用户名: 密码: 验证码:
新型纳米生物螺钉及生物股骨髁的制备与相关实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分纳米羟基磷灰石/聚酰胺66/玻璃纤维材料的制备及其对成骨细胞生物学行为的影响
     目的
     研究纳米羟基磷灰石/聚酰胺66/玻璃纤维(nano-hydroxyapatite/polyamid66/glass fiber,n-HA/PA66/GF)复合材料的细胞相容性及其对MC3T3-E成骨细胞生物学行为的影响,为后期应用提供实验依据。
     方法
     制备圆片状n-HA/PA66/GF材料并按照ISO10993标准制备其浸提液。取MC3T3-E1成骨细胞,分别与圆片状材料或其浸提液共培养。通过直接接触实验、扫描电镜观察及CCK-8法检测该材料对成骨细胞黏附、生长、增殖的影响;通过BCA法检测材料对成骨细胞总蛋白合成的影响;通过酶联免疫吸附测定法检测材料对成骨细胞骨钙素分泌的影响;通过流式细胞术检测材料浸提液对成骨细胞周期的影响;通过AnnexinV-FITC/PI双标记法检测材料对细胞凋亡的影响;通过Transwell小室迁移实验检测材料对成骨细胞迁移的影响;通过双标记间接细胞免疫荧光染色在激光共聚焦仪上观察材料及其不同浓度的浸提液对细胞骨架及肌动蛋白纤维分布的影响。
     结果
     直接接触实验表明n-HA/PA66/GF材料对MC3T3-E1细胞无明显细胞毒性。材料周围的细胞生长旺盛,为长梭形,无空泡及细胞皱缩,贴壁生长良好。CCK-8实验显示细胞数量随着培养时间延长而增多,实验组与两对照组之间的差异在共培养前5天无统计学意义(p>0.05),在培养7天后实验组细胞数量较阴性和阳性对照组多(p<0.05)。实验组与对照组细胞总蛋白含量分别为(2.21±0.48)mg/ml、(1.68±0.25)mg/ml, BCA法检测证实材料能促进成骨细胞总蛋白的合成,两组之间差异有统计学意义(p<0.05)。流式细胞检测结果证实材料能使更多细胞进入S期而对细胞凋亡率无明显影响。两组细胞的凋亡率分别为7.93%±2.37%、8.31%±2.84%,差异无统计学意义(p>0.05)。Elisa检测的两组细胞分泌的骨钙素含量在共培养1、3、5、7天时差异无统计学意义(p>0.05),但在共培养10、14天后材料能促进成骨细胞分泌骨钙素(p<0.05)。Transwell迁移实验显示穿膜细胞数两组之间无统计学差异(p>0.05)。扫描电镜观察见材料表面的成骨细胞形态规整呈长梭形,细胞之间紧密相连并通过伪足紧紧黏附在材料表面,随着培养时间延长逐渐呈现复层生长。免疫荧光结果表明不同浓度的材料浸提液对细胞骨架及肌动蛋白纤维的极性分布无明显影响,n-HA/PA66/GF材料具有良好的细胞相容性,能为细胞的粘附与增殖提供适宜的环境。
     结论
     新型n-HA/PA66/GF复合材料具有良好的成骨细胞相容性,对细胞生长、增殖、分泌、黏附、周期和迁移等行为均有一定调节作用。
     第二部分纳米羟基磷灰石/聚酰胺66/玻璃纤维生物活性螺钉固定犬股骨髁间骨折的实验研究
     目的
     评估纳米羟基磷灰石/聚酰胺66/玻璃纤维(nano-hydroxyapatite/polyamid66/glass fiber,n-HA/PA66/GF)生物螺钉的体内生物相容性、内固定性能及骨传导性能,为后期临床推广应用提供实验依据。
     方法
     通过注塑成型方法制备n-HA/PA66/GF生物活性螺钉。使用扫描电镜观察、能谱分析、X射线衍射分析及红外图谱分析对材料进行表征。取24只成年中华田园犬,随机分为两组:生物螺钉实验组和金属螺钉对照组。所有动物均造股骨髁间骨折,分别使用生物螺钉及金属螺钉固定骨折。于术后4、8、12、24周行大体观察、硬组织学切片染色检测、CT+3D影像学检测、三点弯曲生物力学测试及血常规、生化检测,术后24周处死动物后取肝脏、肾脏、脾脏行组织学检测。
     结果
     扫描电镜观察显示涂层在螺钉表面分布均匀,涂层与基体材料之间无相分离,结合紧密,融合为一体。涂层粒子为纳米级别,呈片状或叶状。EDS能谱分析结果显示涂层的主要成分为Ca和P元素,表明涂层组成为n-HA。X射线衍射(XRD)分析显示2θ=31.82°,32.90°,34.25°,38.38°,46.70°,49.52°和53.15°属于羟基磷灰石的晶格特征峰,2θ=20.38°,23.49°为聚酰胺(PA)晶格的主峰。红外图谱分析(FTIR)发现3442cm-1处宽而强的吸收峰为对应羟基(-OH)振动吸收峰,960cm-1处的吸收峰对应PO3-4对称伸缩振动吸收峰,605cm-1和565cm-1吸收峰对应PO3-4的弯曲振动,1102cm-1和1037cm-1处的吸收峰对应PO3-4的非对称伸缩振动吸收峰。动物实验证实两种螺钉均能有效地固定犬髁间骨折,术后观察两组动物均正常活动,切口愈合良好。术后12周CT检测显示两组动物髁间骨折均已骨性愈合。组织学检测发现n-HA/PA66/GF螺钉表面被新生骨覆盖且新生骨不断钙化、成熟,骨与生物螺钉结合紧密。金属螺钉与骨之间存在较大间隙,螺钉周围骨组织被一层纤维组织包裹。Micro-CT检测结果显示使用两种螺钉固定骨折12周后均发生骨性愈合。生物螺钉周围较金属螺钉周围有更多的新生骨小梁形成,生物螺钉与周围的新生骨融为一体。生物力学测试证实两组最大推出载荷在术后4、8、12周无统计学差异(p﹥0.05),但在术后24周有统计学差异(p<0.05),推出生物螺钉所需的最大载荷比对照组大。术后24周实验动物静脉血中碱性磷酸酶水平升高[(58.8±14.49)U/L],检测的血常规、生化各数值均正常。肝、脾、肾HE染色未见结构正常,表明材料无明显的器官毒性。
     结论
     n-HA/PA66/GF生物活性螺钉具有良好的体内相容性,内固定性能和促进新骨形成、成熟性能,具有广阔的应用前景。
     第三部分聚氨酯/纳米羟基磷灰石/聚酰胺66修复犬股骨髁缺损的实验研究
     目的
     评估复合材料聚氨酯/纳米羟基磷灰石/聚酰胺66(polyurethane/nano-hydroxyapatite/Polyamid66, PU/n-HA/PA66)修复犬股骨髁缺损的能力。
     方法
     制备PU/n-HA/PA66复合材料并按照犬股骨髁实际大小加工成型为生物股骨髁。扫描电镜观察材料表面情况并测定其孔隙率。取16只成年中华田园犬,按随机数字表分为两组:PU/n-HA/PA66生物股骨髁实验组和自体股骨髁对照组。使用电锯将犬股骨外髁锯断造股骨髁缺损模型,分别使用生物股骨髁及自体股骨髁修复缺损。术后4、8、12、24周行大体观察、组织学检测、免疫组化染色、CT影像学检测及血常规、生化检测,术后24周行肝、肾、脾组织学检测。
     结果
     经测定,材料孔隙率为80.89%±5.01%。孔径主要分布在300μm~800μm之间,孔壁上有与相邻孔贯通的100μm~300μm微孔。术后2组动物均活动正常,切口愈合良好。CT影像见实验动物的PU/n-HA/PA66股骨髁与自体股骨内髁紧密键合,材料无降解,假体与胫骨平台、股骨内髁及髌骨的关节面匹配良好,内外侧膝关节间隙无狭窄且基本对称。组织学检测显示两组股骨髁假体均与自体骨结合紧密,生物股骨髁网孔中的骨小梁逐渐增多成熟。免疫组化染色显示材料孔穴中的新生骨Ⅰ型胶原阳性表达,被染成棕黄色,染色均匀。术后测得犬静脉血中碱性磷酸酶水平升高[(62.67±24.04)U/L],其余血常规、血生化均正常。肝、脾、肾HE染色未见异常。
     结论
     PU/n-HA/PA66股骨髁生物相容性良好,能与宿主骨形成有机整体,在骨缺损修复的同时重建残缺的股骨髁,具有临床应用前景。
