,McConnell I,et al. Quantitation of ovine cytokine mRNA byReal-timeRT-PCR[J]. Immunol Methods, 2006, 309(l/2): 160-172.
    [44] Singh R, Recinos RF, Agresti M, et al. Real-time reverse transcriptase polymerase Chainreaction: an improvement in detecting mRNA levels in mouse cranial tissue[J]. Plast ReconstrSurg, 2006, 117(7): 2227-2234.
    [45] Livak KJ, schmittgen TD. Analysis of relative gene expression data using real-timequantitative PCR and the 2(-Delta DeltaC(T))Method[J]. Methods, 2001, 25(4): 402-408.
    [46] Nishiya Y, Kosaka N, Uchii M, et al. A potential dihydropyridine L-type calcium channelblocker, benidipine, promotes osteoblast differentiation[J . Calcified tissue international, 2002,70(1): 30-39.
    [47]张立海,张其清。骨组织工程中成骨细胞与细胞因子的研究[J]。中国医学科学院学报,2001,3(6):631-637。
    [48] Jaiswal SE ,Caplan AI. Osteogenic differentation of purified culture expanded humanmensenchymal stem cellsin vitro[J]. Cell Biochem, 1997, 64(2): 295-301.
    [49] Alborzi A, Mac K, Glackin CA, et al. Endochondral and intramem branous fetal bonedevelopment: osteoblastic cell proliferation and expression of alkaline phosphatase,mtwist,andhistone H4 [J]. Craniofac Gent Dev Biol, 1996, 6(2): 94-107.
    [50] Nakashima K, Xin Z, Kunkel G, et al. The novel zinc finger-containing transcrip tionfactorosterix is required for osteoblast differentiation and bone formation[J]. Cell, 2002, 108(1): 17-24.
    [51].Tu Q, Valverde P, Chen J. Osterix enhances proliferation and osteogenic potentialof bone marrow stromal cells[J]. Biochem Biophys Res Commun. 2006, 341(4): 1257-65.
    [52].Nishio Y, Dong Y, Paris M, et al. Runx2-mediated regulation of the zinc finger Osterix/Sp7gene[J]. Gene, 2006, 372(10): 62-70.
    [53].Celil AB, Hollinger JO, Campbell PG.. Osx transcriptional regulation is mediated byadditional pathways to BMP2/Smad signaling[J]. J Cell Biochem, 2005, 95(3): 518-28.
    [54].Ohyama Y, Nifuji A, Maeda Y, et al. Spaciotemporal association and bone morphogeneticprotein regulation of sclerostin and osterix expression during embryonicosteogenesis[J]. Endocrinology, 2004, 10(145): 4685-4691.
    [55] Yuan H, Kurashina K, de Bruijn JD,et al. A preliminary study on osteoinduction of twokinds of calcium phosphate ceramics[J]. Biomaterials, 1999, 20(1): 1799–806.
    [56] Habibovic P, Yuan H, Van der volk CM, et al. 3D microenvironment as essential elementfor osteoinduction by biomaterials[J]. Biomaterials 2005, 26:3565-75.
    [57] Klein C, de Groot K, Chen WQ, et al. Osseous substance formation induced in porouscalcium phosphate ceramics in soft tissues[J]. Biomaterials, 1994;15:31-4.
    [58] Hing KA, Annaz B, Saeed S,et al. Microporosity enhances bioactivity of synthetic bonegraft substitutes[J]. J Mater Sci Mater Med, 2005, 29(16): 467–75.
    [59] Yamasaki H, Sakai H. Osteogenic response to porous hydroxyapatite ceramics under theskin of dogs[J]. Biomaterials, 1992, 13(5): 308-12.
    [60] Habibovic P, Li JP, Van der Valk CM, et al. Biological performance of uncoated andoctacalcium phosphate-coated Ti6Al4V[J]. Biomaterials, 2005, 26(7): 23-36.
    [61] Habibovic P, Van der Valk CM, Van Blitterswijk CA, et al. Influence of octacalciumphosphate coating on osteoinductive properties of biomaterials[J]. J Mater Sci Mater Med, 2004,15:373-80.
    [62] Gosain AF, Song LS, Riordan P, et al. A 1-year study of osteoinduction inhydroxyapatite-derived biomaterials in an adult sheep model: part I[J]. Plast Reconstr Surg2002;109:619-30.
    [63] Yuan HP, Li YB, de Bruijn JD, et al. Tissue responses of calcium phosphate cement: astudy in dogs[J]. Biomaterials, 2000; 21:1283-90.
