用户名: 密码: 验证码:
TLR4信号转导通路介导的免疫反应在大鼠胫骨癌痛中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长久以来,以神经系统为靶点的镇痛药并不能完全有效控制疼痛尤其是神经病理性疼痛。科学家们已经证实了循环系统的免疫细胞对疼痛感觉神经起着类似于汽车调光器开关的作用。进一步研究大脑和脊髓的类免疫细胞,在分子水平上建立起“免疫—疼痛”关联性实验的基本原理,将为更彻底地治疗疼痛奠定理论基础。在连接中枢神经系统(central nervous system,CNS)和先天性免疫中TLRs (Tol1-1ike receptor,TLRs)起着关键性作用。TLR4主要表达CNS中小胶质细胞上,有研究证实神经病理性疼痛的形成过程中小胶质细胞上的TLR4是关键受体。本研究拟采用基因干扰技术,抑制大鼠脊髓TLR4基因的表达,研究TLR4信号转导通路在大鼠胫骨癌痛中的作用,为研发以TLR4信号通路为靶点镇痛新药提供理论基础。
     第一部分大鼠胫骨癌痛模型的建立及评估
     目的通过对大鼠痛行为学测试、胫骨X摄片和HE染色等方法,建立并评价大鼠胫骨癌痛模型。
     方法雌性S-D大鼠,体重150-180g,左侧胫骨内注射大鼠体内腹水传代Walker256乳腺癌细胞,接种肿瘤细胞后2d、4d、6d、9d、12d、14d、18d和21d观测大鼠的机械触诱发痛阈值(paw withdrawal threshold,PWT)和行走痛评分(ambulatory score),并在实验结束后取双侧胫骨,X摄片观察骨质的破坏情况;病理切片,HE染色,显微镜下观察肿瘤的生长情况。
     结果①大鼠种瘤6d后开始出现明显的机械痛敏和自发痛,并随着荷瘤时间的延长疼痛更加严重。②大鼠种瘤6d时X线摄片可见大鼠左侧胫骨上端骨小梁轻微缺损;12d时出现多出骨小梁缺损,骨皮质有破坏;18d时骨破坏进一步加重,胫骨上端骨皮质明显破坏,大片骨质缺损。③HE染色见种瘤后6d和12d大鼠胫骨骨小梁有不同程度的破坏;18d时可见肿瘤细胞充满骨髓腔,骨小梁广泛破坏,正常骨结构缺失,严重的肿瘤细胞穿破骨皮质,侵犯周围肌肉和软组织。
     结论成功建立了大鼠胫骨癌痛模型。
     第二部分胫骨癌痛模型大鼠脊髓TLR4及其下游细胞因子表达的变化
     目的观察胫骨癌痛模型大鼠脊髓TLR4及其下游细胞因子表达的变化,以及脊髓小胶质细胞的激活状况。
     方法正常组、假手术组以及接种肿瘤细胞后6d、12d和18d大鼠的脊髓,利用免疫组化、western-blot、real time -PCR检测TLR4表达的变化;real time-PCR检测小胶质细胞激活标志(CD11b和CD14)及细胞因子(IL-1β、IL-6、TNF-α和IFN-β)表达水平的变化。
     结果荷瘤后6d大鼠脊髓TLR4mRNA表达和蛋白质水平即显著上调(P<0.05),12d、18d更甚(P<0.01);荷瘤后6d大鼠脊髓CD11b、CD14mRNA表达即显著升高(P<0.01);IL-1β和TNF-αmRNA表达显著升高也在荷瘤后6d(P<0.01),而IL-6和IFN-βmRNA表达显著升高则在荷瘤后12d(P<0.01)。
     结论大鼠脊髓小胶质细胞在胫骨癌痛发展的早期即被激活,TLR4表达上调,其下游细胞因子表达水平均进行性升高,提示该通路可能参与了大鼠胫骨癌痛的发生和发展。
     第三部分SiRNA抑制大鼠小胶质细胞上TLR4的表达
     目的体外转录合成的small interference RNA(siRNA)转染大鼠小胶质细胞(HAPI细胞株),诱导TLR4基因表达沉默,从而筛选出有效抑制TLR4基因表达的siRNA。
     方法根据RNA干扰的原理及siRNA的设计原则,设计4个长度为21bp的TLR4siRNA(siRNA312、siRNA439、siRNA1495和siRNA2062),另选择相同长度的无义双链RNA作为阴性对照RNA,体外转录合成siRNA,利用LipofectamineTM2000将siRNA导入HAPI细胞中,于转染后24h提取细胞的RNA, 48h提取蛋白质, real time-PCR和western-blot检测HAPI细胞上TLR4的表达。
     结果2μg TLR4 siRNA可减少HAPI细胞上的TLR4mRNA分别为:83%(siRNA439)、61% (siRNA312)、55% (siRNA1495)和53% (siRNA2062)。Western-blot检测结果也显示对HAPI细胞上TLR4蛋白质表达抑制效果最好的是siRNA43(9P<0.001)。
     结论siRNA转染小胶质细胞可有效抑制TLR4基因的表达。siRNA439效果最好。
     第四部分鞘内注射TLR4siRNA可减轻大鼠胫骨癌痛
     目的观察不同时间点鞘内注射TLR4siRNA对大鼠胫骨癌痛的影响。
     方法大鼠鞘内置管。荷瘤后4d或9d时给予鞘内注射TLR4siRNA( 2μg/10μl)、阴性对照siRNA(2μg/10μl)或溶媒in vivo jetPEITM10μl,1次/d,连续3d,末次鞘内注射后24h观察大鼠PWT值和行走痛评分的变化。痛行为学测试后,取大鼠脊髓L4~6,western-blot、real time-PCR检测TLR4表达的变化;real time-PCR检测CD11b、CD14、IL-1β?IL-6?TNF-α和IFN-β表达水平的变化。
     结果荷瘤后4d鞘内注射TLR4siRNA可完全抑制大鼠的胫骨癌痛,荷瘤后9d鞘内注射TLR4siRNA能缓解大鼠胫骨癌痛,但不能完全阻止疼痛的发展。鞘内注射TLR4siRNA可显著降低模型大鼠脊髓的TLR4mRNA的表达和蛋白质水平,CD11b、CD14、IL-1β?IL-6、TNF-α和IFN-βmRNA表达也显著降低。
     结论鞘内注射TLR4siRNA可有效抑制大鼠脊髓TLR4及其下游细胞因子的表达,抑制小胶质细胞的激活,从而缓解大鼠胫骨癌痛
     第五部分TLR4/NF-κB信号转导通路在大鼠胫骨癌痛中的作用
     目的研究鞘内注射NF-κB抑制剂二硫代氨基甲酸吡咯烷(pyrrolidine dithiocarbamate,PDTC)和TLR4siRNA对大鼠胫骨癌痛的作用。
     方法荷瘤后9d给予鞘内注射PDTC(20μg/10μl)或生理盐水10μl,2次/d,连续3d,末次鞘内注射后6h观察大鼠PWT值和行走痛评分的变化。痛行为学测试后,取大鼠脊髓L4~6,结合第四部分的实验标本,免疫组化、western-blot、real time-PCR检测NF-κB p65表达的变化;real time-PCR检测IL-6和TNF-α水平的变化。
     结果鞘内注射PDTC可缓解大鼠的机械痛敏和自发痛;且能显著降低模型大鼠脊髓NF-κB p65 mRNA的表达和蛋白质水平(P<0.01);同时,IL-6和TNF-αmRNA的表达平也显著降低(P<0.01)。鞘内注射TLR4siRNA也可以显著降低模型大鼠脊髓NF-κB p65、IL-6和TNF-α的表达。
     结论TLR4/NF-κB信号通路可能参与了大鼠胫骨癌痛的发生和发展。
     第六部分TLR4/p38MAPK信号转导通路在大鼠胫骨癌痛中的作用
     目的研究鞘内注射p38MAPK抑制剂4-(4-fluorophenyl )-2- (4-methylsulfonylphenyl)-5-(4-pyridyl)-1H-imidazole( SB203580)和TLR4siRNA对大鼠胫骨癌痛的作用。
     方法①荷瘤后4d给予鞘内注射SB203580(2μg/10μl)或5%二甲基亚砜10μl,2次/d,连续3d,末次鞘内注射后6h观察大鼠PWT值和行走痛评分的变化。痛行为学测试后,取大鼠脊髓L4~6,结合第四部分实验标本,免疫组化、western-blot、real time-PCR检测p38MAPK表达的变化;real time-PCR检测IL-1β和TNF-α水平的变化。
     结果鞘内注射SB203580可缓解大鼠的机械痛超敏和自发痛;并且能显著降低模型大鼠脊髓的p38MAPKmRNA的表达和蛋白质水平(P<0.01);同时,IL-1β和TNF-αmRNA的表达也显著降低(P<0.01)。鞘内注射TLR4siRNA也可以显著降低模型大鼠脊髓p38MAPK、IL-1β和TNF-α的表达。
     结论TLR4/p38MAPK信号通路可能参与了大鼠胫骨癌痛的发生和发展。
Part one:Establish and evaluation a rat model of bone cancer pain
     Objective To establish and evaluate the rat model of tibial bone cancer pain using behavioral tests, X-ray scan and tibia HE staining and other methods.