PART1THE PREPARATION OFNANO-HYDROXYAPATITE/POLYAMID66/GLASSFIBRE COMPOSITE AND IN VITRO STUDY ONEFFECTS OF THE COMPOSITE ON MC3T3-E1OSTEOBLAST BEHAVIOR
     Objective
     To evaluate the effect of a new nano-hydroxyapatite/polyamide66/glass fiber (n-HA/PA66/GF) biomaterials used for new bioactive bone screwon MC3T3-E1osteoblast behavior, hoping to provide experiment basis forthe following study.
     Methods
     The nano-hydroxyapatite/polyamid66/glass fiber (n-HA/PA66/GF) discs were prepared by co-precipitation method and their extracts wereprepared according to the ISO10993. The MC3T3-E1osteoblasts wereco-cultured with n-HA/PA66/GF disc or its extracts, respectively. Thedirect-contact test, scanning electron microscope observation and CCK-8assay were performed to assess the effects of n-HA/PA66/GF biomaterial oncell adhension, growth and proliferation. The the effects of n-HA/PA66/GFbiomaterial on synthesis of total protein was tested by BCA method. Elisaassay was performed to test the osteocalcin secretion of MC3T3-E1cells.The cell cycle and cell apoptosis were analysed by flow cytometryand Annexin V-FITC/PI double-label flow cytometry, respectively.Transwell migration test was performed to test effects of n-HA/PA66/GFbiomaterial on cell migration. Double labeling cells indirectimmunofluorescence staining was used to observe the cytoskeleton anddistribution of actin filaments using a laser scanning confocal microscope.
     Results
     The MC3T3-E1cells grew well around n-HA/PA66/GF in the directcontact experiments, which meant that the biomaterial had no obviouscytotoxicity. Cells had a normal long spindle shapes witout shrinking orvacuolation. CCK-8assay revealed that the MC3T3-E1cells proliferatedgradually with the increasing of culture time and cells cultured with then-HA/PA66/GF sample exhibited the greatest proliferation among the threegroups, showing a significant difference from the negative and positivecontrol groups after5days of co-culture (p<0.05).The total protein contentswere (2.21±0.48)mg/ml,(1.68±0.25)mg/ml in the experiment group andthe control group. The biomaterial could promote synthesis of total protein(p<0.05).Flow cytometry test results confirmed n-HA/PA66/GF couldmake more cells enter S period without obvious influence on cell apoptosis rate. The cell apoptosis rates of the two groups are7.93%±2.37%and8.31%±2.84%, respectively. The n-HA/PA66/GF biomaterial could alsopromote secretion of osteocalcin after culturing for10and14day(sp<0.05).Scanning electron microscopy observation found that the MC3T3-E1cellswith predominantly long spindle shapes connected with each other andbecame anchored to the surface of the scaffold via their pseudopodia. Sevendays after culturing, cells had proliferated dramatically and formed stratifiedcell layers, accompanied by filamentous fibres on the surface of the scaffold.However, no obvious influence on cytoskeleton, actin filament distributionand transmembrane cell number was observed between the experimentgroup and control group (p>0.05). The n-HA/PA66/GF composite had goodcytobiocompatibility and is suitable for cell adhension and proliferation.
     Conclusion
     The n-HA/PA66/GF biomaterial has excellent cytocompatibility, whichhas positive regulatory effects on the cell growth, proliferation, secretion,adhesion, cycle and migration.