    [64] Yuan HP, De Bruijn JD, Li YB, et al. Bone formation induced by calcium phosphateceramics in soft tissue of dogs: a comparative study between alpha-TCP and beta-TCP[J]. JMater Sci Mater Med, 2001;12:7-13.
    [65] Yuan HP, Van den Doel M, Li SH, et al. A comparison of the osteoinductive potential oftwo calcium phosphate ceramics implanted intramuscularly in goats[J]. J Mater Sci Mater Med,2002;13:1271–5.
    [66] Yuan H, de Bruijn JD, Zhang X. Osteoinduction by porous alumina ceramic. In:Europeanconference on biomaterials[J]. London; 2001, 14(3): 209-217..
    [67] Fujibayashi S, Neo M, Kim HM, et al. Osteoinduction of porous bioactive titanium metal[J].Biomaterials, 2004; 25: 443-50.
    [68] Li XM, van Blitterswijk CA, Feng QL, et al, The effect of calcium phosphate microstructure onbone-related cells in vitro[J]. Biomaterials, 2008,29(23): 3306-3316.
    [69] Lijia Cheng, Feng Ye, Ruina Yang, et al. Osteoinduction of hydroxyapatite/β-tricalcium phosphatebioceramics in mice with a fractured fibula[J]. Acta Biomaterialia, 2010,6(4): 1569-1574.
    [70] Kofron MD, Li X, Laurencin CT. Protein- and gene-based tissue engineering in bonerepair[J]. Curr Opin Biotechnol, 2004, 15(5): 399-405.
    [71] Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic pro- tein genefamily in bone formation and repair[J]. Clin Orthop Relat Res. 1998, 26 (346): 26-37.
    [72] Rickard DJ, Sullivan TA, Shenker BJ, et al. Induction of rapid osteoblast diffe- rentiation inrat bone marrow stromal cell cultures by dexamethasone and BMP-2[J]. Dev Biol. 1994, 161(1):218-28.
    [73] Kim HJ, Rice DP, Kettunen PJ,et al. FGF-, BMP- and Shh-mediated signalling pathways in theregulation of cranial suture morphogenesis and calvarial bone devel- opment[J]. Development.1998, 125(7): 1241-51.
    [74] Luca DF,Bames KM,Uyeda JA,et a1. Regulation of growth plate chondrogenes is by bonemorphogenetic protein-2[J]. Endocrinology, 2004, 142(1): 430-436.
    [75] Wang SN,Lapage J,Hirschberg R. Loss of tubular bone morphogenetic protein-7 indiabetic nephropathy [J]. J Am Soc Nephrol,2001,12 (11):2392—2399.
    [76] Panchision DM,Pickel JM,Studer L,el a1.Sequential actions of BMP receptors controlneural precursor cell production and fate[J]. Genes Dev, 2001, 15(16): 2094-2110.
    [77] Winn SR ,Uludag H ,Hollinger JO. Carrier system for Bone Morphogenetics Proteins [J].Clin Orthop, 1999, 367: 95-106.
    [78] Fernandez E , Ginebra MP , Boltong MG, et al, Kinetic study of the setting reaction of acalcium phosphate bone cement[J]. J Biomed Mater Res, 1996, 32 (3): 367-74.
    [79] Otsuka M, Matsuda Y, Suwa Y, et al. A novel skeletal drug delivery system usingself-setting calcium phosphate cement 2: Physicochemical properties and drug release rate of thecement containing indomethecin[J]. J Pharm Sci, 1994,83(5): 611-615
    [80] Blom EJ,Klein N. Transforming growth factor-betal incorporation in an alpha-tricalciumphosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: releasecharacteristics and physicochemical properties [J]. Bioma- terials, 2002, 23(4): 1261-1268.
    [81] Otsuka M,Nakahigashi Y,Matsuda Y,et al. Efect of geometrical cement size on in vitroand in vivo indomethacin release from self-setting apatite cement[J]. Journal of ControlledRelease, 1998, 52(10): 281-289.
    [82]张伟,侯春林,刘昌胜等。磷酸钙骨水泥对骨形态发生蛋白缓释作用的体外实验研究[J]。中国矫形外科杂志,2001,8(8):783-786。
    [1] Schmitz JP, Hollinger JO. The critical size defect as an experimental model forcraniomandibul of acial nonunions[J]. Clin Orthop, 1986, 205(4): 299-308.
