用户名: 密码: 验证码:
大鼠牙髓干细胞与骨髓间充质干细胞分化成骨样细胞能力对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的提取大鼠牙髓干细胞(Dental Pulp Stem Cells,DPSCs)与骨髓间充质干细胞(Bone Marrow Mesenchymal Stem Cells, BMSCs),传代培养观察二者形态学,以及其生长差异。免疫荧光染色观察大鼠牙髓干细胞标志物表达。通过矿化诱导,观察大鼠牙髓干细胞与骨髓间充质干细胞向成骨样细胞分化能力,并通过免疫荧光对其进行表面成骨标志物检测,观察其钙化结节形成能力,对比讨论大鼠牙髓干细胞的成骨样细胞分化能力与特点。
     方法通过离心法获得大鼠骨髓细胞,全骨髓体外贴壁培养扩增,并通过倒置显微镜观察其形态;通过酶消化法处理大鼠牙髓组织获得牙髓干细胞,体外培养扩增,通过倒置显微镜观察形态。通过流式细胞仪检测所获得细胞表面CD45,CD90分子表达;通过免疫荧光染色检测细胞表面STRO-1表达;MTT法分别测得大鼠骨髓间充质干细胞与牙髓干细胞的生长曲线,对照分析,比较二者在生长扩增上的差异;分别对大鼠牙髓干细胞与骨髓间充质干细胞进行矿化诱导培养,2周后对其进行骨钙素(OCN),牙本质泌涎蛋白(DSP)免疫荧光染色;继续培养四周,对经诱导的大鼠牙髓干细胞进行茜素红染色观察钙结节形成情况。
     结果通过离心法获得的大鼠骨髓细胞经过贴壁培养,换液逐渐将造血系细胞清除,得到相对纯度较高的骨髓间充质干细胞贴壁生长;通过酶消化法获得的大鼠牙髓干细胞第二天可完全贴壁生长;所获得的细胞经流式细胞仪检测CD45表达阴性,CD90表达阳性,符合间充质干细胞特性;免疫荧光染色STRO-1表达阳性,符合干细胞表达特性;MTT法绘制生长曲线可见大鼠牙髓干细胞与骨髓间充质干细胞第4天左右进入生长对数期,牙髓干细胞生长增殖速度快于骨髓间充质干细胞;经过矿化诱导2周后骨髓间充质干细胞与牙髓细胞表达成骨细胞表面标志物OCN阳性,牙髓干细胞表达牙本质细胞标志物DSP阳性;经4周矿化诱导培养,大鼠牙髓干细胞茜素红染色证实有矿化结节生成。
     结论通过离心获得的骨髓细胞经全骨髓贴壁培养可随着贴壁换液的进行逐渐将造血系细胞清除获得纯度较高的骨髓间充质干细胞,其表面标志物检测证实纯度可达80%以上;酶消化法获得的大鼠牙髓干细胞表面标志物表达符合间充质干细胞特点,且生长扩增能力强;通过矿化诱导培养,牙髓干细胞可向成骨样细胞分化,能力与骨髓间充质干细胞相当,并可形成矿化结节。牙髓干细胞具有较强的增殖能力,并具有成骨样细胞分化能力,可以作为干细胞治疗骨组织缺损修复的理想种子细胞。
Comparative study on the capacity of rat dental pulp stem cells and bone marrow mesenchymal stem cells in differentiating to osteoblast-like cells
     Objective research on extraction of rat dental pulp stem cells (DPSCs) and bone marrow mesenchymal stem cells (BMSCs). To take observation of the differences in their morphology and growth curve. Staining to distinguish the stem cell's marker expression.Inducing DPSCs and BMSCs in differentiating to osteoblast-like cells. Taking observation of the expression of markers on osteoblast after inducing and the ability of bone-formation. Taking discussion of characteristics of rat dental pulp stem cells on differentiating to osteoblast-like cells.
