用户名: 密码: 验证码:
载基因仿生基质材料调控骨髓基质干细胞成骨定向分化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分兔骨髓基质干细胞的获取及生物学鉴定
     目的体外获取兔骨髓基质干细胞为骨组织工程研究提供种子细胞。
     方法取4周龄新西兰大白兔骨髓,密度梯度离心法获取BMSC,通过倒置相差显微镜、BrdU标记染色观察其形态学特征和生长状况,流式细胞仪分析其表面标志物抗原表达情况。
     结果分离培养的细胞在第10~12代以前生长性状稳定,增殖能力强。70%以上的BMSC细胞核被BrdU标记。流式细胞仪检测显示兔BMSC表面抗原CD44阳性细胞百分率为93.85%,CD90阳性细胞百分率为75.28%,CD34阳性细胞百分率为2.98%,CD45阳性细胞百分率为1.70%,CD11b阳性细胞百分率为0.45%,Lamine阳性细胞百分率为0.24%。
     结论分离培养的细胞成分较为单一,具有干细胞特性,适用于骨组织工程学研究。
     第二部分双功能多肽(K)16GRGDSPC的设计、合成及介导细胞特异性粘附
     目的制备双功能多肽(K)16GRGDSPC并评价其能否介导BMSC特异性粘附。
     方法设计RGD肽(K)16GRGDSPC。固相合成法合成(K)16GRGDSPC,用质谱仪和高压液相色谱仪鉴定。通过细胞粘附和粘附竞争性抑制实验评价(K)16GRGDSPC介导细胞粘附的可行性和特异性。
     结果质谱仪显示合成肽的平均分子量为2741.54 m/z,与理论计算分子量一致。高压液相色谱仪显示合成肽的纯度为99.2796%,完全满足实验要求。RGD肽GRGDSPC、(K)16GRGDSPC及BSA、(K)16均能促进BMSC粘附,以(K)16GRGDSPC作用最为显著;非RGD肽GRGESPC对BMSC粘附无促进作用。仅GRGDSPC、(K)16GRGDSPC可显著抑制BMSC在(K)16GRGDSPC预处理培养板的粘附,而非RGD肽GRGESPC无明显影响,BSA、(K)16甚至进一步促进BMSC在(K)16GRGDSPC预处理培养板的粘附。
     结论(K)16GRGDSPC易于合成,可以通过RGD结构域介导BMSCs特异性粘附。
     第三部分多肽(K)16GRGDSPC介导基因转染及影响因素
     目的评价多肽(K)16GRGDSPC作为一种非病毒载体介导基因转染的可行性及其介导基因转染的靶向特异性;探讨优化(K)16GRGDSPC介导基因转染的各种影响因素。方法用(K)16GRGDSPC介导报告基因虫荧光素酶质粒和绿色荧光蛋白质粒转染
     BMSC,通过液闪计数仪和荧光显微镜观察基因表达。流式细胞仪检测基因转染效率,并与商业化脂质体Lipofetamine 2000的转染效率进行比较。通过转染竞争性抑制实验检测(K)16GRGDSPC介导基因转染的靶向特异性。在保持其它因素一致的条件下,通过变化单一因子来评估其影响并优化该参数。
     结果虫荧光素酶pGL3质粒和EGFP质粒均能在BMSC内表达。FCM显示(K)16GRGDSPC的转染效率为19.47%,与Lipofectamine 2000的转染效率19.98%无显著性差异(P>0.05)。加入含RGD肽GRGDSPC和(K)16GRGDSPC使虫荧光素酶的表达活性明显下降;而非RGD肽GRGESPC对转染无明显影响。在(K)16GRGDSPC介导基因转染的过程中,氯喹和PEI均可以改善其基因转染效率。尤其是氯喹,对多肽载体介导基因转染起着不可或缺的作用,BMSCs在氯喹溶液中的暴露时间至少应维持在8h以上;在载体/质粒复合物中暴露时间过短(<4h)或过长(>24h)对转染都有不利影响;质粒浓度在2~4μg时转染效果最佳;载体/质粒质量比为3:1时有最高的转染效率;血清对质粒/载体复合物与细胞的结合有明显抑制作用;膜融合肽P20对基因转染效率也有促进作用,但仅约为氯喹的75%;脂质体Lipofectamine和多肽对基因转染有明显的协同作用;加入转铁蛋白也能显著提高基因的转染和表达,且在25μg/ml时转染效率达到最高。
     结论多肽(K)16GRGDSPC不仅可以作为一种RGD肽介导细胞特异性粘附,还可以作为一种非病毒载体介导靶向特异性基因转染并获得理想的转染效率。优化转染条件可提供改善多肽载体转染效率的多种策略,为多肽载体在基因转染领域的开发应用和本实验下一步进行基质材料表面基因修饰研究奠定了理论基础。
     第四部分载基因仿生基质材料的制备及介导基因转染
     目的制备载基因仿生基质材料并检测其能否介导外源基因转染。
     方法通过交连剂Sulfo-LC-SPDP将非病毒载体(K)16GRGDSPC共价接枝到骨基质材料PLGA-[ASP-PEG]支架材料上构建非病毒基因转染体系,XPS图谱检测接枝反应的发生。将BMSC与其复合培养,扫描电镜观察细胞生长情况,通过沉淀法、微管吮吸法检测细胞粘附性能的变化。激光共聚焦显微镜下观察细胞骨架主要成分肌动蛋白(F-actin)的形态。该非病毒基因转染体系与TGF-β1基因复合制备载基因仿生基质材料,将兔BMSC与其复合培养,通过RT-PCR、Western Blot、ELISA及免疫组化染色检测TGF-β1基因的表达。