     PART2IN VIVO STUDY ON A NEWNANO-HYDROXYAPATITE/POLYAMID66/GLASSFIBRE(N-HA/PA66/GF) BIOACTIVE SCREW FOR FIXINGINTERCONDYLAR FRACTURE OF FEMUR IN DOG
     Objective
     To investigate the in vivo biocompatibility, internal fixation properties and osteogenesis of the nano-hydroxyapatite/polyamid66/glass fiber(n-HA/PA66/GF) bioactive screw, hoping to provide experiment basis forclinical application
     Methods
     The n-HA/PA66/GF bioactive screws were prepared by using injectionmolding method. The coating surface and cross sections of screws wereevaluated by Scanning electron microscope (SEM). Energy-dispersive X-rayspectroscopy (EDS) on the SEM was used to analyse the elements of thecoating layer. Then the coating was analysed by X-ray diffraction (XRD)with Cu Kα radiation at40kV and25mA with the2θ values increasing from10°to70°at a rate of0.05°s-1.Also,the fourier transform infrared (FTIR)technique was used to characterise the coating layer with a wave numberrange of400cm-1to4000cm-1. Twenty-four healthy and mature dogs wereselected and divided randomly into two groups: the bioactive bone screwexperimental group and the metallic screw control group. In each group anintercondylar fracture model of femur was established and the fracture wasfixed with bioactive screws and metallic screws separately. Grossexamination, histological staining, CT examination,biomechanical test,blood routine and serum biochemical index were performed4,8,12,24weeks after operation. Histological staining of the liver, kidney and spleenwas conducted24weeks after operation.
     Results
     SEM images showed that there was no apparent interval or phaseseparation between the bulk matrix and n-HA coating layer, and the coatingwas distributed evenly around the screw. The coating particles werenanosized and had a plate-like or leaf-like shape. The EDS graph showedthat the main elements in the coating layer were Ca and P, indicating that the coating layer was n-HA.The XRD test indicated that peaks at2θ=13.26°,31.82°,32.90°,34.25°,38.38°,46.70°,49.52°and53.15°belong to then-HA crystal diffraction peaks, and the two peaks at2θ=20.38°and23.49°are attributed to the phase of the PA66matrix. The wide and strongcharacteristic adsorption peak at3442cm-1represents the-OH vibration.The band at approximately960cm-1represents the symmetrical vibration ofPO43-, while the peaks at1102cm-1and1037cm-1correspond to theasymmetrical vibrations of PO43-. The absorption peaks at605cm-1and565cm-1, which indicate the bending vibration of PO43-, can also be observed.The two kinds of screws could both fix the fracture effectively. The activityof dogs was normal and the cut healed well in both groups after operation.CT examination showed the fracture got osteal healing in all the experimentanimals12weeks after operation. Histological investigation showedn-HA/PA66/GF screws formed tight bonding with the surrounding new bonytissue, which calcified gradually into mature bony tissue. However, therewas an obvious space between the metallic screw and bony tissue and a layerof fibrous tissue proliferation and encapsulation occurred on the interfacebetween bone and metallic screw.After12weeks,representative micro-CTimages showed that cortical bone became continuous with both types ofscrews fixation. The sagittal scanning images showed that the newly formedbone trabecula grew closely around the bioactive screws. The bioactivescrews were tightly integrated with the host bone. However, in the controlgroup, the image of bone trabecula around the metallic screws was vaguedue to the metal artefacts.The mechanic test demonstrated the maximumpush-out load showed no statistically significant difference (p>0.05)between two groups4、8、12weeks after operation,however, it showedstatistically significant difference (p﹤0.05) after24weeks. The maximum push-out load of bioactive screws was larger than that of metallic screws.The blood routine and serum biochemical index were both normal except thelevel of alkaline phosphatase increased [(58.8±14.49)]U/L at24weeks afteroperation. Histological staining of the liver, kidney and spleen was normal at24weeks after operation.
     Conclusion
     As shown by their good biocompatibility, excellent biomechanicalstrength and fast formation and ingrowth of new bone, n-HA/PA66/GFscrews are thus suitable for orthopaedic clinical applications.
     Part3IN VIVO STUDY ON EFFECTS OFPOLYURETHANE/NANO-HYDROXYAPATITE/POLYAMID66REPAIRINGDEFECTS OF FEMORAL CONDYLE IN DOG
     Objective
     To evaluate the effect of polyurethane, nano-hydroxyapatite andPolyamid66(PU/n-HA/PA66) on repairing defects of femoral condyle indog.
     Methods
     The PU/n-HA/PA66biomaterial was prepared and machined to formthe shape of femoral condyle according to the actual measured value ofdogs. Material surface was observed with scanning electron microscope andthe porosity was measured. Sixteen dogs were selected and divided randomly into two groups: the biological femoral condyle experimentalgroup and the autologous femoral condyle control group. In each grouplateral femoral condyle was cut off and the defects were repaired withbiological femoral condyle and autologous femoral condyle separately.Gross examination, histological staining, collagenⅠimmunohistochemicalstaining,CT examination, blood routine and serum biochemical index wereperformed4,8,12,24weeks after operation. Histological staining of theliver, kidney and spleen was conducted at24weeks after operation.
     Results
     The porosity of the composite was80.89%±5.01%and main pore sizereached from300μm to800μm.The size of interconnection pores on the holewall ranged from100μm to300μm. The activity of dogs was normal and thecut healed well in both groups after operation. CT examination disclosed thatPU/n-HA/PA66femoral condyles were closely bonded with autogenousmedial femoral condyles without degradation.The prosthesis matched wellwith tibia platform, articular surface of patella and medial femoral condyle.The medial and lateral knee joint gaps are symmetry witout obviousstenosis. Histological investigation and immunohistochemical stainingshowed trabecular bone in the pores of the biological femoral condylebecame more and more and calcified gradually into mature bony tissue. Thecollagen I expressed positively in the bone newly formed in the pores ofmaterials. Blood routine and serum biochemical index were both normalexcept the level of alkaline phosphatase increased [(62.67±24.04)U/L] afteroperation. Histological staining of the liver, kidney and spleen was normal at24weeks after operation.
     Conclusion
     PU/n-HA/PA66biological femoral condyle has good internal bonedefects repairing ability, reconstruction ability and biocompatibility, whichis suitable for orthopedic biomaterials.