     Methods Rat bone marrow mesenchymal stem cells were obtained by centrifugation, the whole one marrow was cultivated in DMEM medium, taking morphologic observation by inverted microscope. Dental pulp stem cells were obtained by enzymatic digestion, takeing morphologic observation after proliferation in vitro. Scaning CD45 and CD90 expression on cells by flow cytometry (FCM), detecting the expression of STRO-1 by immunofluorescence growth curves of BMSCs and DPSCs were measured by MTT, taking comparison of cell growth. Both of DPSCs and BMSCs were induced to osteoblast-like cells The expression of OCN and DSP on cells were detected by immunofluorescence after 2-weeks-induction. calcific nodules which were secreted by DPSCs were stained by alizarin red after 4-weeks-induction
     Results BMSCs obtained by centrifugation was purified after adhered cultivation, hematopoietic cells were removed gradually. DPSCs obtained by enzymatic digestion can be completely adherent in the second day and proliferated vigorously. Cells exhibited a negative expression of CD45 and a positive expression of CD90 which consisted with the characteristics of mesenchymal stem cells. The positive STRO-1 expression in inmmunofluorescence fitted with stem cells'feature. Growth curve shows that both DPSCs and BMSCs went into logarithmic phase in the fourth day. DPSCs had a higher proliferation than BMSCs. After 2-weeks-induction, both DPSCs and BMSCs express a positive OCN molecule, and the DSP expression was positive on DPSCs. The formation of calcific nodules could be proved by alizarin red staining at the bottle of DPSCs medium after 4-weeks-induction.
     Conclusions BMSCs obtained by centrifugation could be purified by the whole bone marrow cells adhered cultivation, hematopoietic cells were removed by medium changes. The purity of BMSCs which was detected by FCM could be higher than 80% in P2. DPSCs obtained by enzymatic digestion consisted with the characteristics of mesenchymal stem cells and perform a higher proliferation ability. After mineralized induction, DPSCs differentiate into osteoblast-like cells just like BMSCs in the molecule expression, there were also calcific nodules at the bottle of DPSCs'medium. It means that both the proliferation ability and differentiation ability into osteoblast-like cells of DPSCs were brilliant, which offers a ideal cells for repairation of bone defect.
引文
1. Fiona M. Watt, Brigid L. M. Hogan. Science,2000,287(5457):1427-1430
    2. Martin K, Zeev E. Adult Stem Cells for Tissue Repair-A New Therapeutic Concept[J].N Engl J Med,2003,349(6):570.
    3.Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cell(DPSC) in vitro and in vivo [J].Proc Nail Acad Sci USA,2000,97(25):13625-13630.
    4. Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells[J]. J Dent Res,2002,81 (8):531-535.
    5.Shi S, Gronthos S. Perivascular niche for postnatal mesenchymal stem cells in human bone marrow and dental pulp[J]. Bone Miner Res,2003,18:696-704.
    6. Garcia-Pacheco JM, Carmen Oliver, Kimatrai M, et al. Human decidual stromal cells express CD34 and STRO-1 are related to bone marrow stromal precursors Mol. Hum. Reprod. (2001)7 (12):1151-1157.
    7. Shi S, Robey P G, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis[J]. Bone,2001,29(6):532-539.
    8.Byoung-Moo Seo, Masako Miura, Stan Gronthos, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet.2004;364(9429):149-155.
    9.Liu Y, Zheng Y, Ding G,et al.Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine[J]. Stem cells.2008,26(4):1065-1073
    10.Sonoyama W, Liu Y, Yamaza T, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth:A pilot study [J]. J Endod,2008,34(2):166-171.
    11. Sonoyama W, Liu Y, Fang D, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine [J]. PLoS One 2006,1:79
    12. Miura M, Gronthos S, Zhao M, et al. Stem cell from human exfoliated deciduous teeth. Proc Natl Acad Sci USA.2003:100(10):5807-5812.
    13. MacDougall M.,Simmons D., Luan X.. et al. Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4:Dentin phosphoprotein DNA sequence determination[J]. J. Biol Chem.1997,272:835-842.
    14.Chunlin Q., Brunn JC., Elizabeth C. et al. Dentin sialoprotein in bone and dentin sialophosphoprotein gene expressed by osteoblasts[J]. Connective Tissue Res,2003,44(Suppl.1):179-183.
    15. George A., Sabsay B.,Simonian P. et al. Characterization of a noval detin matrix acidic phosphoprotein. Implications for induction of biomineralization[J]. J Biol Chem,1993,268:12624-12630.
    16. Macdougall M., Gu TT., Luan XH. et al. Identification of a novel isoform of mouse detin matrix protein 1:spatial expression in mineralized tissues[J]. J Bone Miner Res,1998,13(3):422-431.
    17. Bleicher F, Couble ML, Farges JC, et al. Sequential ex-expression of matrix protein genes in developing rat teeth [J]. Matrix Biol,1999,18(2):133-143.
    18. Honda MJ, Ohara T, Sumita Y, et al. Preliminary study of tissue-engineered odontogenesis in the canine jaw[J]. J Oral Maxillofac Surg,2006,64(2):283-289.
    19. George F. Muschler, Chizu Nakamoto, Linda G. Griffith. Engineering principles of clinical cell-based tissue engineering[J]. J Bone Joint Surg Am. 2004,86:1541-1558.