     结果XPS图谱证实含RGD肽(K)16GRGDSPC被成功地接枝到PLGA- [ASP-PEG]表面。细胞粘附性能和粘附强度显著改善。RT-PCR、Western Blot、ELISA以及免疫组化检测均显示TGF-β1基因在BMSC内表达。
     结论这种载基因基质材料作为一种基因活化基质,可以作为一种非病毒载体介导外源基因转染。
     第五部分载基因仿生基质材料调控BMSC成骨定向分化
     目的评价载基因仿生基质材料能否调控骨髓基质干细胞(BMSC)向成骨细胞定向分化。
     方法制备载基因基质材料并与BMSC复合培养,采用四甲基偶氮唑蓝微量酶反应比色法(MTT)、考马斯亮蓝法和流式细胞仪(FCM)检测细胞体外增殖活性,并进行成骨诱导扩增,检测转基因细胞成骨标志物碱性磷酸酶、骨钙蛋白、骨桥蛋白、Ⅰ型胶原、核心结合因子a1(Cbfa1)的表达及矿化情况。FCM分析DNA含量和细胞骨架染色评估载基因基质材料的安全性。
     结果载基因基质材料复合培养细胞的体外增殖活性明显高于对照组(P<0.01);经成骨诱导后其成骨特征性表型(ALP、OCN、OPN和CollⅠ、Cbfa1)的表达及矿化与对照组有显著的差异(P<0.01);细胞与载基因基质材料长期复合培养后无异倍体,细胞骨架形态正常。
     结论载基因基质材料可以调控BMSC向成骨细胞方向定向分化;TGF-β1可以作为理想的调控因子之一。
PartⅠIsolation and Identification of Rabbit-derived Bone Marrow Stromal Cells
     Objective To obtain rabbit autogenous bone marrow stromal cells (BMSC) and provide seed cells for our researches on bone defect restoration in bone tissue engineering. Methods The bone marrow tissues were fetched from rabbit and BMSCs were isolated by the method of density centrifuge .Inverted phase contrast microscope and BrdU label were employed to observe the cell morphologic features and growth statuses. Flow cytometry was also used to analyze the CD markers on cell surfaces. Results The cultured BMSC grew well and displayed strong capabilities of proliferation until 10th to 12th generations. Above 70 percentage of the cells were labelled by Brdu. FCM analyses showed the positive rates of CD44, CD90, CD34, CD45, CD11b and Lamine on the cell membranes were 93.85%, 75.28%, 2.98%, 1.70%, 0.45% and 0.24% respectively.
     Conclusion The cultured cells were mostly composed of undifferentiated BMSCs, being of the property of stem cells. The cells were suitable for tissue engineering.
     PartⅡDesign and synthesis of a bifunctional oligopeptide and specific adhesion by the synthetic peptide
     Objective To design and sythesize a bifunctional oligopeptide and explore the specifility of cell adhesion mediated by the synthetic peptide.
     Methods Design a RGD-containing peptide consisting of 23 amino residues. The peptide was synthesized by solid-phase synthesis method and characterized by mass spectrometry and high pressure liquid chromatography. The feasibility and speicifility of cell adhesion mediated by the synthetic peptide was examined by cell attachment inhibition assay.