引文
[1] Uhthoff HK. Mechanical factors influencing the holding power of screws incompact bone[J]. J Bone Joint Surg Br.1973,55:633–639.
    [2] Ahmed I,Jones IA,Parsons AJ,et al. Composites for bone repair: phosphate glassfibre reinforced PLA with varying fibre architecture[J]. J Mater Sci Mater Med.2011,22(8):1825-1834.
    [3] Hofmann GO. Biodegradable implants in traumatology: a review on thestate-of-the-art[J]. Arch Orthop Trauma Surg.1995,114(3):123-1232.
    [4] Middleton JC,Tipton AJ. Synthetic biodegradable polymers as orthopedicdevices[J]. Biomaterials.2000,21(23):2335-2346.
    [5] Ferguson SJ,Wyss UP,Pichora DR. Finite element stress analysis of a hybridfracture fixation plate[J].Med Eng Phys.1996,18(3):241-250.
    [6] Benli S,Aksoy S,Havitcio lu H,et al. Evaluation of bone plate with low-stiffnessmaterial in terms of stress distribution[J]. J Biomech.2008,41(15):3229-3235.
    [7] Completo A, Fonseca F,Sim es JA. Strain shielding in proximal tibia of stemmedknee prosthesis: experimental study[J]. J Biomech.2008,41(3):560-566
    [8] Au AG,James Raso V,Liggins AB, et al. A Contribution of loading conditions andmaterial properties to stress shielding near the tibial component of total kneereplacements[J].J Biomech.2007,40(6):1410-1416
    [9] Shi JF,Wang CJ,Laoui T, et al. A dynamic model of simulating stress distribution inthe distal femur after total knee replacement[J].Proc Inst Mech Eng H.2007,221(8):903-912.
    [10]Ellenrieder M,Steinhauser E,Bader R,et al.How stiffness and distal interlockingof revision hip stems influence the femoral cortical strain pattern[J]. J Orthop Sci.2012,17(3):205-212.
    [11]Lee WT,Koak JY,Lim YJ, et al. Stress shielding and fatigue limits ofpoly-ether-ether-ketone dental implants[J].J Biomed Mater Res B Appl Biomater.2012,100(4):1044-1452
    [12]Althuizen MN, V Hooff ML, v d Berg-v Erp SH, et al. Early failures in largehead metal-on-metal total hip arthroplasty[J]. Hip Int.2012,22(6):641-647.
    [13]Mizutani T,Nakayama A,Iwasaki H, et al. Suitability of polymers as screw postmaterials in primary teeth: an in vitro study[J]. Eur J Paediatr Dent.2012,13(1):19-24.
    [14]Zhang J,Ebraheim N,Lausé GE, et al. A comparison of absorbable screws andmetallic plates in treating calcaneal fractures:a prospective randomized trial[J]. JTrauma Acute Care Surg.2012,72(2):e106-110.
    [15]Xu L, Pan F,Yu G, et al. In vitro and in vivo evaluation of the surface bioactivity ofa calcium phosphate coated magnesium alloy[J].Biomaterials.2009,30(8):1512–1523.
    [16]Sena P,Manfredini G,Barbieri C, et al. Application of poly-L-lactide screws in flatfoot surgery: histological and radiological aspects of bio-absorption of degradabledevices[J]. Histol Histopathol.2012,27(4):485-496.
    [17]Jansen J,Koopmans SA,Los LI, et al. Intraocular degradation behavior ofcrosslinked and linear poly(trimethylene carbonate) and poly(D,L-lacticacid)[J].Biomaterials.2011,32(22):4994-5002.
    [18]Zhang S, Zhang X, Zhao C, et al. Research on an Mg–Zn alloy as a degradablebiomaterial[J]. Acta Biomater.2010,6(2):626–40.
    [19]Burdick JA, Frankel D, Dernell WS, et al. An initial investigation of photocurablethree-dimensional lactic acid based scaffolds in a critical-sized cranial defect[J].Biomaterials.2003,24(9):1613–1620.
    [20]Gunatillake P,Mayadunne R,Adhikari R. Recent developments in biodegradablesynthetic polymers[J]. Biotechnol Annu Rev.2006,12:301-347.
    [21]Burkoth AK,Anseth KS. A review of photo crosslinked polyanhydrides in-situforming degradable networks[J]. Biomaterials.2000,21(23):2395–2404.
    [22]Polimeni G,Koo KT,Pringle GA, et al. Histopathological observations of apolylactic acid-based device intended for guided bone/tissue regeneration[J]. ClinImplant Dent Relat Res.2008,10(2):99-105.
    [23]Gruba Z, Metiko-Hukovi M, Babi R,et al. Functionalization of bio degradablemagnesium alloy implants with alkylphosphonate self-assembled films [J]. MaterSci Eng C Mater Biol Appl.2013,33(4):2152-2158
    [24]Zhang BP, Qiu H, Wang DW, et al. Improved blood compatibility of Mg-1.0Zn-1.0Ca alloy by micro-arc oxidation [J]. J Biomed Mater Res A.2011,99(2):166-172
    [25]Peng Q,Li X,Ma N, et al. Effects of backward extrusion on mechanical anddegradation properties of Mg-Zn biomaterial[J].J Mech Behav Biomed Mater.2012,10:128-137
    [26]Song G. Control of biodegradation of biocompatable magnesium alloys[J].CorrosSci.2007,49(4):1696–1701.
    [27]Wang H.N.,Zuo Y.,Zou Q. et al. Nano-hydroxyapatite/poly-amide66compositetissue-engineering scaffolds with anisotropy in morphology and mechanicalbehaviors[J].J. Polym. Sci. A: Polym. Chem.2009,47:658–669.
    [28]Wang H, Li Y, Zuo Y, et al. Nano-hydroxyapatite/polymer composite scaffold forbone tissue engineering[J]. Key Eng Mater.2006,330(2):365–368.
    [29]Qu Y,Wang P, Man Y, et al. Preliminary biocompatible evaluation ofnano-hydroxyapatite/polyamide66composite porous membrane[J].Int JNanomedicine.2010,5:429-435.