     Methods A rat model of bone cancer pain was developed by intr-tibial inoculations of Walker256 breast cancer cells in female Sprague-Dawley rats(weight 150-180g).The mechanical allodynia (paw withdrawal threshold, PWT) and spontaneous pain (ambulatory score) were observed on the day 2, 4, 6, 9, 12, 14, 18 and 21 after inoculation(AI).The development of the bone tumor and structural damage in the bone were assessed by X-ray scan and HE stainning on the 6dayAI, 12dayAI and 18dayAI.
     Results①Rats with tibia tumors after Walker 256 cells inoculation displayed both tactile allodynia and spontaneous pain on the 6dayAI. Subsequently, the bone cancer pain was progressive severe.②Radiography of the left proximal epiphysis of the tibiae in the tumor-bearing group showed that there were bone density reduction, and moth-eaten-like small defects on the 6dayAI,significant bone destruction on the 12dayAI,and bilateral cortical bone damage and large bone defects on the 18dayAI③Histological studies showed that the trabecular bone was destroyed in varying degrees on the 6dayAI and 12dayAI;the bone marrow cavity was full of tumor cells,and the cortical bone was destroyed on the 18dayAI.
     Conclusion The present study successfully established a female rat model of bone pain from metastatic bone cancer.
     Part two: The expression of TLR4 and its downstream cytokine in spinal cord of the rat model of bone cancer pain
     Objective To observe the expression of TLR4 and its downstream cytokine and the activation of microglia in spinal cord of the rat model of bone cancer pain.
     Methods The expression of TLR4 in spinal cord of nomal,sham and bone cancer pain group was detected with immunohistochemistry,western-blot, real-time-PCR on the 6dayAI, 12dayAI and 18dayAI. The expression of the microglial activation markers(CD11b and CD14) as well as cytokines (IL-1β, IL-6, TNF-αand IFN-β) was detected with real time-PCR in the same part and at the same time.
     Results The expression of TLR4mRNA and protein in spinal cord of the rat model of bone cancer pain significantly increased (P<0.05) on the 6dayAI, and further increase on the 12dayAI and 18dayAI (P<0.01); The expression of CD11b and CD14mRNA was significant increase on the 6dayAI in the bone cancer pain group compared with that in normal and sham group(P<0.01); The expression of IL-1βand TNF-αmRNA was also significant increase in the bone cancer pain group compared with that in normal and sham group on the 6dayAI (P<0.01), while the expression IL-6 and IFN-βmRNA was significantl increase on the 12dayAI (P<0.01).
     Conclusion In spinal cord of the rat model of bone cancer pain, the microglia were activated at the early stage of bone cancer pain,the expression of TLR4 was upregulation ,and the expression of its downstream cytokine was progressive increase, which suggested that the TLR4 signal transduction pathway minght be involved in the development of bone cancer pain.
     Part three: SiRNA inhibited the expression of TLR4 on the microglia
     Objective To select the most effective siRNA which could inhibit TLR4 gene expression, siRNAs chemically synthesized in vitro were transfected the microglia (HAPI cell line) to induce TLR4 gene silencing.
     Methods Four different siRNA duplexes(siRNA312, siRNA439, siRNA1495 and siRNA2062) targeting the S-D rat TLR4 were selected using standard siRNA design rules. Additionally, a scrambled sequence was designed as a mismatch control. All siRNA duplexes were chemically synthesized in vitro. SiRNAs transfected the HAPI cells with LipofectamineTM2000. Forty-eight hours after transfection, the cells were harvested for western blot analysis of the level of knockdown proteins by the siRNAs. For targeting and detection of the mRNA levels, the cells were harvested after 24hr of transfection.
     Results 2μg TLR4 siRNA could reduce TLR4 mRNA by 83% (siRNA439), 61% (siRNA312), 55% (siRNA1495) and 53% (siRNA2062). Results from several western-blot test also showed that The most effective siRNA for knocking down TLR4 expression was siRNA439 (P<0.001).
     Conclusion Transfection the microglia by siRNA could effectively inhibit the TLR4 gene expression. siRNA439 was the best one.
     Part four: Intrathecal injection of TLR4siRNA could attenuate bone cancer pain in the rat model
     Objective To observe the effects of intrathecal TLR4siRNA on bone cancer pain in the rat model at different time points.
     Methods Rats were intrathecally catheterizated. TLR4siRNA (2μg/10μl), negative control siRNA (2μg/10μl) or vehicle(in vivo jetPEITM)10μl were injected intrathecally to rats on the 4dayAI or 9dayAI. Injections were given daily for three consecutive days. Nociceptive testing and tissue harvesting were carried out 24 hr after the last injection. The expression of TLR4 was detected with western-blot and real time-PCR, and the expression of CD11b,CD14,IL-1β, IL-6, TNF-αand IFN–βwas detected with real time-PCR.
     Results Intrathecal injection of TLR4 siRNA on the 4dayAI could prevent the initial development of bone cancer pain.However,intrathecal injection of TLR4 siRNA on the 9dayAI could alleviate, but not reverse, well-established bone cancer pain. Intrathecal injection of TLR4siRNA could significantly reduce the expression of TLR4mRNA and protein(P<0.01) in the spinal cord of the rat model.The expression of CD11b, CD14, IL-1β, IL-6, TNF-αand IFN-βmRNA also significant decreased(P<0.01). Conclusion Intrathecal injection of TLR4siRNA could effectively inhibit the expression of TLR4 and its downstream cytokines, inhibit the activation of microglia and attenuate bone cancer pain in the rat model.
     Part five: The role of TLR4/NF-κB signaling pathway on the bone cancer pain of the rat model
     Objective To observe the effects of intrathecal NF-κB inhibitor pyrrolidine dithiocarbamate(PDTC) and TLR4siRNA on bone cancer pain in the rat model .
     Methods PDTC (20μg/10μl ) or saline 10μl was injected intrathecally to rats on the 9dayAI. Injections were given twice a day for three consecutive days. Nociceptive testing and tissue harvesting were carried out 6hr after the last injection(ALI). Combined the experiment samples in the quartus section,the expression of NF-κBp65 was detected with immunohistochemistry,western-blot and real time-PCR, and the expression of IL-6 and TNF-αwas detected with real time-PCR.
     Results Intrathecal PDTC could alleviate rats’mechanical allodynia and spontaneous pain, and significantly reduce the expression of NF-κB p65 mRNA and protein in spinal cord of the rat model (P<0.01).Aat the same time,the expression of IL-6 and TNF-αmRNA also significantly decreased(P<0.01). Intrathecal TLR4siRNA also could significantly reduce the expression of NF-κB p65 ,IL-6 and TNF-α.
     Conclusion TLR4/NF-κB signaling pathway mingt be involved in the bone cancer pain of the rat model.
     Part six: The role of TLR4/p38MAPK signaling pathway on the bone cancer pain of the rat model
     Objective To observe the effects of intrathecal p38MAPK inhibitor SB203580 and TLR4siRNA on bone cancer pain in the rat model .
     Methods SB203580 (2μg/10μl ) or 5%DMSO 10μl was injected intrathecally to rats on the 9dayAI. Injections were given twice a day for three consecutive days. Nociceptive testing and tissue harvesting were carried out 6hALI. Combined the experiment samples in the quartus section, the expression of p38MAPK was detected with immunohistochemistry, western-blot and real time-PCR, and the expression of IL-1βand TNF-αwas detected with real time-PCR.
     Results Intrathecal SB203580 could alleviate rats’mechanical allodynia and spontaneous pain, and significantly reduce the expression of p38MAPK mRNA and protein in spinal cord of the rat model (P<0.01).At the same time,the expression of IL-1βand TNF-αmRNA also significantly decreased(P<0.01). Intrathecal TLR4siRNA aslo could significantly reduce the expression of p38MAPK , IL-1βand TNF-α.
     Conclusion TLR4/ p38MAPK signaling pathway may be involved in the bone cancer pain of the rat model.
引文
1. DeLeo J A, Tanga FY,Tawfik VL. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist.2004;10(1):40-52.
    2. Olson JK,Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 2004;173(6): 3916-3924.
    3. Kielian T. Toll-like receptors in central nervous system glial inflammation and homeostasis. J. Neurosci. Res. 2006;83(5):711-730.
    4. Bsibsi M, Ravid R, Gveric D,et al. Broad expression of Toll-like receptors in the human central nervous system. J. Neuropathol. Exp. Neurol. 2002;61(11): 1013-1021.
    5. Walter S, Letiembre M, Liu Y,et al. Role of the Toll-Like Receptor 4 in Neuroinflammation in Alzheimer's Disease. Cell Physiol Biochem. 2007; 20(6):947-956.
    6. Mantyh PW,Clohisy DR,Koltzenburg M,et al.Molecular mechanisms of cancer pain.Nat Rev Cancer.2002;2(3):201-209.
    7. Twining CM, Sloane EM, Schoeniger DK, et al.Activation of the spinal cord complement cascade might contribute to mechanical allodynia induced by three animal models of spinal sensitization. J Pain.2005;6(3):174-183.