     Results MS showed the average molecular weight of the synthetic peptide was 2741.54 m/z, which was accorded with the theoretic molecular weight. HPLC showed the purity of the synthetic peptide was 99.2796%, which was pure enough for our experiments. RGD-containing peptides of GRGDSPC and (K)16GRGDSPC and BSA, (K)16 all promoted the attachments of BMSCs, especially (K)16GRGDSPC. Only the RGD-containing peptides of GRGDSPC and (K)16GRGDSPC could significantly inhibit the cell attachments to pretreated flusk by (K)16GRGDSPC. Non-RGD-containing peptide of GRGESPC displayed no effects and (K)16 and BSA showed not inhibitory effects but further promoting the attachments.
     Conclusion Our designed peptide (K)16GRGDSPC was easy to synthesize and could mediate BMSC cell adhesion specifically via RGD tripeptide motif.
     PartⅢGene delivery by the synthetic peptide and analysis of influence factors
     objective To evaluate the feasibilty and the specifility of gene delivery mediated by the synthetic peptide and to analyze the related influence factors on gene delivery. Methods The synthetic peptide was used as vector and two kinds of reporter genes of luciferase and EGFP were individually transfected into BMSCs. The gene expressions were observed by Liquid Scintillation Counting detector and fluorescent microscope. The transfection efficiency was compared with another commercial liposome Lipofectamine 2000. The targeted specifility of gene delivery by the peptide was examined by the gene delivery inhibition tests. On the conditions of keeping other factors constant, one factors was changed and its influences on the gene delivery was also evaluated and optimized.
     Results Both the two reporter genes of luciferase and EGFP were expressed in BMSCs. The transfection efficiency of synthetic peptide by FCM was 19.47%, which had no sigficant difference with that of Lipofectamine 2000(19.98%). RGD- containing peptides GRGDSPC and (K)16GRGDSPC decreased the transfection efficiency significantly, but non-RGD contaiing peptide GRGESPC failed. Chloroquine and PEI could facilitate the gene delivery by the synthetic peptide, especially Chloroquine. Endosomal buffer chloroquine was essential for the peptide-mediated gene delivery and optimal exposure time to chloroquine is more than 8 hours and its optimal final concentration was 100μM. When the concerntration of DNA is 2~4μg and the weight to weight ratio of vector to DNA was 3 to 1 the optimal transfection effects were received. The time exposure to vector/DNA complex shorter than 4 hours or longer than 24 hours was adverse to the targeted gene expression. Serum significantly inhibited the combination of vector/DNA complexes with cells. Fusion peptide based on hemagglutinin N terminum 20 residues and cationic liposome Lipofectamine 2000 facilitated the gene delievery, especially the fusion peptide had significant synergistic effects with the synthetic RGD-containing peptide.
     Transferrin increased TGFβ1 expression greatly as well and the optimal effects were obtained when 25μg/ml.
     Conclusion The synthetic peptide (K)16GRGDSPC not only mediated specific cell adhesion but also mediated gene delivery targetedly and specifically obtaining ideal transfection efficiency. That optimizing kinds of influence fators could provide tactics for improving peptide-mediated gene delivery efficiency and provide foundations for the wide application of peptide vector in gene delivery fields and next experiments on the gene modification of bone matrix materials.
     PartⅣFibrication of gene-loaded biomimetic matrices and gene delivery mediated by the novel gene activated matrices
     Objective To fibricate transforming growth factor beta 1 gene-loaded biomimetic matrices and evaluate whether the modified matrices could mediate gene delivery into BMSCs.
     Methods The synthetic peptide vector (K)16GRGDSPC was conjugated with PLGA-[ASP-PEG] matrices by cross linker Sulfo-LC-SPDP and examined by XPS. Then BMSCs obtained from rabbit were mixed cultured onto the scaffolds and observed by scanning electonic microscope. Cell adhension behaviors of the cells were analyzed by conventional precipitation method and micropipette aspiration technique. The feagures of cytoskeleton F-actin were observed under laser scanning confocal microscope. Then the modified mtrices were mixtured with transforming growth factor beta 1 gene and BMSCs were cultured on them. The expressions of transduced gene were examined by RT-PCR, western blot, ELISA and immunohistochemistry.