    [30]Wang H,Li Y,Zuo Y, et al. Biocompatibility and osteogenesis of biomimeticnano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering[J].Biomaterials.2007,28(22):3338–3348.
    [31]Jie W,Hua H,Lan W, et al. Preliminary investigation of bioactivity of nanobiocomposite[J].J Mater Sci Mater Med.2007,18(3):529-533.
    [32]Huang D,Zuo Y,Zou Q, et al.Antibacterial chitosan coating on nano-hydroxyapatite/polyamide66porous bone scaffold for drugdelivery[J]. J Biomater Sci Polym Ed.2011,22(7):931-944.
    [33]Aulin C, Jensen-Waern M, Ekman S, et al. Cartilage repair of experimentally11induced osteochondral defects in New Zealand White rabbits[J]. Lab Anim.2013,47(1):58-65.
    [34] Chou CH, Lee CH, Lu LS, et al. Direct assessment of articular cartilage andunderlying subchondral bone reveals a progressive gene expression change inhuman osteoarthritic knees[J]. Osteoarthritis Cartilage.2013,21(3):450-461
    [35]Goldring SR. Alterations in periarticular bone and cross talk betweensubchondral bone and articular cartilage in osteoarthritis[J].Ther AdvMusculoskelet Dis.2012,4(4):249-258.
    [36]孙英彩,崔建岭,李石玲,等. MRI测量正常人膝关节软骨厚度[J].实用放射学杂志.2004,11:1007-1010.
    [37]Huey DJ, Hu JC, Athanasiou KA.Unlike bone, cartilage regeneration remainselusive[J]. Science.2012,338(6109):917-921
    [38]王立,左奕,邹琴,等.组分对含羟基磷灰石脂肪族聚氨酯复合骨组织工程支架的理化性能及生物学性能的影响[J].高等学校化学学报.2011,32(10):2453-2459.
    [39]KavlockK, Pechar T,Hollinger J,et al. Synthesis and characterization of segmentedpoly(esterurethane urea) elastomers for bone tissue engineering[J]. ActaBiomaterialia.2007,3(4):475-484.
    [40]Verdonk P,Beaufils P,Bellemans J,et al.Successful Treatment of Painful IrreparablePartial Meniscal Defects With a Polyurethane Scaffold: Two-Year Safety anClinical Outcomes[J].Am J Sports Med.2012,40(4):844-853.
    [41]Mauth C, Bono E, Haas S,et al. Cell-seeded polyurethane-fibrin structures--apossible system for intervertebral disc regeneration[J]. Eur Cell Mater.2009,2(18):27-38.
    [42]de la Pe a-Salcedo JA, Soto-Miranda MA, Lopez-Salguero JF. Back to the future: a15-year experience with polyurethane foam-covered breast implants using thepartial-subfascial technique[J]. Aesthetic Plast Surg.2012,36(2):331-338.
    [43]Luo Y, McCann L, Ingham E, et al. Polyurethane as a potential kneehemiarthroplasty biomaterial: an in-vitro simulation of its tribologicalperformance[J]. Proc Inst Mech Eng H.2010,224(3):415-425.
    [1] Salahshoor M,Guo YB.Surface integrity of biodegradable Magnesium-Calciumorthopedic implant by burnishing[J].J Mech Behav Biomed Mater.2011,4(8):1888-1904
    [2] Shadanbaz S,Dias GJ. Calcium phosphate coatings on magnesium alloys forbiomedical applications: a review[J]. Acta Biomater.2012,8(1):20-30
    [3] Bougherara H,Zdero R,Dubov A,et al. A preliminary biomechanical study of anovel carbon-fibre hip implant versus standard metallic hip implants[J]. Med EngPhys.2011,33(1):121-128
    [4] Ghosh UB,Sengupta D,Roychowdhury A,et al. Biomechanical Analysis of CTScan-based Hip Prosthesis With an Optimal Hip Ball by Using Finite ElementAnalysis[J]. J Long Term Eff Med Implants.2009,19(1):31-39.
    [5] Wang, H.N.,Zuo, Y.,Zou, Q.,et al. Nano-hydroxyapatite/poly-amide66compositetissue-engineering scaffolds with anisotropy in morphology and mechanicalbehaviors[J].J. Polym. Sci. A: Polym. Chem.2009,47:658–669.
    [6] Li Y,de Wijn J,Klein CPAT, et al. Preparation and characterization of nanogradeosteoapatite-like rod crystals[J]. J Mater Sci: Mater Med.1994,5:252–255.
    [7] Kokubo T, Ito S, Huang ZT, et al. Ca, P-rich layer formed on high-strengthbioactive glass-ceramic A-W[J]. J Biomed Mater Res.1990,24(3):331-343.
    [8]房红莹,顾冠彬,杨珠,等.医疗产品毒性的3种评价方法比较[J].苏州大学学报(医学版).2005,25(4):605-608.
    [9] An S, Gao Y, Ling J, et al. Calcium ions promote osteogenic differentiation andmineralization of human dental pulp cells:implications for pulp capping materials.JMater Sci Mater Med.2012,23(3):789-795.
    [10]位晓娟,张长青,黄文旵,等.新型硼酸盐生物玻璃对成骨细胞行为影响的体外研究[J].中国修复重建外科杂志.2011,25(5):606-608.
    [11]Hirst L S,Safinya C R. Skin layer at the actin-gel surface quenched proteinmembranes form flat, crumpled, and tubular morphologies[J].Phys Rev Lett.2004,93(1):931–934
    [12]Cui H,Liu Y,Deng M,et al. Synthesis of biodegradable and electroactive tetraanilinegrafted poly(ester amide) copolymers for bone tissue engineering[J].Biomacromolecules.2012,3(9):2881-2889
    [13]Morehead JM, Holt GR. Soft tissue response to synthetic biomaterials [J].Otolaryngol Clin Noah Am.1994,27(1):195-201.
    [14]Pegueroles M,Aparieio C,Bosio M, et a1. Spatial organization of osteoblastfibroneetin matrix on titanium surfaces: Effects of roughness, chemicalheterogeneity and surface energy[J].Acta Biomater.2010,6(1):291-301.