    8. De Leo JA, Tawfik VL, LaCroix-Fralish ML. The tetrapartite synapse: path toCNSsensitization and chronic pain. Pain.2006;122(1-2):17-21.
    9. Tanga FY, Raghavendra V, DeLeo JA.Quantitative real-time-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int.2004;45(2-3):397-407.
    10. Tanga FY, Nutile-McMenemy N, DeLeo JA.The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A. 2005;102(16):5856-5861.
    11. Nasu-Tada K, Koizumi S, Tsuda M et al. Possible involvement of increase in spinal fibronectin following peripheral nerve injury in upregulation of microglial P2X4, a key molecule for mechanical allodynia. Glia.2006;53(7):769-775.
    12. Luger NM,Sabino MAC,Schwer MI,et al.Efficacy of systemic morphine suggests a fundamental difference in the mechanisms that generate bone cancer vs.inflammatory pain[J].Pain.2002;99(3):397-406.
    13. Khasabov SG, Hamamoto DT, Harding-Rose C, et al. Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain. Brain Res.2007;1180(14):7-19.
    14. Hou L, Sasaki H, Stashenko P.Toll-like receptor 4-deficient mice have reduced bone destruction following mixed anaerobic infection. Infect Immun.2000;68(8): 4681-4687.
    15. Baniyash M. Chronic inflammation, immunosuppression and cancer: new insights and outlook. Semin Cancer Biol.2006;16(1): 80-88.
    16. Andreani V, Gatti G, Simonella L,et al. Activation of Toll-like receptor 4 on tumor cells in vitro inhibits subsequent tumor growth in vivo.Cancer Res. 2007; 67(21): 10519-10527.
    17. Okamoto M, Oshikawa T, Tano T, et al. Mechanism of anticancer host response induced by OK-432, a streptococcal preparation, mediated by phagocytosis and Toll-like receptor 4 signaling. J Immunother. 2006;29(1): 78-86.
    18. Bauer AK,Dixon D,DeGraff LM,et al.Toll-like receptor 4 in butylated hydroxytoluene- induced mouse pulmonary inflammation and tumorigenesis.J Natl Cancerr Inst.2005;97(23):1778-1781.
    1. Meuser T, Pietruck C, Radbruch L, et al. Symptoms during cancer pain treatment following WHO-guidelines: a longitudinal follow-up study of symptom prevalence, severity and etiology. Pain. 2001;93(3):247-257.
    2. Luger NM, Honore P, Sabino MA et al. Osteoprotegerin diminishes advanced bone cancer pain. Cancer Res. 2001 ;61(10):4038-4047.
    3. Watson JJ, Allen SJ, Dawbarn D. Targeting nerve growth factor in pain: what is the therapeutic potential? BioDrugs. 2008;22(6):349-359.
    4. Christo PJ, Mazloomdoost D. Cancer pain and analgesia. Ann N Y Acad Sci. 2008;1138:278-298.
    5. Yao M, Yang JP, Wang LN,et al. Feasibility of establishment of rat model of bone cancer pain by using Walker 256 cells cultured in vitro or in vivo. Zhonghua Yi Xue Za Zhi. 2008;88(13):880-884.
    6. World Health Organization(WHO) Cancer Control Progrmme. 2006. http://www.who.int./cancer.
    7.余悦,周绿林。关于我国临终关怀发展策略的思考[J〕。医学与哲学,2006,27(l):65-66.
    8. Lynda M,Baker.Information needs at the end of life:a content analysis of one person’s story[J].J Med Libr Assoc.2004;92(1):78-82.
    9. Mantyh PW,Clohisy DR,Koltzenburg M,HuntSP.Molecular mechanisms of cancer pain[J].Nat Rev Cancer.2002;2(3):201-209.
    10. Mereadante S.Recent progress in the pharmacotherapy of cancer pain.Expert Rev Anticancer Ther.2001;1(3):487-494.
    11.赵雩卿刘端祺战淑,中国癌痛治疗十年回顾。中国药物依赖性杂志,2008, 17 (4) : 252– 254.
    12. Banning A,Sjogren P,Henriksen H.pain causes in 200 patients referred to a multidiseiplinary cancer pain clinic.Pain.1991;45:45-48.
    13. Mereadante S.Malignant bone pain:pathophysiology and treatment[J]. Pain.1997; 69(1-2):1-18.
    14. Mantyh PW,Clohisy DR,Koltzenburg M,Hunt SP.Molecular mechanisms of cancer Pain.Nat Rev Cancer.2002;2:201-209.
    15. Mereadante S,Areuri E.Breakthrough pain in cancer patients: pathophysiology and treatment[J」.Cancer Treat Rev.1998;24(6):425-432.
    16. Portenoy RK,Payne D,Jaeobsen P.Breakthrough pain:charaeteristics and impact in patients with cancer pain[J].Pain.1999;81(1-2):129-134.
    17. Mercadante S.Malignant bone pain:Pathophysiology and treatment.Pain.1997;69:1-18.
    18. Luger NM,Sabino MA,Sehwei MJ,et al. Effieaey of systemic morphine suggests a fundamental difference in the mechanisms that generate bone cancer vs inflammatory pain[J].Pain.2002;99(3):397-406.
    19. Kjonniksen I,Winderen M,Bruland O.et al.Validity and usefulness of human tumor models established by intratibial cell inoculation in nude rats.Cancer Res.1994;54(7):1715-1719.
    20. Wacnik PW, Eikmeier LJ, Ruggles TR et al. Functional Interactions between Tumor and Peripheral Nerve: Morphology, Algogen Identification, and Behavioral Characterization of a New Murine Model of Cancer Pain. J Neurosci. 2001;21(23):9355–9366.
    21. Medhurst SJ, Walker K, Bowes M et al. A Rat Model of Bone Cancer Pain. Pain . 2002;96(1-2):129–140.
    22. Wacnik PW, Kehl LJ, Trempe TM et al. Tumor Implantation in Mouse Humerus Evokes Movement-Related Hyperalgesia Exceeding that Evoked by Intramuscular Carrageenan. Pain.2003;101:175–186.
    23. Menendez L, Lastra A, Fresno MF et al. Initial Thermal Heat Hypoalgesia and Delayed Hyperalgesia in a Murine Model of Bone Cancer Pain. Brain Res.2003; 969(1-2):102–109.
    24. Buffon A, Ribeiro VB, Schanoski AS, et al. Diminution in adenine nucleotide hydrolysis by platelets and serum from rats submitted to Walker 256 tumour. Mol Cell Biochem. 2006;281(1-2):189-195.
    25. Brigatte P, Sampaio SC, Gutierrez VP et al. Walker 256 tumor-bearing rats as a model to study cancer pain. J Pain. 2007 ;8(5):412-421.
    26. Taveira VC, Novaes MR, Dos Anjos Reis M et al. Hematologic and Metabolic Effects of Dietary Supplementation with Agaricus sylvaticus Fungi on Rats Bearing Solid Walker 256 Tumo. Exp Biol Med (Maywood). 2008 ;233(11):1341-1347.
    27. Kazuma Ogawa, Takahiro Mukai, Daigo Asano et al. Therapeutic Effects of a 186Re-Complex–Conjugated Bisphosphonate for the Palliation of Metastatic Bone Pain in an Animal Model. Society of Nuclear Medicine.2007; 48(1):122-127.
    28. Zhang RX, Li A, Liu B, et al. Electroacupuncture attenuates bone-cancer-induced hyperalgesia and inhibits spinal preprodynorphin expression in a rat model. Eur J Pain. 2008 ;12(7):870-878.
    29. Beyreuther BK, Callizot N, Brot MD,et al. Antinociceptive efficacy of lacosamide inrat models for tumor- and chemotherapy-induced cancer pain. Eur J Pharmacol. 2007 ;565(1-3):98-104.
    30. Schwei MJ, Honore P, Rogers SD et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci. 1999; 19(24): 10886-10897.
    31. Muta M, Matsumoto G, Nakashima E,et al. Mechanical analysis of tumor growth regression by the cyclooxygenase-2 inhibitor, DFU, in a Walker256 rat tumor model: importance of monocyte chemoattractant protein-1 modulation. Clin Cancer Res. 2006;12(1):264-272.
    1. Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia.Nat Neurosci.2007;10(11):1361-1368.
    2. Tauda M .Inoue K, Salter M W.Neuropathic pain and spinal microglia : a big problem from molecules in“small”gila.Trends Neurosci.2005;28:l01-1O7.
    3. Guo LH, Schluesener HJ. The innate immunity of the central nervous system in chronic pain: the role of Toll-like receptors. Cell Mol Life Sci. 2007;64(9):1128-1136.
    4. Luger NM, Sabino MA, Schwei MJ, et al.Efficacy of systemic morphine suggests a fundamental difference in the mechanisms that generate bone cancer vs.inflammatory pain[J].Pain.2002;99(3):397-406.
    5. Khasabov SG, Hamamoto DT, Harding-Rose C,et al.Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain. Brain Res. 2007;1180(14):7-19.