     Results XPS patterns showed that the synthetic peptide were successfully conjugated into PLGA-[ASP-PEG] mitrices and significantly improved their adhesion capabilities. RT-PCR, western blot, ELISA and immunohistochemistry all showed TGF-β1 gene expressed in BMSCs.
     Conclusion TGF-β1 gene-loaded matrices was in fact a gene-activated matrix and could mediate exogenous genes into BMSCs as a novel nonviral vector.
     PartⅤgene-loaded matrices regulated the osteoblastic differentiation of bone marrow stromal cells
     Objective To evaluate the osteoblastic differentiation of bone marrow stromal cells regulated by TGF-β1 gene-loaded matrices.
     Methods TGF-β1 gene-loaded matrices were fabricated and BMSCs were mixed cultured onto them. The prolification behaviors were examined by MTT assay, Coomassie Brilliant Blue dyes and flow cytometry analysis. With osteoinductive medium culture, the osteoblast-associated markers ALP, OCN, OPN, CollagenⅠand Cbfa1 mRNAs and mineralization were assayed. The safety of the gene-loaded matrices were evaluated by DNA contents and cytoskeleton staining.
     Results The proliferation activities of BMSCs cultured on the gene-loaded matrices were significantly higher than the control groups. The osteoblastic phenotype expressions of ALP, OCN, OPN, CollagenⅠand Cbfa1 and minerization of experimental group were also significantly higher than the control groups.The cells mixed cultured with gene-loaded matrices were found no heteroploids and normal cytoskeletons.
     Conclusion TGF-β1 gene-loaded matrices were capable of regulating the osteoblastic differentiation of bone marrow stromal cells and TGF-β1 could be an ideal inducer for BMSCs.
引文
1. Nasseri B, Ogawa K, Vacanti J. Tissue engineering: An evolving 21st-century science to provide biologic replacement for reconstruction and transplantation. Surgery, 2001, 130(5): 781-784.
    2. Bianco P, Robey P. Stem cells in tissue engineering. Nature, 2001,414(6859): 118-121.
    3. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science,1999,284(5411): 143-147.
    4. Woodbury D, Schwarz EJ, Prockop DJ,et al.Adult rat and human bone marrow stromal cells differentiate into neurons.J Neurosci Res,2000,61(4): 364-370.
    5. Ghilzon R, McCulloch CA, Zohar R.Stromal mesenchymal progenitor cells [J]. Leuk Lymphoma,1999,32(3-4): 211-221.
    6. Prockop DJ, Azizi SA, Colter D, et al. Potential use of stem cells from bone marrow to repair the extracellular matrix and central nervous system. Biochem Soc Trans, 2000, 28(4): 341-345.
    7. Pittenger MF, Mackay AM,Beck SC,et al.Multlineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.
    8. Takezawa T. A strategy for the development of tissue engineering scaffolds that regulatecell behavior. Biomaterials,2003,24(13):2267-2275.
    9. Jadlowiec JA, Celil AB, Hollinger JO. Bone tissue engineering:recent advances and promising therapeutic agents. Expert Opin Biol Ther, 2003, 3(3):409-423.
    10. Vaananen HK. Mesenchymal stem cells. Ann Med, 2005, 37(7):469-479.
    11.舒赛男,魏来,方峰等。免疫磁珠分选系统在分离大鼠骨髓基质干细胞群中的应用。标记免疫分析与临床,2006,13(1):24-27.
    12. Waller EK, Huang S, Terstappen L. Changes in the growth properties of CD34+, CD38- bone marrow progenitors during human fetal development. Blood,1995,86: 710-718.
    13. Healy L, May G, Gale K, et al. The stem cell antigen CD34 functions as a regulator of hematopoietic cell adhesion. Proc Natl Acad Sci USA, 1995, 92: 12240-12244.
    14. Tondreau T, Lagneaux L, Dejeneffe M,et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentia- tion potential. Cytotherapy, 2004, 6(4):372-379.
    15. Shur I, Marom R, Lokiec F, et al. Identification of cultured progenitor cells from human marrow stroma. J Cell Biochem. 2002;87(1):51-57.
    16. Deliloglu-Gurhan SI, Vatansever HS, Ozdal-Kurt F,et al. Characterization of osteoblasts derived from bone marrow stromal cells in a modified cell culture system. Acta Histochem. 2006;108(1):49-57.
    17. Mao X, Chu CL, Mao Z, et al. The development and identification of constructing tissue engineered bone by seeding osteoblasts from differentiated rat marrow stromal stem cells onto three-dimensional porous nano-hydroxylapatite bone matrix in vitro. Tissue Cell, 2005, 37(5):349-57.