    [15]Neoh KG, Hu X, Zheng D,et al. Balancing osteoblast functions and bacterialadhesion on functionalized titanium surfaces[J].Biomaterials.2012,33(10):2813-2822
    [16]Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focaladhesions[J]. Nat Rev Mol Cell Biol.2009,10:21–33.
    [17]Mikulewicz M, Chojnacka K. Cytocompatibility of medical biomaterials containingnickel by osteoblasts: a systematic literature review[J]. Biol Trace Elem Res.2011,142(3):865-889.
    [18]Bacakova L,Filova E,Parizek M,et al. Modulation of cell adhesion, proliferationand differentiation on materials designed for body implants[J].Biotechnol Adv.2011,29(6):739-767
    [19]Yang GL, He FM, Hu JA, et al. Effects of biomimetically and electrochemicallydeposited nano-hydroxyapatitecoatings on osseointegration of porous titaniumimplants[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2009,107(6):782-789.
    [20]Sato M, Aslani A, Sambito MA,et al. Nanocrystalline hydroxyapatite/titaniacoatings on titanium improves osteoblast adhesion[J]. J Biomed Mater Res A.2008,84(1):265-272.Stao M,Aslani A,Sambito
    [21]Padial-Molina M, Galindo-Moreno P, Fernández-Barbero JE,et al. Role ofwettability and nanoroughness on interactions between osteoblast and modifiedsilicon surfaces [J]. Acta Biomater.2011,7(2):771-778
    [22]PonsonnetL, Reybier K, JaffrezicN, et al. Relationship between surface properties(roughness, wettability) of titanium and titanium alloys and cellbehaviour[J].Materials Science&EngineeringCbiomimetic and Supramolecularsystems.2003,23(4):551-560.
    [23]Nakamura M, Nagai A, Hentunen T, et al. Surface electric fields increase osteoblastadhesion through improved wettability on hydroxyapatite electret [J]. ACS ApplMater Interfaces.2009,1(10):2181-2189.
    [24]左林,柏树令,潘锋,等.镁合金表面含硅涂层对成骨细胞的黏附、形态和细胞周期的影响[J].解剖学杂志.2011,34(2):152-155.
    [25]Liu D, Zhang J, Wang G.et al. The dual-effects of LaCl3on the proliferation,osteogenic differentiation, and mineralization of MC3T3-E1cells [J]. Biol TraceElem Res.2012,150(1-3):433-440.
    [1] Tipper JL, Hatton A, Nevelos JE,et al. Alumina-alumina artificial hip joints. Part II:characterisation of the wear debris from in vitro hip joint simulations[J].Biomaterials.2002,23(16):3441-3448.
    [2] MacDonald DE, Deo N, Markovic B,et al. Adsorption and dissolution behavior ofhuman plasma fibronectin on thermally and chemically modified titanium dioxideparticles[J]. Biomaterials.2002,23(4):1269-1279.
    [3] Completo A, Fonseca F,Sim es JA. Strain shielding in proximal tibia of stemmedknee prosthesis:experimental study.J Biomech.2008,41(3):560-566
    [4]孟纯阳,安洪,蒋电明,等.网孔纳米羟基磷灰石/聚酰胺人工骨修复兔桡骨缺损[J].中华创伤杂志.2005,21(3):187-191.
    [5]李鸿,李玉宝,严永刚,等.纳米羟基磷灰石/聚酰胺66多孔材料制备和生物安全性初步评价[J].生物医学工程学杂志.2008,25(5):1126-1129.
    [6]周立伟,魏世成,李玉宝,等.纳米羟基磷灰石/聚酰胺66复合人工骨修复颅骨缺损的动物实验研究[J].口腔医学.2009,29(11):561-563.
    [7]王群波,蒋电明,李智,等.纳米羟基磷灰石/聚酰胺66复合人工椎体治疗胸腰椎椎体肿瘤的效果[J].第三军医大学学报.2006,28(3):263-265.
    [8]蒋电明,权正学,黄伟,等.纳米羟基磷灰石/聚酰胺66复合生物活性人工椎板的初步临床应用[J].中国修复重建外科杂志.2007,21(5):441-444.
    [9]席越,孟淑琴,宫丽华,等.骨组织病理解剖学技术[M].人民卫生出版社,2009.177-178.
    [10]郑振辉,周淑佩,彭双清,等.实用医学实验动物学[M].北京大学医学出版社,2008.429-430.
    [11]B stman O, Pihlajam kiH. Clinical biocompatibility of biodegradable orthopaedicimplants for internal fixation:a review[J].Biomaterials.2000,21(24):2615-2621.
    [12]Shi JF,Wang CJ,Laoui T,et al. A dynamic model of simulating stress distribution inthe distal femur after total knee replacement.Proc. Inst Mech Eng H.2007,221(8):903-912.
    [13]Meirelles L, Arvidsson A, Andersson M, et al. Wennerberg A. Nano hydroxyapatitestructures influence early bone formation[J]. J Biomed Mater Res A.2008,87(2):299–307.
    [14]Roy M, Bandyopadhyay A, Bose S. Induction Plasma Sprayed NanoHydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants[J]. SurfCoat Technol.2011,205(8-9):2785–2792.
    [15]Xue W, Tao S, Liu X, Zheng X, et al. In vivo evaluation of plasma sprayedhydroxyapatite coatings having different crystallinity [J]. Biomaterials.2004,25:415–421.
    [16]Ong JL, Carnes DL, Bessho K. Evaluation of titanium plasma-sprayed andplasma-sprayed hydroxyapatite implants in vivo[J]. Biomaterials.2004,25:4601–4606.
    [1] Vukasovi A,Ivkovi A,Jezek D,et al. Histologic assessment of tissue healing ofhyaline cartilage by use of semiquantitative evaluation scale[J]. Acta Med Croatica.2011,65(3):227-235.
    [2] Michael A,Pasquale R,Daniel AG.Defining the challenge:The basic science ofarticular cartilage repair and response to injury[J].Sports Med Arthr.2003,11(3):168-181.
    [3] Klein TJ,Malda J,Sah RL,et a1. Tissue engineering of articular cartilage withbiomimetic zones[J]. Tissue Eng Part B Rev.2009,15(2):143-157.