    6. Constantine D. Sarantopoulos.Advances in the therapy of cancer pain:from novel experimental models to evidence-based treatments.SIGNA VITAE.2007;2(l):s23-41.
    7. Clohisy DR,Mantyh PW.Bone cancer pain.Cancer.2003;97:866-873.
    8. Zhang RX, Liu B, Wang L, et al. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain. 2005;118(1-2):125-136.
    9. Honore P,Rogers SD,Schwei MJ,et al.Murine models of inflammatory,neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons.Neuroscience.2000;98(3):585-598.
    10. Yao M, Yang JP, Wang LN, Cheng H, Zhang YB, Xu QN, Wu YW. Feasibility of establishment of rat model of bone cancer pain by using Walker 256 cells cultured in vitro or in vivo. Zhonghua Yi Xue Za Zhi. 2008;88:880-884.
    11. Romero-Sandoval A, Chai N, Nutile-McMenemy N, et al. A comparison of spinal Iba1 and GFAP expression in rodent models of acute and chronic pain. Brain Res. 2008;1219:116-126.
    12. Schreiber KL, Beitz AJ, Wilcox GL. Activation of spinal microglia in a murine model of peripheral inflammation-induced, long-lasting contralateral allodynia. Neurosci Lett.2008;440(1):63-67.
    13. Raghavendra V,Tanga F,DeLeo JA.Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy[J].J Pharmacol Exp Ther.2003,306(2):624-630.
    14. Milligan ED,Twining C,Chacur M,et al.Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats[J].J Neurosci.2003;23(3):1026-1040.
    15. Medzhitov R, Preston Hurlburt P, Janeway CA Jr,et al. A human homologue of the DrosophilaToll protein signals activa-tion of adaptive immunity[J]. Nature. 1997;388(6640):394-397.
    16. Bohnenkamp HR, Papazisis KT, Burchell JM, et al. Synergism of Toll-like receptor-induced interleukin-12p70 secretion by monocyte-derived dendritic cells is mediated through p38 MAPK and lowers the threshold of T-helper cell type 1 responses. Cell Immunol. 2007;247(2):72-78.
    17. Greene CM, Branagan P, McElvaney NG. Toll-like receptors as therapeutic targets in cystic fibrosis. Expert Opin Ther Targets. 2008;12(12):1481-1495.
    18. Jung DY,Lee H,Jung BY,et a1.TLR4,but not TLR2,signals autoregulatory apo ptosis of cultured microglia: a critical role of IFN,beta as a decision maker[J].J Immunol.2005;174(10):6467-6476.
    19. Olson JK,Miller SD.Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs[J].J Immunol.2004;173(6):3916-3924.
    20. Lafon M,Megret F,Lafage M,et a1.The innate immune facet of brain:human neurons express TLR-3 and sense viral dsRNA[J].J Mol Neurosci.2006; 29(3): 185-194.
    21. Laflamme N,Rivest S.Toll—like receptor 4:the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components[J].Mol Immunol.2005;42(2):155-163.
    22. Twining CM, Sloane EM, Schoeniger DK, et a;.Activation of the spinal cord complement cascade might contribute to mechanical allodynia induced by three animal models of spinal sensitization. J Pain. 2005;6(3):174-183.
    23. Kim D, Kim MA, Cho IH,et al. A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem.2007;282(20):14975-14983.
    24. Hutchinson MR, Zhang Y, Brown K, et al. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur J Neurosci. 2008;28(1):20-29.
    25. De Leo JA, Tawfik VL, LaCroix-Fralish ML. The tetrapartite synapse: path to CNS sensitization and chronic pain. Pain.2006;122(1-2):17-21.
    26. Bettoni I, Comelli F, Rossini C, et al. Glial TLR4 receptor as new target to treat neuropathic pain: efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice. Glia. 2008;56(12):1312-1319.
    27. Tanga FY, Nutile-McMenemy N, DeLeo JA.The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A. 2005;102(16):5856-5861.
    28. Nasu-Tada K, Koizumi S, Tsuda M,et al.Inoue K. Possible involvement of increase in spinal fibronectin following peripheral nerve injury in upregulation of microglial P2X4, a key molecule for mechanical allodynia. Glia.2006;53(7):769 -775.
    29. Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci. 2001;24(8):450-455.
    30.黄文林,朱孝峰.信号转导。卫生出版社,2005,P.14-18.
    31. Ramer MS, Murphy PG, Richardson PM, et al. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated ininterleukin-6 knockout mice. Pain. 1998;78(2):115-121.
    32. Milligan ED, O'Connor KA, Nguyen KT, et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci. 2001;21(8):2808-2819.
    33. Watkins LR, Maier SF. The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu Rev Psychol. 2000;51:29-57.
    34. Arruda JL, Sweitzer S, Rutkowski MD, et al. Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat: possible immune modulation in neuropathic pain. Brain Res. 2000;879(1-2):216-225.
    35. Wieseler-Frank J, Maier SF, Watkins LR. Immune-to-brain communication dynamically modulates pain: physiological and pathological consequences. Brain Behav Immun. 2005;19(2):104-111.
    36. Schoeniger-Skinner DK, Ledeboer A, Frank MG, et al. Interleukin-6 mediates low-threshold mechanical allodynia induced by intrathecal HIV-1 envelope glycoprotein gp120. Brain Behav Immun. 2007;21(5):660-667.
    37. Detloff MR, Fisher LC, McGaughy V,et al. Remote activation of microglia and pro-inflammatory cytokines predict the onset and severity of below-level neuropathic pain after spinal cord injury in rats. Exp Neurol. 2008;212(2):337-347.
    38. U?eyler N, Sommer C. Cytokine regulation in animal models of neuropathic pain and in human diseases。Neurosci Lett. 2008;437(3):194-198.
    39. U?eyler N, Sommer C. Status of immune mediators in painful neuropathies. Curr Pain Headache Rep. 2008;12(3):159-164.
    40. Xu JT, Xin WJ, Wei XH,et al. p38 activation in uninjured primary afferent neurons and in spinal microglia contributes to the development of neuropathic pain induced by selective motor fiber injury. Exp Neurol. 2007;204(1):355-365.
    41. Narita M, Shimamura M, Imai S, et al. Role of interleukin-1beta and tumor necrosis factor-alpha-dependent expression of cyclooxygenase-2 mRNA in thermal hyperalgesia induced by chronic inflammation in mice. Neuroscience. 2008; 152(2):477-486.
    42. Watkins LR,Milligan ED,Maier SF.Glial proinflammatory cytokines mediate exaggerated pain states:implications for clinical pain[J].Adv Exp Med Biol.2003;521:1-21.
    43. Medhurst SJ,Walker K,Bowes M,et a1.A rat model of bone cancer pain[J]. Pain.2002,96:129-140.
    44. Fioravanti B, De Felice M, Stucky CL,et al. Constitutive activity at the cannabinoid CB1 receptor is required for behavioral response to noxious chemical stimulation of TRPV1: antinociceptive actions of CB1 inverse agonists. J Neurosci. 2008;28(45): 11593-11602.
    45. Ildiko Racz,Xavier Nadal,Judith Alferink,et al. Interferon-γIs a Critical Modulator of CB2 Cannabinoid Receptor Signaling during Neuropathic Pain . The Journal of Neuroscience. 2008; 28(46):12136-12145.
    1. Krichevsky AM,Kosik KS.RNAi functions in cultured mammalian neurons.Proc.Natl Acad.Sci.USA.2002;99:11926-11929.
    2. Reynolds A,Leake D,Boese Q,et al.Rational siRNA design for RNA interference.Nat Biotechnol.2004;22:326-330.
    3. Overboff M,Alken M,Far RK,et al.Local RNA target strcture influences siRNA efficacy:a systematic global analysis.J Mol Biol.2005;348:871-881.
    4. Pignataro L, Miller AN, Ma L, et al. Alcohol regulates gene expression in neurons via activation of heat shock factor 1. J Neurosci. 2007 ; 27(47):12957-12966.
    5. Chen H, Huang Q, Dong J, et al. Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo. BMC Cancer. 2008;29;8:29.
    6. Sohail M,Doran G,Riedemann J,et al.A simple and cost-effective method for producing small interfering RNAs with high efficacy[J].Nuleic Acids Res.2003;31:(7):e38.
    7. Myers JW,Ferrell JE.Silencing gene expression with Dicer-generated siRNA pools[J].Methods Mol Biol.2005;309:93-196.
    8. Jackson AL,Bartz SR,Schelter J,et al.Expression profiling reveals off-target gene regulation by RNAi[J].Nat Biotechnol.2003;21(6):635-637.
    9. Sui G,Soohoo C,Affar elB,et al.A DNA vector-based RNAi technology to suppress gene expression in mammalian cells[J].Proc Natl Acad Sci USA.2002;99(8):5515-5520.
    10. Castanotto D,Li H,Rossi JJ.Functional siRNA expression from transfected PCR products[J].RNA.2002;8(11):1454-1460.
    11. Elbashir SM,Harborth J,Lendeckel W,et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature.2001;411:494-498.
    1. EI-Aneed A. An overview of curent delivery systems in cancer gene therapy. J Control Release. 2004;94(1):1-14.
    2. Montier T, Benvegnu T, Jaffrès PA, et al. Progress in cationic lipid-mediated gene transfection: a series of bio-inspired lipids as an example. Curr Gene Ther. 2008;8(5):296-312.