    18. Derubeis AR, Cancedda R. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances.Ann Biomed Eng, 2004, 32(1):160-165.
    19. Takeshita S, Arai S, Kudo A.. Identification and characterization of mouse bone marrow stromal cell lines immortalized by temperature-sensitive SV40 T antigen: supportive activity for osteoclast differentiation.Bone,2001,29(3):236-241.
    20. Wildemann B, Schmidmaier G, Ordel S,et al. Cell proliferation and differentiation during fracture healing are influenced by locally applied IGF-I and TGF-beta1: comparison of two proliferation markers, PCNA and BrdU.J Biomed Mater Res B Appl Biomater. 2003,65(1):150-156.
    1. Richardson T, Murphy W, Mooney D. Polymeric delivery of proteins and plasmid DNA for tissue engineering and gene therapy. Crit Rev Eukaryot Gene Expr, 2001, 11(1-3): 47-58.
    2. Louise C, Kenth G, John W, et al .Tissue-binding properties of a synthetic peptide DNA vector targeted to cell membrane integrins. Transplantation, 2000, 69:6.
    3. Hynes RO. Integrins:Versatility. Modlation, and signaling in cell adhesion. Cell, 1992, 69:11.
    4. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrin. Science, 1987,238:491.
    5. Nasseri B, Ogawa K, Vacanti J. Tissue engineering: An evolving 21st-century science to provide biologic replacement for reconstruction and transplantation. Surgery, 2001, 130(5): 781-784.
    6. Bianco P, Robey P. Stem cells in tissue engineering. Nature, 2001, 414(6859): 118-121.
    7. Ma H, Diamond S. Nonviral gene therapy and its delivery systems. Curr Pharm Biotechnol, 2001, 2(1): 1-17.
    8. Collins L, Kaszuba M, Fabre JW. Imaging in solution of (Lys)(16)-containing bifunctional synthetic peptide/DNA nanoparticles for gene delivery. Biochim Biophys Acta, 2004 ,1672(1):12-20.
    9. Wang MS, Childs RF, Chang PL. A novel method to enhance the stability of alginate- poly-L-lysine-alginate microcapsules. J Biomater Sci Polym Ed. 2005;16(1):91- 113.
    10. Collins L, Fabre JW. A synthetic peptide vector system for optimal gene delivery to corneal endothelium.J Gene Med. 2004, 6(2):185-94.
    11. Veska T, Margreet A, Wolfert, et al. Novel vector for gene delivery formed byself-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers. Biochimica et Biophysica Acta, 1998, 1380:354-368.
    12. Chen JH.Application of cationic polymer vector for gene delivery systems. Yao Xue Xue Bao,2003,38(4):316-320.
    13. Schmidt-Wolf GD, Schmidt-Wolf IG. Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol Med,2003, 9(2):67-72.
    14. Veska T, Margreet A, Wolfert, et al. Novel vector for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers. Biochimica et Biophysica Acta, 1380(1998):354-368
    15. Shewring L, Collins L, Lightmao SL, et al. A nonviral vector system for efficient gene transfer to corneal cell via membrane integrin. Transplantation, 1997;64:763.
    16. Collins L, Asuni AA, Anderton BH, et al. Efficient gene delivery to primary neuron cultures using a synthetic peptide vector system. J Neurosci Methods. 2003,125(1-2): 113-20.
    17. Zhang X, Sawyer GJ, Dong X,et al. The in vivo use of chloroquine to promote non-viral gene delivery to the liver via the portal vein and bile duct. J Gene Med. 2003 Mar;5(3):209-18.
    18. Zhang X, Collins L, Sawyer GJ, et al. In vivo gene delivery via portal vein and bile duct to individual lobes of the rat liver using a polylysine-based nonviral DNA vector in combination with chloroquine. Hum Gene Ther. 2001 Dec 10;12(18):2179-90.
    19. Hart SL,Harbottle RP,Cooper R,et al. Gene delivery and expression mediated by an integrin-binding peptide.Gene Ther,1995,2(8):552-554.
    20. Hart SL, Collins L, Gustaffon K, et al.Integrin-mediated transfection with peptide containing arginine-glycine-aspartic acid domains.Gene Ther,1997,4(11):1225-1230.