    [4] Ivan M,Sylvie M,Andrea B,et a1.Osteochondral tissue engineering[J]. Journal ofBiomechanics.2007,40:750-765.
    [5] Li YB,De Wijn J,Klein CPAT,et al. Preparation and characterization of nanogradeosteoapatite-like rod crystals[J]. Mater Sci Mater Med.1994,5:252-255.
    [6] Li YB, Zuo Y,Wei J. Preparation of nano-hydroxyapatite/polyamide compositebiomaterial[P]l., China Patent: No.CNZL200310111033.5,2003.
    [7] Li YB, Wei J, et al. The preparation and characterization of n-HA/PA seriesbiomedical composite[J]. Funct Mater.2004,35:513–516.
    [8]刘浩怀,张利,邹琴,等.聚氨酯软骨-骨双层复合材料的构建及性能研究[J].功能材料.2010,4(41):652-655.
    [9]郑振辉,周淑佩,彭双清,等.实用医学实验动物学[M].北京大学医学出版社,2008.429-430.
    [10]Schindler OS. Current concepts of articular cartilage repair[J].Acta Orthop Belq.2011,77(6):709-726.
    [11]Anders S, Lechler P, Grifka J, et al. Repair of local cartilage defects in thepatellofemoral joint[J].Orthopade.2011,40(10):885-888,890-895.
    [12]Gudas R,Kalesinskas RJ,Kimtys V,et al. A prospective randomized clinical study ofmosaic osteochondral autologous transplantation versus microfracture for thetreatmentn osteochondral defects in the knee joint in young athletes[J]. Arthroscopy.2005,21(9):1066-1075
    [13]Niemeyer P, Koestler W, Südkamp NP. Problems and complications of surgicaltechniques for treatment of full-thickness cartilage defects[J].Z Orthop Unfall.2011,149(1):45-51.
    [14]程少文,彭磊,王伟,等.关节软骨修复研究新进展[J].国际骨科学杂志.2010,31(5):302-304.
    [15]左奕,李玉宝,魏杰,等. n-HA/PA66系列医用复合材料的制备与表征[J].功能材料.2004,4(35):513-516
    [16]孟纯阳,安洪,蒋电明,等.网孔纳米羟基磷灰石/聚酰胺人工骨修复兔桡骨缺损[J].中华创伤杂志.2005,21(3):187-191.
    [17]李鸿,李玉宝,严永刚,等.纳米羟基磷灰石/聚酰胺66多孔材料制备和生物安全性初步评价[J].生物医学工程学杂志.2008,25(5):1126-1129.
    [18]周立伟,魏世成,李玉宝,等.纳米羟基磷灰石/聚酰胺66复合人工骨修复颅骨缺损的动物实验研究[J].口腔医学.2009,29(11):561-563.
    [19]王群波,蒋电明,李智,等.纳米羟基磷灰石/聚酰胺66复合人工椎体治疗胸腰椎椎体肿瘤的效果[J].第三军医大学学报.2006,28(3):263-265.
    [20]蒋电明,权正学,黄伟,等.纳米羟基磷灰石/聚酰胺66复合生物活性人工椎板的初步临床应用[J].中国修复重建外科杂志.2007,21(5):441-444.
    [21]王立,左奕,邹琴,等.组分对含羟基磷灰石脂肪族聚氨酯复合骨组织工程支架的理化性能及生物学性能的影响[J].高等学校化学学报.2011,32(10):2453-2459.
    [22]KavlockK, Pechar T,Hollinger J,et al. Synthesis and characterization of segmentedpoly(esterurethane urea) elastomers for bone tissue engineering[J].ActaBiomaterialia.2007,3(4):475-484.
    [23]Verdonk P,Beaufils P,Bellemans J,et al. Successful Treatment of PainfulIrreparable Partial Meniscal Defects With a Polyurethane Scaffold: Two-YearSafety an Clinical Outcomes[J].Am J Sports Med.2012,40(4):844-853.
    [24]Mauth C, Bono E, Haas S,et al. Cell-seeded polyurethane-fibrin structures--apossible system for intervertebral disc regeneration[J]. Eur Cell Mater.2009,2(18):27-38.
    [25]de la Pe a-Salcedo JA, Soto-Miranda MA, Lopez-Salguero JF. Back to the future: a15-year experience with polyurethane foam-covered breast implants using thepartial-subfascial technique[J]. Aesthetic Plast Surg.2012,36(2):331-338.
    [26]傅明源,孙酣经.聚氨酯弹性体及应用[M]北京:化学工业出版社,1999.27-29.
    [27]Hou Q,Grijpma DW,Feijen J. Porous polymeric structures for tissue engineeringprepared by a coagulation, compression moulding and salt leachingtechnique[J].Biomaterials.2003,24(11):1937-1947.
    [28]董志红,李玉宝,张利,等.软骨修复用HA/PU多孔支架材料的制备与表征[J].无机材料学报.2007,22(006):1255-1258.
    [1] Bostman O.Current Concepts Review.Absorbable Implants for the fixation Offracture[J].J bone Joint Surg(Am).1991,73(1):148-153.
    [2]杜全印,王爱民.在骨科领域可吸收材料的研究与应用[J].中华现代临床医学杂志,2003,1(12):1089-1090.
    [3]艾永平,谢世坤,蒋芬,等.可降解骨内固定材料研究进展[J].中国组织工程研究与临床康复.2008,12(49):9735-9738.
    [4] Stendel R, Danne M, Fiss I,et a1.Efficacy and safety of a collagen matrix forcranial and spinal dural reconstruction using different fixation techniques[J].JNeurosurg.2008, l09(2):215-221.
    [5] Nettles DL, Elder SH,Gilbert JA. Potential use of chitosan as a cell scaffoldmaterial for cartilage tissue engineering[J].Tissue Eng.2002,8(6):1009-1016.
    [6]李石保,毛天球,张其清.可降解聚合物在骨折内固定和骨缺损修复中的应用[J].国外医学生物医学工程分册.2000,23(1):38-42.