    [2]陈峥嵘,陈中伟,张光健。腓骨移植治疗肢体侵袭性骨肿瘤和恶性骨肿瘤[J]。中国显微外科杂志,1996,19(5):161-163。
    [3]蒋俊威,王红川,黄富国等。成人双腓骨游离移植修复股骨远端巨大骨缺损[J]。中国修复重建外科杂志,2004,18(5):370-372。
    [4]周建国,周勇等。串联血管的超长双腓骨组合移植治疗瘤段切除后长段骨缺损[J]。解放军医学杂志,2002,27(4):319-320。
    [5] Kobbe P, Tarkin IS, Frink M, et al. Voluminous bone graft harvesting of the femo- ralmarrow cavity for autologous transplantation: An indication for the "Reamer-Irrigator-Aspirator-" (RIA-) technique[J]. Unfallchirurg. 2008, 111(6): 469-72.
    [6]杨天府。同种异体骨移植的免疫反应[J]。中国修复和重建外科杂志,1994,8(3):201-203。
    [7] Hofmann GO, Kirschner MH, Gonschorek O, et a1. Allogeneic vascularized transplantationin cases of bone and joint defects[J]. Unfallchirurg, 1999, l02(6): 458-465.
    [8] Ikeda K, Shigetomi M, lhara K, et al. Effects of cessation of immunosuppression on skeletonreconstructed by vascularized bone allograft in rats[J]. J Orthop Res,2004, 22(2): 388-394.
    [9] Attias N, Lindsey RW. Case reports: management of large segmental tibial defects usiing acylindrical mesh cage[J]. Clin Orthop Relat Res. 2006, 450(14): 259-66.
    [10] Clements JR, Carpenter BB,Pourciau JK.Treating segmental bone defects: a newtechnique[J]. J Foot Ankle Surg. 2008, 47(4): 350-356.
    [11] Peter VG, Haralambos D, Eleftherios T. Bone substitutes:An update[J]. Injury, 2005,36(3): 20-27.
    [12]刘亮,王东。大段同种异体骨移植复合BMP2和TGF-β2对兔桡骨中段骨缺损愈合的影响[J]。中国矫形外科杂志,2007,15(9):702-705。
    [13] Giannini S, Vannini F, Lisignoli G, et al. Histological and immunohistochemical analysis ofan allogenic bone graft engineered with autologous bone marrow mononuclear cells in thetreatment of a large segmental defect of the ulna. A case report[J]. Chir Organi Mov. 2008, 91(3):171-5.
    [6] WR Qian H, Zhu W, et al. A norel tumor cell line cloned from mutated humanembryonic bone morrow mesenchymal stem cells [J]. Oncology Reports, 2004, 12(3): 501-508.
    [7] DahirGA,CuiQ,Anderson P, et al. Pluripotential mesenchymal cells repopulate bone marrowand retain osteogenic properties[J].Clin Orthop,2000,379(S):134-145.
    [14]戚超,黄富国,杨志明等。骨髓基质干细胞与生物衍生骨复合修复山羊胫骨缺损的影响学研究[J]。中国修复重建外科杂志,2004,18(2):83-87.
    [15] Minamide A, Famaki T. Experimental spinal fusion using sintered bovine bone coated withtype 1 collagen and recombinant human bone morphogenetic protein 2 [J]. Spine, 1999, 24:1863—1870.
    [16] Lu M, Rabie AB. The effect of demineralized intramembranous bone matrix and basicfibroblast growth factor On the healing Of allogenetic intramembranous bone grafts in therabbit[J]. Arch Oral Blot, 2002,47(12): 831-841.
    [17] Rorther JA, Gough JE, Boccaccini AR, et a1. Novel bioresorbable and bioactive compositesbased onbioactive glass and polyactide foams for bone tissue engineering[J]. J Mater Sci MaterMed, 2002, l3(12):l 207-l2l4.
    [18] Kim HW, Noh YJ, Koh YH, et a1. Enhanced performance of fluorine substitutedhudroxyapatite compositesfor hard tissue engineering[J]. J Mawr Sci Mawr Med, 2003, 14(10):899-904.
    [19] Legeros RZ, Lin S, Rohanizadeh R, et a1. Biphasic calcium phosphate biocera- mics:preparation, propertiesand applications[J]. J Mater Sci Mawr Med, 2003,14(3): 20l-209.
    [20] Ueno T, Sakata Y, Hirata A, et al. The evaluation of bone formation of the whole-tissueperiosteum transplantation in combination with beta-tricalcium phosphate (TCP)[J]. Ann PlastSurg, 2007,59(6): 707-12.
    [21] Hoshino M, Egi T, Terai H, et al. Repair of long intercalated rib defects in dogs usingrecombinant human bone morphogenetic protein-2 delivered by a synthetic polymer andbeta-tricalcium phosphate [J]. J Biomed Mater Res A, 2008, 78(24): 877-83.