    20. AJ Friedenstein, KV Petrakova, AL Kurolesova, et al. Heterotopic transplants of bone marrow[J]. Transplantation,1968,6(2):230-247.
    21.MF Pittenger, AM Mackay, SC Beck, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284(5411):143-147.
    22.Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics self-renewal and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation[J]. J Cell Biochem,1997,64(2):278-294.
    23. Mauro K, Sarah G, Julian D, et al. Bone marrow mesenchymal stem cells inhibit of naive and memory antigen-specific T cells to their cogenate peptide[J]. Blood,2003,101:3722-3729.
    24. Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. [J]. J Orthop Res,1998,16(2):155-162.
    25. Arinzeh TL, Susan J. Peter, Michael P, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. [J]. J Bone Joint Surg(AM),2003,85:1927-1935.
    26.袁进国,周志玲,刘英飞,等.自体骨髓干细胞移植治疗骨小连及骨缺损[J].山东医药,2007,47(3):41-43.
    27. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implication for cell-based therapies[J]. Tissue Eng, 2001,7(2):211-227.
    28. Rodbell M. Metabolism of isolated fat cells. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism[J]. J Biol Chem,1966,241(1):130-139.
    29. Brian M Strem, Kevin C Hicok, Min Zhu, et al. Multipotential differentiation of adipose tissue-derived stem cells[J]. Keio J Med,2005,54(3):132-141.
    30. Zuk PA, Zhu M, Ashjian P, et al.Human adipose tissue is a source of multipotent stem cells[J].Mol Biol Cell,2002,13:4279-4295.
    31.Halvorsen YD, Franklin D, Bond AL, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells[J]. Tissue Eng,2001,7:729-741.
    32.Lee JA, Parrett BM, Cone jero JA, et al. Engineering bone and fat from fat-derived stem cells. [J] Ann Plast Surg,2004,59:610-617.
    33. Cowan CM, Shi YY, Aalami OO, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects[J] Nat Biotechnol,2004,22:560-567.
    34. Lendeckel S, Jodicke A, Christophis P, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects:case report[J] J Craniomaxillofac Surg,2004,32:370-373.
    35. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, et al. Mesenchymal precursor cells in the blood of normal individuals[J]. Arthritis Res,2000,2(6):477-477.
    36. Fukuchi Y, Nakajima H, Sugiyama D, et al. Human placenta-derived cells have mesenchymal stem/progenitor cell potential[J]. Stem cells,2004,22(5):649-658
    37. Inoda H, Yamamoto G, Hattori T. rh-BMP2-induced ectopic bone for grafting critical size defects:a preliminary histological evaluation in rat calvariae[J]. Int J Oral Maxillofac Surg,2007,36(1):39-44.
    38. Chung IH, Choung PH, Ryu HJ, et al. Regulating the role of bone morphogenetic protein 4 in tooth bioengineering[J], J Oral Maxillofac Surg2007,65(3):501-507.
    39. U. Mayr-Wohlfart, J. Waltenberger,H. Hausser, et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. [J]Bone,2002,30(3):472-477.
    40. Samantha L, Salkeld, Laura P.P. et al. The effect of osteogenic protein-1 on the healing of segmental bone defects treated with autograft or allograft bone. [J], J Bone Joint Surg(AM)2001,83:803-816.
    41.丁真奇,石玲玲,康两期,等,异种脱蛋白骨管移植修复大段骨缺损的力学评估[J]临床骨科杂志,2010,13(2)200-203.
    42.王大平,韩云,朱伟民,等.不同孔径纳米羟基磷灰石人工骨修复兔挠骨缺损效果比较[J].中国组织工程研究与临床康复,2007,11(48):9641-9645.
    43. Ren T, Ren J, Jia X, et al. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. J Biomed Mater Res A.2005,74(4):562-569.
    44.谢利娜,潘巨利,陈仁吉,等.新型骨支架材料复合物修复兔下颌骨缺损的实验研究[J].中华口腔医学研究杂志,2009,3(4):14-17.
    45. Mu H, Yzaici H, Ergun C, et al. An in vitro evaluation of the Ca/Pratio for the cytocompatibitity of nano-to-micron particulate calcium phosphates for bone regeneration[J]. Biomateria,2008,4:1472-1479.
    46.张胜利,邓展生.大鼠脂肪干细胞复合纳米羟基磷灰石/胶原/L-聚乳酸体内成骨的研究[J]重庆医学,2010,39(12):1533-1535.
    47. Yuyama ET, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous tranplantation of bone marrow cells, a pilot study and randomized controlled trial[J]. Lancet,2002,360(9331):427-435.