    [7] Brady JM,CutrightDE,MillerRA,et a.Resorption rate,route,route of elimination,andultrastructure of the implant site of polylactic acid in the abdominal wall of therat[J].J Biomed Mater Res.1973,7(2):155-166.
    [8] Kuklo TR,Rosner MK,Polly DW. Computerized tomography evaluation of aresorbable implant after transforaminal lumbar interbody fusion[J].NeurosurgFocus.2004,16(3):1-6.
    [9] Leonard DJ, Pick LT, Farrar DF,et al. The modification of PLA and PLGA usingelectron-beam radiation[J]. J Biomed Mater Res A.2009,89(3):567-574
    [10]Friend G,Grace K,Stone HA. L-osteotomy with absorbable fixation for correctionof tailor’s bunion[J].Foot Ankle Surg.1993,32(1):14-19.
    [11]Piskin E, B lgen N, Egri S,et a1. Electrospun matrices made of poly(alpha—hydroxy acids) for medical use[J].Nanomed.2007,2(4):44l-457.
    [12]Ajioka M,Enomoto K,Suzuki K,et al. The basic properties of poly(lactic acid)produced by the direct condensation polymerization of lactic acid[J].J PolymEnviron.1995,3(4):225-234.
    [13]Miller R A,Bready J M,Cutright D E. Degradation Rates of Oral ResorbableImplants(Polylactates and Polyglycolates):Rate Modification with Changes inPLA/PGA Copolymer Ratios[J].J Mater Res.1997, l1:711-719.
    [14]徐又佳,郑祖根,王晓东,等.可吸收内固定材科对实验性骨折愈合影响的超微结构观察[J].中华骨科杂志.1996,16:653~655
    [15]Guan HL,Deng C,Xu XY,et a1. Synthesis of biodegradable poly (ester amide)scontaining functional groups[J].J Polym Sci[Al].2005,43(5):1144-l149.
    [16]Clark TE,Makha M,Sobolev AN,et a1. Engineering nanorafts of calixarenepolyphosphonates[J].Chemistry.2008,14(13):393l-3938.
    [17]潘刚明,尹东,原林,等. HHK—PLA棒的体外生物力学性能研究[J].中国中医骨伤科杂志.2003,11(1):10-11.
    [18]尹东,原林,赵卫东,等.人发角蛋白复合聚乳酸棒的力学强度测试及体内降解观察[J].第一军医大学学报.2003,23(5):442-444.
    [19]樊新,陈剑,阮建明,等.骨粉/PLLA新型内固定复合材料的制备[J].中南大学学报:自然科学版.2008,39(6):1213-1218.
    [20]陈良龙,王万春,阮建明,等.骨粉/聚乳酸内固定材料的细胞毒性试验[J].医学临床研究.2007,24(3):395-397.
    [21]Aunoble S, Clément D, Frayssinet P,et al. Biological performance of a newbeta-TCP/PLLA composite material for applications in spine surgery: in vitro andin vivo studies [J]. J Biomed Mater Res A.2006,78(2):416-422.
    [22]Coimbra ME,Elias CN,Coelho PG. In vitro degradation of poly-L-D-lactic acid(PLDLA) pellets and powder used as synthetic alloplasts for bone grafting[J]. JMater Sci Mater Med.2008,19(10):3227-3234.
    [23]邓润智,胡勤刚,陈强,等.新型L-DL聚乳酸接骨材料体内降解的初步观察[J].口腔医学.2005,25(6):370-372.
    [24]董刚,尹光福. PLLA/β-TCP复合骨折内固定材料的体外降解性能的研究[J].生物医学工程研究.2006,25(1):39-41.
    [25]李新松,邹俊,朱国华,等.聚乳酸-磷酸三钙复合物生物可吸收骨折内固定棒的体内降解和组织相容性[J].生物医学工程学杂志.2007,24(1):8l-86.
    [26]Ferretti C. A prospective trial of poly-L-lactic/polyglycolic acid co-polymer platesand screws for internal fixation of mandibular fractures[J]. Int J Oral MaxillofacSurg.2008,37(3):242-248.
    [27]Cotton NJ, Egan MJ,Brunelle JE. Composites of poly(DL-lactide-co-glycolide) andcalcium carbonate: in vitro evaluation for use in orthopedic applications[J]. JBiomed Mater Res A.2008,85(1):195-205.
    [28]Siriphannon P, Monvisade P. Poly(ethylene terephthalate)/hydroxyapatitebiomaterials: preparation, characterization, and in vitro bioactivity[J]. J BiomedMater Res A.2009,88(2):464-469.
    [29]Dimitrievska S, Petit A, Ajji A,et al. Biocompatibility of novel polymer-apatitenanocomposite fibers[J].J Biomed Mater Res A.2008,84(1):44-53.
    [30]Pihlajam ki H, Tynninen O, Karjalainen P et al. The impact of polyglycolidemembrane on a tendon after surgical rejoining. A histological andhistomorphometric analysis in rabbits[J]. J Biomed Mater Res A.2007,81(4):987-993.
    [31]Vasenius J,Vainiopaa S,Jarkko O,et al. Biodegradable self-reinforcedpolyglycolidecomposite rods coated with slowly biodegradable polymers for fracture fixation:Strength and strength retention in-vitro and in—vivo[J].Biomed Mater.1989,4:307-317.
    [32]Qiu H,Yang J,Kodali P,et al. A citric acid-based hydroxyapatite composite fororthopedic implants[J]. Biomaterials.2006,27(34):5845-5854.
    [33]Huttunen M, T rm l P, Godinho P,et al. Fiber-reinforced bioactive andbioabsorbable hybrid composites[J]. Biomed Mater.2008,3(3):341-3466.
    [34]Ahmed I, Parsons AJ, Palmer G,et al. Weight loss, ion release and initialmechanical properties of a binary calcium phosphate glass fibre/PCL composite[J].Acta Biomater.2008,4(5):1307-1314.
    [35]Xu F,Li Y,Deng Y,et al. Porous nano-hydroxyapatite/poly(vinyl alcohol) compositehydrogel as artificial cornea fringe: characterization and evaluation in vitro[J].JBiomater Sci Polym Ed.2008,19(4):431-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700