    3. Kanungo J, Li BS, Zheng Y, et al. Cyclin-dependent kinase 5 influences Rohon-Beard neuron survival in zebrafish. J Neurochem. 2006 ;99(1):251-259.
    4. Odani N, Ito K, Nakamura H.Electroporation as an efficient method of genetransfer.Dev Growth Differ.2008;50(6):443-8.
    5. Jantsch J, Turza N, Volke M, et al.Small interfering RNA (siRNA) delivery into murine bone marrow-derived dendritic cells by electroporation.J Immunol Methods. 2008;337(1):71-77.
    6. Qureshi HY, Ahmad R, Zafarullah M. High-efficiency transfection of nucleic acids by the modified calcium phosphate precipitation method in chondrocytes. Anal Biochem. 2008;382(2):138-140.
    7. Kakizawa Y, Furukawa S, Ishii A,et al. Organic-inorganic hybrid-nanocarrier of siRNA constructing through the self-assembly of calcium phosphate and PEG-based block aniomer. J Control Release. 2006;111(3):368-370.
    8. Onishi Y, Eshita Y, Murashita A, et al. Characteristics of DEAE-dextran-MMA graft copolymer as a nonviral gene carrier. Nanomedicine. 2007;3(3):184-191.
    9. Thoms KM, Baesecke J, Emmert B, et al. Functional DNA repair system analysis in haematopoietic progenitor cells using host cell reactivation . Scand J Clin Lab Invest. 2007;67(6):580-588.
    10. Han SE, Kang H, Shim GY, et al. Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA. Int J Pharm. 2008; 353 (1-2): 260-269.
    11. Matsuda N, Takano Y, Kageyama S, et al. Silencing of caspase-8 and caspase-3 by RNA interference prevents vascular endothelial cell injury in mice with endotoxic shock. Cardiovasc Res. 2007;76(1):132-140.
    12. Shiraishi T, Hamzavi R, Nielsen PE. Subnanomolar antisense activity of phosphonate -peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells. Nucleic Acids Res. 2008;36(13):4424-4432.
    13. Kim JY, Kim DY, Ro JY. Granule formation in NGF-cultured mast cells is associated with expressions of pyruvate kinase type M2 and annexin I proteins. Int Arch Allergy Immunol. 2008;146(4):287-297.
    14. Niidome T, Urakawa M, Sato H, et al. Gene transfer into hepatoma cells mediated bygalactose-modified alpha-helical peptides. Biomaterials.2000;17:1811-1819.
    15. Sakurai F, Nishioka T, Saito H,et al. Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Ther. 2001; 8(9):677-686.
    16. Clements BA, Incani V, Kucharski C, et al. A comparative evaluation of poly- L-lysine-palmitic acid and Lipofectamine 2000 for plasmid delivery to bone marrow stromal cells. Biomaterials. 2007;28(31):4693-4704.
    17. Obata Y, Suzuki D, Takeoka S. Evaluation of cationic assemblies constructed with amino acid based lipids for plasmid DNA delivery. Bioconjug Chem. 2008;19 (5):1055-1063.
    18. Kiefer K, Clement J, Garidel P, et al. Transfection efficiency and cytotoxicity of nonviral gene transfer reagents in human smooth muscle and endothelial cells. Pharm Res. 2004;21(6):1009-1017.
    19. Akita H, Ito R, Khalil IA, et al. Quantitative three-dimensional analysis of the intracellular trafficking of plasmid DNA transfected by a nonviral gene delivery system using confocal laser scanning microscopy. Mol Ther. 2004 ;9(3):443-451.
    20. Clement J, Kiefer K, Kimpfler A, et al. Large-scale production of lipoplexes with long shelf-life. Eur J Pharm Biopharm. 2005;59(1):35-43.
    21. Barreau C, Dutertre S, Paillard L, et al. Liposome-mediated RNA transfection should be used with caution. RNA. 2006;12(10):1790-1793.
    22. Sato A, Ito K, Asano T,et al. Synergistic effect of survivin-specific small interfering RNA and topotecan in renal cancer cells: topotecan enhances liposome-mediated transfection by increasing cellular uptake. Int J Oncol. 2007;30(3):695-700.
    23. Ma B, Zhang S, Jiang H, et al. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release. 2007;123(3):184-189.
    24. Mikhaylova M, Stasinopoulos I, Kato Y, et al. Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA.Cancer Gene Ther.2009;16(3):217-226.
    25. Irie N,Sakai N,Ueyama T,et al.Subtype and speciesspecific knock down of PKC using short interferenceing RNA.Biochem Biophys Res Commun.2002;298(5):738-743.
    1. Jorgensen R. Altered gene expression in plants due to trans interactions between homologous genes.Trends Biotechnol. 1990;8(12):340-344.
    2. Cogoni C , Romano N , Macino G. Suppressionof gene expression by homologus transgenes [J ] . Antonie Van Leeuwenhoek.1994;65(3) :205– 209.
    3. S,Kemphues KJ.Par-1,a gene required for establinshing polarity in c.elegans embryos,encodes a putative ser/Thr kinase that is asymmetrically distributede. Cell.1995;81:611.
    4. Fire A ,Xu S ,Montgomery MK, et al . Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans[J]. Nature .1998;391 (6669): 806-811.
    5. Tabara H,Sarkissing M,Kelly WG,et al.The rde-1 gene,RNA interference and transposon silencing in c.elegans.Cell.1999;99:123.
    6. Robertson HD,Webster RE,Zinder ND.Purification and properties of ribonuclease Ⅲfrom Escherichia coli.J Biol Chem.1968;243:82-91.
    7. Lisa JS,John JR.Approaches for the sequence-specific knockdown of mRNA.Nature Biotechnology.2003;21(12):1457-1465.
    8. Schwarz DC,Hutvagner G,Haley B,et al.Evidence that siRNAs function as guard,not primers in the Drosophila and human RNAi pathways.Mol Cell.2002;10:537-548.
    9. Chiu YL,Rana TM.RNAi in human cells:basic structural and functional features of small interfering RNA.Mol Cell.2002;10:549-561.
    10. Lipardi C,Wei Q,Paterson BM.RNAi as random degradative PCR:siRNA primers conver mRNA into dsRNAs that are degrate new siRNAs.Cell.2001;107:297-307.
    11. Myslinski E,Ame JC,Krol A,et al.An unusually compact external promoter for RNA polymeraseⅢt ranscription of the human H1RNA gene.Nucleic Acids Res.2001; 29:2502-2509.
    12. Gil J,Esteban M.Induction of apoptosis by the dsRNA-dependent protein kinase(PKR):Mechanism of action.Apoptosis.2000;5:107-114.
    13. Caplen NJ,Parrish S,Imani F,et al.Specific inhibition of gene expression by small double-stranded RNAs in invertebrates and vertebrate systems.Proc Natl Acad Sci USA.2001;98:9746-9747.
    14. Elbashir SM,Harborth J,Lendeckel W,et al.Duplexes of 21-23 nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature.2001;411:494-498.
    15. Kimura J, Nguyen ST, Liu H et al. A functional genome-wide RNAi screen identifies TAF1 as a regulator for apoptosis in response to genotoxic stress. Nucleic Acids Res. 2008 ;36(16):5250-5259.
    16. Khoury M, Escriou V, Courties G et al. Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis Rheum. 2008 ; 58(8):2356-2367.
    17. Wagener N, Holland D, Bulkescher J et al. The enhancer of zeste homolog 2 gene contributes to cell proliferation and apoptosis resistance in renal cell carcinoma cells. Int J Cancer. 2008;123(7):1545-1550.
    18. Bass BL. RNA interference. The short answer [J ] . Nature.2001;411(6836) :428 - 429.
    19. Elbashir SM,Martinez J,Patkaniowska A,et al.Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryolysate.E MBO J.2001;20(23):6877-6888.
    20. Holen T,Amarzguioui M,Wiiger MT,et al. Positional effects of short interfering RNAs targetting the human coagulation trigger tissue factor.Nucleric Acid Res. 2002; 30:1757-1766.
    21. Miyagishi M,Taira k.U6 promoter-driven siRNAs with four uridine 3’overhangs efficiently suppress targeted gene expression in mammalian cells.Nat Biotechnol. 2002;20(5):497-500.
    22. Rodrigues A, Queiróz DB, Honda L,et al. Activation of Toll-Like Receptor 4 (TLR4) by In Vivo and In Vitro Exposure of Rat Epididymis to Lipopolysaccharide from Escherichia Coli. Biol Reprod. 2008;79(6):1135-1147.
    23. Edelman DA, Jiang Y, Tyburski J et al. Toll-like receptor-4 message is up-regulated in lipopolysaccharide-exposed rat lung pericytes. Surg Res. 2006;134(1):22-27.
    24. DeLeo J A, Tanga FY,Tawfik VL. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist.2004;10(1):40-52.
    25. Inoue K. The function of microglia through purinergic receptors: Neuropathic pain and cytokine release. Pharmacol.Ther. 2006;109(1-2):210-226.