    48.杨志明,樊征夫,解慧琪,等.组织工程化人工骨血管化研究[J].中华显微外壳杂志,2002,25(2):119-122.
    49.曾宪利,裴国献,金丹,等.血管化组织工程骨修复猕猴胫骨缺损模型的建立及初步观察[J].中华创伤骨科杂志,2005,7(4):353-357.
    50. Puckett CL, Hurvitz JS, Metzler MH, et al. Bone formation by revascularized periosteal and bone grafts, compared with traditional bone grafts. [J].Plast Reconstr Surg,1979,64(3):361-365.
    51.K. L. Gerlach, In-vivo and clinical evaluations of poly(L-lactide)plates and screw for use in maxillofacial traumatology[J], Clinical Materials,1993,13(1-4):21-28.
    52. Mattsson P, Alberts A, Dahlberg G, et al. Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures. A prospective, randomised multicentre study[J],J Bone Joint Surg(br),2005,87:1203-1209.
    53.朱伟民,王大平,盂志斌,等.纳米羟基磷灰石大工骨修复骨缺损的实验研究[J].中国临床解剖学杂志,2006,24(6):670-673.
    54. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells[J]. Exp Biol Med.2001;226(6):507-520.
    55.Hristov M, Erl W, Weber PC. Endothelial progenitor cells isolation and characterization[J]. Trends Cardiovasc Med,2003;13:201-206.
    56. Burke ZD, Thowfeequ S, Peran M, et al, Stem cells in the adult pancreas and liver[J]. Biochem J,2007,404(2):169-178.
    57.董燕湘,董晓先,何慧华,等.大鼠骨髓间充质干细胞用中药绞股蓝诱导为神经细胞的研究[J].中华神经科杂志,2003,36(5):355-357.
    58. Kadiyal S, Young RG, Thiede Ma, et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo ande in vitro[J]. Cell Transplant,1997,6(2):125-134.
    59. C. S. Young, S. Terada, J. P. Vacanti, et al. Tissue Engineering of complex tooth structures on biodegradable polymer scaffolds[J]. J Dent Res,2002,81(10):695-700.
    60. Ohshima H, Nakasone N, Hashinoto E, et al. The eternal tooth germ is formed at the apical end of continuously growing tccth[J]. Arch Oral Biol,2005, 50(2):153-157.
    61.解芳,滕利,蔡磊,等.犬骨髓间充质干细胞分离纯化和成骨诱导分化:Ficoll液密度梯度离心法体外分离的可行性[J],中国组织工程研究与临床康复,2010:14(6):951-956
    62.徐鹏,舒畅,赵子义,等.免疫磁珠法分离纯化骨髓间充质干细胞及向神经细胞定 向分化[J].中国组织工程研究与临床康复,2007,11(20):3872-3875.
    63.杨丽,张荣华,谢厚杰,等.建立大鼠骨髓间充质干细胞稳定分离培养体系与鉴定[J],中国组织工程研究与临床康复,2009,13(6):1064-1068.
    64.蔡鹏,朱绍兴,苏一鸣,等.全骨髓贴壁法分离培养大鼠骨髓间充质干细胞及其诱导分化[J],中国组织工程研究与临床修复,2009,13(36):7073-7077.
    65.林楚伟,周胜华,杜优优.全骨髓贴壁并差速传代分离纯化大鼠骨髓间充质于细胞:与密度梯度离心法的比较[J],中国组织工程研究与临床康复,2010,14(14):2508-2512.
    66.李嘉言,车绪春,张锡宝.流式细胞仪在医学研究与检验工作中的应用[J].广东医学,2004,25(1):96-98.
    67.雷港,闫明,俞艳,等.大鼠冠根部牙髓体内成牙能力比较[J].口腔生物医学,2010;1(2):68-70.
    68. Gronthos S, Graves S. E, Ohta S, et al. The STRO-1 fraction of adult human bone marrow contains the osteogenic precursors[J]. Blood,1994,84(12):4164-4173.
    69. JM. Sargent. The use of the MTT assay to study drug resistancy in fresh tumour samples[J]. Resent Results Cancer Res,2003,161:13-25.
    70.李恩,薛延,王洪复,等.骨质疏松鉴别诊断与治疗[M].北京:人民卫生出版社,2005:10-34.
    71. Helena H. Ritchie, Gerald J. Pinero, Hui Hou, et al. Molecular analysis of rat dentin sialoprotein. [J],Connective Tissue Res.1995,33(1-3):73-79.
    72. Venkatachalapathy P, Craig SR. Factors contributing to non-union of fractures[J]. Current Orthopaedics,2007,21(4):258-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700