    [22] Archundia TR, Soriano JC, Corona JN. Utility of platelet-rich plasma and growth factorsbone in the bone defects. Regional Hospital Lic. Adolfo López Mateos, ISSSTE[J]. Acta OrtopMex, 2007, 21(5): 256-60.
    [23] Nakasa T, Ishida O, Sunagawa T, et al. Feasibility of prefabricated vascularized bone graftusing the combination of FGF-2 and vascular bundle implantation within hydroxyapatite forosteointegration[J]. J Biomed Mater Res A. 2008, 85(4):1090-5.
    [24]冯庆玲,崔福斋,张伟。纳米羟基磷灰石/胶原骨修复材料[J]。中国医学科学院学报,2002,24(2):124-l28。
    [25]廖素三,崔福斋,张伟。组织工程中胶原基纳米骨复合材料的研制[J]。中国医学科学院学报,2003,25 (1):36-38。
    [26] Kikuchi M, Itoh S, Ichinose S, et al. Self-organizationmechanism in a bone·likehydroxyapatite/collagen nanocompo site synthesized in vitro and its biological reactionin vivo[J].Biomaterials, 2001,22(13): 1705-l7l1.
    [27]梁熙,蒋电明,倪卫东,等。纳米羟基磷灰石/聚酰胺66复合骨填充材料修复良性骨肿瘤骨缺损临床疗效观察[J]。中国重建修复外科杂志。2007,21(8):785-788。
    [28] De Bastiani G.. Limb lengthening by callus distraction(callotasis)[J]. J Pediatr Orthop, 1987,7: 129-134.
    [29] Cierny GⅢ,Zorn KE. Segmental tibial defects.Comparing conventional and Illizarovmethodologies[J]. Clin Orthop, 1994, 301: 118-123.
    [30] Song HR,Kale A,Park HB, et al. Comparison of iternal bone transport and vascularizedfibular grafting for femoral bone defects[J]. Orthop Trauma. 2003, 17: 203-211.
    [31] Matsuyama J, Ohnishi I, Kageyama T et al. Osteogenesis and angiogenesis in regeneratingbone during transverse distraction: quantitative evaluation using a canine model[J]. Clin OrthopRelat Res. 2005, Apr;(433): 243-50.
    [32] Garcia FL, Picado CH, Garcia SB. Histology of the regenerate and docking site in bonetransport[J]. Arch Orthop Trauma Surg, 2008, 23(14): 123-130.
    [33] Robert Rozbruch S, Weitzman AM, Tracey Watson J et al. Simultaneous treatment of tibialbone and soft-tissue defects with the llizarov method[J]. J Orthop Trauma. 2006, 20(3): 197-205.
    [34] Charalambous CP, Akimau P, Wilkes RA.Hybrid monolateral-ring fixator for bonetransport in post-traumatic femoral segmental defect: a technical note[J]. Arch Orthop TraumaSurg. 2008, 53(2):455-464.
    [35] Oh CW, Song HR, Roh JY,et al. Bone transport over an intramedullary nail forreconstruction of long bone defects in tibia[J]. Arch Orthop Trauma Surg. 2008, 128(8):801-8.
    [36] Eralp L, Kocaoglu M, Yusof NM. Distal tibial reconstruction with use of a circular externalfixator and an intramedullary nail. The combined technique[J]. Bone Joint Surge Am. 2007,89(10): 2218-24.
    [37] Sen C, Eralp L, Gunes T, et al. An alternative method for the treatment of nonunion of thetibia with bone loss[J]. Bone Joint Surg Br. 2006 ,88(6): 783-9.
    [38] Breitbart AS, Grande DA, Mamn JM, et a1. Gene-enhanced tisue engineering:applicationsfor bo ne healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene[J].Ann Plast Surg, 1999, 42: 488-495.
    [39]郑启新,郭晓东,刘勇,等。bFGF基因修饰的间充质干细胞/多孔B-TCP陶瓷复合移植修复兔节段性骨缺损[J]。中国生物医学工程学报,2003,22(2):l7l-177。
    [40] Cassell OC, Hofer SO, Morrison WA, et al. Vascularisationof tissue-engineered grafts: theregulation of angiogenesis in reconstructive surgery and in disease states[J]. Br J Plast Surg,2002, 55(8): 603-610.
    [41]戴江华,雷锦程,戴闽,等。骨组织工程研究的方法论检讨及其思路创新[J]。医学与哲学,2007,28(1):11-18。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700