    26. Walter S, Letiembre M, Liu Y,et al.Role of the Toll-Like Receptor 4 in Neuroinflammation in Alzheimer's Disease. Cell Physiol Biochem. 2007; 20(6): 947-956.
    27. De Leo JA, Tawfik VL, LaCroix-Fralish ML. The tetrapartite synapse: path toCNSsensitization and chronic pain. Pain.2006;122(1-2):17-21.
    1. McCaffrey AP,Meuse L,Pham T-TT,et al.Gene expression:RNA interference in adult mice.Nature.2002;418:38-39.
    2. Song E,Lee S-K,Wang J,et al.RNA interference targeting Fas protects mice from fulminant hepatitis.Nat Med.2003;9:347-351.
    3. Sorensen DR,Leirdal M,Sioud M.Gene silencing by systemic delivery of synthetic siRNAs in adult mice.J Mol Biol.2003;327:761-766.
    4. Zender L,Hutker S,Liedtke C,et al.Caspase 8 small interfering RNA prevents acute liver failure in mice.Proc Natl Acad Sci USA.2003;100:7797-7802.
    5. Kobayashi N,Matsui Y,Kawase A,et al.Vector-based in vivo RNA interference: dose-and time-dependent suppression of transgene expression.J Pharmaco Exp Ther.2004;308:688-693.
    6. Trulzsch B,Wood M.Application of nucleic acid technology in the CNS.J Neurochem. 2004;88:257-265.
    7. Makimura H,Mizuno TM,Mastaitis JW,et al.Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencin food intake.BMC Neurosci.2002;3:18-23.
    8. Baker-Herman TL,Fuller DD,et al.BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia.Nat Neurosce.2003;7:48-55.
    9. Dorn G,Patel S,Wotherspoon G,et al.SiRNA relieves chronic neuropathic pain.Nucleic Acids Res.2004;32(5):e49.
    10. Thakker DR,Natt G,Husken D,et al.Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference.Proc Natl Acad Sci.2004;101:17270-17275.
    11. Davidson TJ,Haral S,Arboleda VA,et al.Highly efficient small interfering RNAdelivery to primary mammalian neurons induces microRNA-like effects before mRNAdegradation.J Neurosci.2004;24:10040-10046.
    12.唐甩恩,周文华,顾均,等。脊髓鞘内给药改良法—腰骶部埋管及直接注射。上海实验动物学。Shanghail Laboratory Animal Science.2003;23(1):53-54.
    13. Luger NM, Honore P, Sabino MA, et al.Osteoprotegerin diminishes advanced bone cancer pain. Cancer Res. 2001;61(10):4038-4047
    14. Tsuda M, Inoue K, Salter MW.Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci. 2005;28(2):101-107.
    15. Echeverry S, Shi XQ, Zhang J.Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain. 2008;135(1-2):37-47.
    16. Bettoni I, Comelli F, Rossini C,et al.Glial TLR4 receptor as new target to treat neuropathic pain: efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice. Glia. 2008;56(12):1312-1319.
    17. Tanga FY, Nutile-McMenemy N, DeLeo JA.The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A. 2005 ;102(16):5856-5861.
    18. Zhang RX, Liu B, Wang L, et al.Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain. 2005;118(1-2):125-136.
    19. Hou L, Sasaki H, Stashenko P. Toll-like receptor 4-deficient mice have reduced bone destruction following mixed anaerobic infection. Infect Immun. 2000; 68(8): 4681-4687.
    20. Lehnardt S, Lachance C, Patrizi S, et al.The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci. 2002; 22(7):2478-2486.
    21. Raghavendra V, Tanga F, DeLeo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. JPharmacol Exp Ther. 2003;306(2):624-630.
    22. de Wit R, van Dam F, Loonstra S, et al.The Amsterdam Pain Management Index compared to eight frequently used outcome measures to evaluate the adequacy of pain treatment in cancer patients with chronic pain. Pain.2001;91(3):339-349.
    23. Liu X, Yao M, Li N, Wang C et al.CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood. 2008;112(13):4961-4970.
    24. Niiyama Y, Kawamata T, Yamamoto J,et al.SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. Br J Anaesth. 2009;102(2):251-258.
    25. Bumcrot D, Manoharan M, Koteliansky V, et al.RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature chemical biology.2006;2:711-719.
    26. Bonnet ME, Erbacher P, Bolcato-Bellemin AL. Systemic delivery of DNA or siRNA mediated by linear polyethylenimine (L-PEI) does not induce an inflammatory response. Pharm Res. 2008;25(12):2972-2982.
    27. Schifelers RM,Ansari A,Xu J,et a1.Cancer siRNA therapy by tumor selective delivery with ligand—targeted sterically stabilized nanoparticle[J].Nudeic Acids Res.2004;32(19):149.
    1. LedeboerA, GamanosM, LaiW, et al. Involvement of spinal cord nuclear factor B activation in rat models of proinflammatory cytokine-mediated pain facilitation [ J ]. Eur J Neurosci.2005; 22:1977-1986.
    2. Wu LC, GoettlVM, Madiai F, et al. Recip rocal regulation of nuclear factor kappa B and its inhibitor ZAS3 after peripheral nerve injury[ J ]. BMC Neurosci. 2006; 7: 4.
    3. Luongo L, Sajic M, Grist J, et al. Spinal changes associated with mechanical hypersensitivity in a model of Guillain-Barre syndrome[ J ]. Neurosci Lett. 2008; 437: 98 - 102.
    4. Fu ES, Zhang YP, Sagen J, et al.Transgenic inhibition of glial NF-kappa B reduces pain behavior and inflammation after peripheral nerve injury. Pain. 2010 ;148(3):509-518.
    5. Ellen Niederberger, Achim Schmidtko , Wei Gao, et al.Impaired acute and inflammatory nociception in mice lacking the p50 subunit of NF-κB.European Journal of Pharmacology.2007; 559:55–60.
    6. Juan Zhua, Xiaowei Wei b, Xiaomei Feng a, et al.Repeated administration of mirtazapine inhibits development of hyperalgesia/allodynia and activation of NF-κB in a rat model of neuropathic pain.Neuroscience Letters.2008;433:33–37.
    7. O'Rielly DD, Loomis CW. Spinal nerve ligation-induced activation of nuclear factor kappaB is facilitated by prostaglandins in the affected spinal cord and is a critical step in the development of mechanical allodynia. Neuroscience. 2008;155(3):902-13.
    8. Marissa de Mos, Andre′Laferrie re, Magali Millecamps, et al.Role of NF-kB in an Animal Model of Complex Regional Pain Syndrome–type I (CRPS-I).The Journal of Pain.2009;10(11):1161-1169.
    1. Ji RR , Samad TA , Jin SX , et al . p38 MAPK activation by NGF in primary sensory neurons af ter inflammation increases TRPV1 level s and maintains heat hyperalgesia [ J ] . Neuron.2002; 36 (1) :57 - 68.
    2. Jin SX , Zhuang ZY, Woolf CJ , et al . p38 mitogen– activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and cont ributes to t he generation of neuropat hic pain[J ] . J Neurosci . 2003;23(10) :4017-4022.
    3. Hutchinson MR, Zhang Y, Brown K, et al.Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur J Neurosci .2008;28:20-29.
    4. Wen YR, Suter MR, Ji RR, et al.Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia. Anesthesiology. 2009;110:155-165.
    5. Sugden PH, Clerk A. Regulation of the ERK subgroup ofMAP kinase cascades through G p rotein-coupled receptors. Cell Signal.1997;9 (5) : 337 - 51.
    6. Haq SE, Clerk A, Sugden PH. Activation ofmitogen2activated protein kinases (p382MAPKs, SAPKs/JNKs and ERKs) by adenosine in the perfused rat heart. FEBS Lett. 1998; 434 (3) : 305 - 8.
    7. Johnson GL, Lapadat R.Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:1911-1912.
    8. Gruenbaum LM, Schwartz R, Woska JR Jr, et al.Inhibition of pro-inflammatory cytokine production by the dual p38/JNK2 inhibitor BIRB796 correlates with the inhibition of p38 signaling. Biochem Pharmacol .2009;77:422-432.
    9. Boyle DL, Jones TL, Hammaker D, et al.Regulation of peripheral inflammation by spinal p38 MAP kinase in rats. PLoS Med. 2006;3:e338.
    10. Cui XY, Dai Y, Wang SL, et al.Differential activation of p38 and extracellular ignal-regulated kinase in spinal cord in a model of bee venom-induced inflammation and hyperalgesia. Mol Pain .2008;30;4-17.
    11. Terayama R, Omura S, Fujisawa N, et al.Activation of microglia and p38 mitogen-activated protein kinase in the dorsal column nucleus contributes to tactile allodynia following peripheral nerve injury. Neuroscience. 2008;153:1245-1255.
    12. Xu M, Bruchas MR, Ippolito DL, et al.Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by kappa opioid activation of p38 mitogen-activated protein kinase. J Neurosci .2007;27:2570-2581.
    13. Crown ED, Gwak YS, Ye Z, et al.Activation of p38 MAP kinase is involved in central neuropathic pain following spinal cord injury. Exp Neurol .2008;213:257-267.
    14. Lim EJ, Jeon HJ, Yang GY, et al.Intracisternal administration of mitogen-activated protein kinase inhibitors reduced mechanical allodynia following chronic constriction injury of infraorbital nerve in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:1322-1329.
    15. Almela P, García-Nogales P, Romero A, et al.Effects of chronic inflammation and morphine tolerance on the expression of phospho-ERK 1/2 and phospho-P38 in the injured tissue. Naunyn Schmiedebergs Arch Pharmacol. 2009;379:315-323.
    16. Dong H, Tian YK, Xiang HB, et al.The cellular location and significance of p38alpha/beta isoforms in the lumbar spinal cord of the bone cancer pain rats. Zhonghua Yi Xue Za Zhi. 2007;87:53-57.
    17. Svensson CI, Medicherla S, Malkmus S,et al.Role of p38 mitogen activated protein kinase in a model of osteosarcoma-induced pain. Pharmacol Biochem Behav. 2008; 90:664-675.
    18. Zwerina J,Hayer S,Redlich K,et al.Activation of p38 MAPK is a key step in tumor necrosis factor-mediated inflammatory bone destruction. Arthritis Rheum. 2006; 54:463-72.
    19. Schultz RM. Potential of p38 MAP kinase inhibitors in the treatment of cancer. Prog Drug Res .2003;60:59-92.
    20. Cottrell JA, Meyenhofer M, Medicherla S, et al.Analgesic effects of p38 kinase inhibitor treatment on bone fracture healing. Pain. 2009;142:116-126.
    21. Cuiju Tang,Shiying Yu,Min Zhang,et al..Effects of p38MAPK inhibitor on the rat pain behavior and proinflammatory cytokines in a metastatic bone cancer pain model.chinese-German Journal of Clinical Oncology .2008;7:154-158.
    22. Li Xu, Yuguang Huang, Xuerong Yu, et al.The Influence of p38 Mitogen-Activated Protein Kinase Inhibitor on Synthesis of Inflammatory Cytokine Tumor Necrosis Factor Alpha in Spinal Cord of Rats with Chronic Constriction Injury.Anesth. Analg. 2007;105: 1838-1844.
    23. Yao M, Yang JP, Wang LN,et al.Feasibility of establishment of rat model of bone cancer pain by using Walker 256 cells cultured in vitro or in vivo. Zhonghua Yi Xue Za Zhi. 2008;88:880-884.
    24. Cao L, Tanga FY, Deleo JA.The contributing role of CD14 in toll-like receptor 4 dependent neuropathic pain. Neuroscience. 2009; 158:896-903.
    25. Wadachi R, Hargreaves KM.Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J Dent Res. 2006;85:49-53.
    1. Jorgensen R. Altered gene expression in plants due to trans interactions between homologous genes.Trends Biotechnol. 1990;8(12):340-4.
    2. Cogoni C ,Macino G. Post - transcriptional gene silencing across kingdoms[J ] . Genes Dev.2000;10∶6 38-643.
    3. Guru T. A silence that speaks volumes[J ] . Nature.2000;404∶8 04-808.
    4. Hammond SM , Caudy AA , Hannon GJ . Post - transcriptional gene silencing by double - stranded RNA[J ] . Nature Rev Gen.2001;2∶1 10-119.
    5. Napoli C , Lemieux C ,Jorgensen R. Introduction of a chalcone synthase gene into Petunia results in reversible co - suppression of homologous genes in trans[J ] . Plant Cell.1990;2∶2 79-289.
    6. Jorgensen RA , Cluster PD , English J , et al. Chalcone synthase cosuppression phenotypes in petunia flowers : comparison of sense vs , antisense constructs andsingle- copy vs , complex T - DNA sequences[J ] . Plant Mol Biol .1996;31∶9 57-973.
    7. Cogoni C , Romano N , Macino G. Suppression of gene expression by homologus transgenes [J ] . Antonie Van Leeuwenhoek.1994 ;65(3) :205 - 209.
    8. Guo S,Kemphues KJ.Par-1,a gene required for establinshing polarity in c.elegans embryos,encodes a putative ser/Thr kinase that is asymmetrically distributede. Cell. 1995;81:611.
    9. Fire A ,Xu S ,Montgomery MK, et al . Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans[J ] . Nature.1998;391 (6669): 806-811.
    10. Timmons L,Fire A. Specific interference by ingested dsRNA[J] . Nature. 1998; 395∶854.
    11. Timmons L , Court D , Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans [J].Gene.2001; 263(1-2)∶1 03-112.
    12. Hunter CP. Shrinking the black box of RNAi[J ] . Current Biology.2000;10∶1 37-140.
    13. Sharp PA. RNA interference - 2001[J ] . Genes Dev.2001 ;15∶485-490.
    14. Tabara H,Sarkissing M,Kelly WG,et al.The rde-1 gene,RNA interference and transposon silencing in c.elegans.Cell.1999;99:123
    15. Bernstein E ,Hammond SM,Hannon GJ . Role for a bidentate ribonucle-ase in the initiation step of RNA interference [J ] . Nature.2001;409(6818) :363-366.
    16. Hammond SM,Bernstein E,Beach D,et al.An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells.Nature.2000;404:293.
    17. Parrish S,Fleenor J,Xu s,et al.Functiongal anatomy of a dsRNA trigger:differential requirement for the two trigger strands in RNA interfeience[J].Mol Cell.2000; 6(5): 1077-1087
    18. Lipardi C ,Wei Q , Paterson BM. RNAi as random degradative PCR.siRNA primers convert mRNA into dsRNAs tha taredegraded to gener-ate new siRNAs[J]. Cell. 2001; 107 (3) :297-307.
    19. Rao JN ,Li L ,Bass BL , et al . Expression of the TGF-beta receptor geneand sensitivity to growth inhibition following polyamine depletion [J].AmJ Physiol Cell Physiol. 2000;279 (4) :C1034-1044.
    20. Couzin J , Breakthrough of the year : Small RNAs make bigsplash. Science.2002;298 : 2296-2297.
    21. Pasquinelli AE,Reinhart BJ,Slack FL,et al.Conservation fo the sequence and temporal expression of let-7 heterochronic regulatory RNA.Nature.2000;408:86.
    22. Sijen T ,Fleenor J ,Fire A , et al . On the role of RNA amplification indsRNA-triggered gene silencing[J ] . Cell.2001;107 (4) :465-476.
    23. Lim LP,Glasner ME,Yekta S,et al.Vertebrate microRNA genes. Science. 2003; 299 (5612):1540
    24. J elt sch A. Beyond Wat son and Crick : DNA met hylation and molecular enzymology of DNA met hylt ransferases. Chembiochem.2002;3 (4) : 274-293.
    25. Cheng X , Robert s RJ . AdoMet-dependent methylation , DNA methyltransferases and base flipping. Nucleic Acids Res. 2001; 29(18) : 3784-3795.
    26. Mette MF, Aufsatz W, van der Winden J, et al.Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 2000;19(19):5194-201.
    27. Jones L , Ratcliff F , Baulcombe D C. RNA- directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met for maintenance [J ] . Curr Biol. 2001;11 (10) :747-757
    28. Elbashir SM,Harborth J , Lendeckel W, et al . Duplex of 21- 23 nucleotide RNAs mediate RNAinterferenc in cultured mammalian cells[J]. Nature. 2001;411(6836) :494 - 498.
    29. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditiselegans [J] .Science.2001 ;294(5543) :862-864.
    30. Lee RC , Feinbaum RL , Ambros V. The C. elegans heterochronic genelin-4 encodes small RNAs with antisense complementarity to lin-14 [J ] .Cell. 1993;75(5) :843-854.
    31. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates-developmental timing in Caenorhabditis elegans [J]. Nature.2000;403 (6772):901-906.
    32. Xu P , Vernooy SY, Guo M, et al . The Drosophila microRNA mir - 14suppresses cell death and is required for normal fat metabolism[J ] . CurrBiol .2003;13(9) :790-795.
    33. Hutvágne G and Zamore PD , RNAi : nature abhors a double -strand. Current Opinion in Genetics & Development . 2002;12 :225-232.
    34. Carmell MA , Xuan Z , Zhang MQ , et al.The Argonaute famil that reach into RNAi , developmental control , stem cell maintenance , and tumorigenesis. Genes Dev. 2002;16 : 2733-2742.
    35. Hutvágner G, McLachlan J , Pasquinelli AE , et al.A cellular function for the RNA– interference enzyme Dicer in the maturation of the let - 7 small temporal RNA. Science. 2001;293 : 834-838.
    36. Myers JW, Jones J T , Meyer T , et al.Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat . biotechnol.2003;21 : 324-328.
    37. Zamore , P. D. Ancient pathways programmed by small RNAs. Science . 2002;296 : 1265-1269.
    38. Reinhart BJ and Bartel DP. Small RNAs correspond to centromeric heterochromatin repeats. Science.2002;297 :1831.
    39. Lim L P , Lau NC , Weinstein EG,et al.The microRNAs of Caenorhabditis elegans . Genes Dev. 2003;17 : 991-100.
    40. Pasquinelli AE , Reinhart BJ , Slack F , et al.Conservation of the sequence and temporal expression of let - 7 heterochronic regulatory RNA. Nature.2000;408 : 86-89.
    41. Bartel B , Bartel DP , MicroRNAs : At the root of plant development ? Plant Physiology. 2003;132 :709-717.
    42. Doench J G, Petersen CP , Sharp PA , SiRNAs can function as miRNAs. Genes Dev. 2003;17 : 438-442.
    43. Kasschau KD, Carrington JC, A counterdefensive strategy of plantviruses: suppression of posttranscriptional gene silencing ,Cell.1998;95 , 461- 470.
    44. Wassenegger M,Heimes S,Riedel L , et al . RNA-directed de novo methylation ofgenomic sequences in plants [ J ] . Cell.1994;76 :567-576.
    45. Gregory J . Hannon ,RNA interference [J]. Nature.2002;418 :244-251.
    46. Wassenegger M,Heimes S,Riedel L , et al . RNA-directed de novo methylation of genomic sequences in plants [ J ] . Cell.1994;76 :567-576.
    47. Chuang CF and Meyerowitz EM ,Specific and heritable genetic interference by double - stranded RNA in A rabi dopsis thaliana. Proc. Natl. Acad. Sci. U S A .2000;97 : 4985-4990.
    48. Chi J T , Chang H Y, Wang N N , et al. Genomewide view of gene silencing by small interfering RNAs ,PINAS.2003;100(19):10623-8.
    49. Hunter CP , Shrinking the black box of RNAi. Current Biology.2000;10 :R137-R140.
    50. Wesley SV , Helliwell CA , Smith NA , et al.Construct design for efficient , effective and high– throughput gene silencing in plants. Plant J .2001;27 : 581-590.
    51. Bass BL. RNA interference. The short answer [J] . Nature .2001;411(6836) :428 - 429.
    52. Bertrand JR,Pottire M,Vekris A et al.Comparison fo antisense oligonucleotides and siRNAs in cell culture and in vivo.Bioche m Biophys Res Commun. 2002;296(4): 1000-1004.
    53. Vickers TA, Koo S, Bennett CF,et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem.2003;278(9):7108-7118.
    54. Elbashir SM,Martinez J,Patkaniowska A,et al.Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryolysate.E MBOJ. 2001; 20(23):6877-6888.
    55. Ganju P. and Hall J. Potential applications of siRNA for pain therapy. Exp. Opin. Biol. Ther.2004;4:531–542.
    56. Kennedy S., Wang D. and Ruvkun G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature.2004;427: 645–649.
    57. Krichevsky A. M. and Kosik K. S. RNAi functions in cultured mammalian neurons. Proc. Natl Acad. Sci. USA.2002;99:11926–11929.
    58. Trülzsch B. and Wood M. Applications of nucleic acid technology in the CNS. J. Neurochem.2004; 88: 257–265.
    59. Luo MC, Zhang DQ., Ma SW. et al. An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol. Pain.2005; 1: 29.
    60. Korneev S,O`Shea M. Evolution of nitric oxide synthase regulatory genes by DNA inversion.Mol Biol Evol.2002;19(8):1228-1233.
    61. Maja Hemmings-Mieszczak M,Dorn G,Natt FJ,et al. Independent combinatorial effect of antisense oligonucleotides and RNAi-mediated specific inhibition of the recombinant rat P2X3 receptor.Nucleic Acids Res.2003;31(8):2117-2126.
    62. Cortright D. N. and Szallasi A. Biochemical pharmacology of the vanilloid receptor TRPV1. Eur. J. Biochem. 2004;271:1814–1819.
    63. Tominaga M. and Tominaga T. Structure and function of TRPV1. Pflugers Arch. 2005;451:143–150.
    64. Grünweller A., Wyszko E., Bieber B., et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2'-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res.2003;31: 3185– 3193.
    65. Christoph T,Grunweller A,Mika J,Schafer MK,et al. Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo.Bilchem Biophys Res Commun.2006;350(1):238-43.
    66. Kim S., Kang C., Shin C. Y. et al. TRPV1 recapitulates native capsaicin receptor in sensory neurons in association with Fas-associated factor 1. J. Neurosci.2006;26: 2403–2412.
    67. Zhang X., Huang J. and McNaughton P. A. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 2005;24:4211–4223.
    68. Hescheler J., Rosenthal W., Trautwein W, et al. The GTP-binding protein, Go, regulates neuronal calcium channels. Nature. 1987;325:445–447.
    69. Lang J., Nishimoto I., Okamoto T., Regazzi R.,et al. Direct control of exocytosis byreceptor-mediated activation of the heterotrimeric GTPases Gi and Go or by the expression of their active G alpha subunits. EMBO J. 1995;14: 3635–3644.
    70. Zhang W. B., Zhang Z., Ni Y. X.et al. A novel function of Goalpha: mediation of extracellular signal-regulated kinase activation by opioid receptors in neural cells. J. Neurochem.2003;86: 1213–1222.
    71. Isacson R., Kull B., Salmi P,et al.Lack of efficacy of 'naked' small interfering RNA applied directly to rat brain. Acta Physiol. Scand. 2003;179: 173–177.
    72. Thakker D. R., Natt F., Hüsken D., Maier R.et al. Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc. Natl Acad. Sci. USA. 2004;101: 17270–17275.
    73. Zhang Y. F., Boado R. J. Pardridge W. M. In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. J. Gene Med. 2003;5: 1039–1045.
    74. Pardridge W. M. Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin. Biol. Ther.2004;4: 1103–1113.
    75. Schwiebert EM, Kishore BK. Extracellular nucleotide signaling alongthe renalep ithelium [ J ]. Am J Physiol Renal Physiol. 2001; 280(6) : 945-963.
    76. Burnstock G.P2X3 receptors in sensory neurons.Br J Anaesth.2000;84:476-488.
    77. Evans RJ,Derkach V,Surprenant.A ATP mediates fast synaptic transmission in mammalian neurons[J].Nature.1992;359(4):503-505.
    78. Burnstock,G. P2X receptors in sensory neurones. Br. J. Anaesth.2000;84, 476–488.
    79. Lewis C., Neidhart S., Holy C., North R. A., BuCoexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature.1995;377: 432–435.
    80. Jarvis M. F., Burgard E. C., McGaraughty S. et al. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc. Natl Acad. Sci. USA.2002; 99:17179–17184.
    81. McGaraughty S., Wismer C. T., Zhu C. Z et al. Effects of A-317491, a novel andselective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br. J. Pharmacol.2003;140: 1381–1388.
    82. Dorn G,Patel S,Wotherspoon G,et al. siRNA relieves chronic neuropathic pain.Nucleic Acids Res.2004;16;32(5):e49.
    83. Gillen C. and Maul C. New pharmacological strategies for pain relief. Expert Rev. Neurotherapeutics .2002,2: 89–101.
    84. Tan P.-H., Yang L.-C., Shih H.-C., Lan K.-C. and Cheng J.-T. Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther.2005;12:59–66.
    85. Stone L. S. and Vulchanova L. The pain of antisense: in vivo application of antisense oligonucleotides for functional genomics in pain and analgesia. Advanced Drug Dev. Rev. 2003;55:1081–1112.
    86. Kurreck J. Antisense and RNA interference approaches to target validation in pain research. Cur. Opinion Drug Discov. Dev. 2004;7:179–187.
    87. Lai J., Gold M. S., Kim C.-S.et al.Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain. 2002;95:143–152.
    88. Mikami M,Yang J. Short hairpin RNA-mediated selective knockdown of NaV1.8 tetrodotoxin-resistant voltage-gated sodium channel in dorsal root ganglion neurons. Anesthesiology.2005 ;103(4):828-36.
    89. Guo W., Robbins M. T., Wei F.,et al.Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation. J. Neurosci. 2006;26: 126–137.
    90. Scholz. J. and Woolf C. J. Can we conquer pain? Nat. Neurosci.2002;5:1062–1067.
    91. Garber K. Peptide leads new class of chronic pain drugs. Nat. Biotechnol. 2005; 23:399.
    92. Rice A. S. C. and Hill R. G. New treatments for neuropathic pain. Annu. Rev. Med.2006;57: 535–551.
    93. Kurreck J. Antisense and RNA interference approaches to target validation in pain research.Curr Opin Drug Discov Devel.2004;7(2):179-87.
    94. Ganjup,Hall J. Potential applications of siRNA for pain therapy. Expert Opin Biol Ther.2004;4(4):531-42.
    95. Thomas R?hl and Jens Kurreck。RNA interference in pain research ,Journal of Neurochemistry.2006;99(2):371-6.
    96. Sah DW. Therapeutic potential of RNA interference for neurological disorders.Life Sci.2006;79(19):1773-80.
    97. Kurreck J.Expediting target identification and validation through RNAi. Expert Opin Biol Ther.2004;4(3):427-9.
    98. Rohl T,Kurreck J.RNA interference in pain research. J Neurochem.2006;99(2):371-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700