    21. Harbottle RP, Cooper RG, Hart SL, et al. An RGD oligolysine peptide:a prototype construct for integrin-mediated gene delivery. Hum Gene Ther,1998,9(7):1037-1047.
    22. Hynes RO. Integrins:Versability, modulation and signaling in cell adhesion.Cell, 1992;69:11-25.
    23. Ruoslahti E, Noble NA, Kagami S, et al. Integrins. kidney Int, 1994; 45(44):17-22.
    24. Verrier S, Pallu S, Bareille R, et al. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process. Biomaterials,2002, 23(2): 585-596.
    25. Roland H, Rainer G, Beate D, et al. Structural and Functional aspect of RGD- containing cyclic pentapeptides as Highly potent and selective integrinαvβ3 antagonists. J.Am.chem. Soc, 1996,118,7461-7472.
    1. Nasseri B, Ogawa K, Vacanti J. Tissue engineering: An evolving 21st-century science to provide biologic replacement for reconstruction and transplantation. Surgery, 2001, 130(5): 781-784.
    2. Bianco P, Robey P. Stem cells in tissue engineering. Nature, 2001, 414(6859): 118-121.
    3. Davis RE, Zhang YQ, Southall N, et al. A Cell-Based Assay for IkappaBalpha Stabilization Using A Two-Color Dual Luciferase-Based Sensor. Assay Drug Dev Technol. 2007, 5(1):85-104.
    4. Matsuda M, Tsukiyama T, Bohgaki M, et al. Establishment of a newly improved detection system for NF-kappaB activity. Immunol Lett. 2007 Mar 13
    5. Edwards M, Wong SC, Chotpadiwetkul R,et al. Transfection of primary cultures of rat hepatocytes. Methods Mol Biol. 2006,320:273-82.
    6. Kelly M, Daftary G, Taylor HS. An autoregulatory element maintains HOXA10 expression in endometrial epithelial cells. Am J Obstet Gynecol. 2006, 194(4): 1100- 1107.
    7. Abes S, Moulton HM, Clair P,et al. Vectorization of morpholino oligomers by the(R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. J Control Release. 2006 , 116(3):304-13.
    8. Wittmar M, Ellis JS, Morell F,et al. Biophysical and transfection studies of an amine-modified poly(vinyl alcohol) for gene delivery. Bioconjug Chem, 2005, 16(6):1390- 1398.
    9. Patnaik S, Aggarwal A, Nimesh S, et al. PEI-alginate nanocomposites as efficient in vitro gene transfection agents. J Control Release. 2006, 114(3):398-409.
    10. Min SH, Lee DC, Lim MJ,et al. A composite gene delivery system consisting of polyethylenimine and an amphipathic peptide KALA. J Gene Med,2006, 8(12): 1425-1434.
    11. Tamberg N, Lulla V, Fragkoudis R,et al. Insertion of EGFP into the replicase gene of Semliki Forest virus results in a novel, genetically stable marker virus.J Gen Virol, 2007, (Pt 4):1225-1230.
    12. van den Born E, Posthuma CC, Knoops K,et al. An infectious recombinant equine arteritis virus expressing green fluorescent protein from its replicase gene. J Gen Virol, 2007, 88(Pt 4):1196-1205.
    13. Soboleski MR, Oaks J, Halford WP. Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J, 2005, 19: 440- 442.
    14. Arun KH,Kaul CL,Ramarao P. Green fluorescent proteins in receptor research: an emerging tool for drug discovery. J Pharmacol Toxicol Methods,2005,51:1-23.
    15. Wachter RM. Chromogenic cross-link formation in green fluorescent protein.Acc Chem Res. 2007,40(2):120-7.
    16. Dong X, Wang JN, Huang YZ,et al. Cell-penetrating peptide pep-1-mediated transdu- ction of enhanced green fluorescent protein into human colorectal cancer sw480 cells.Ai Zheng. 2007 , 26(2):216-9.
    17.Louise Collins,Greta Js,Xiao-Hong Zhang,et al.In vitro investigation of factors important for the delivery of an integrin-targeted nonviral DNA vector in organ transplantation. Transplantation,2000,69(6):1168-1176
    18. Oliveira RR, Carvalho DM, Lisauskas S,et al. Effectiveness of liposomes to transfect livestock fibroblasts.Genet Mol Res. 2005,4(2):185-96.
    19. Cheng J, Zeidan R, Mishra S,et al. Structure-function correlation of chloroquine and analogues as transgene expression enhancers in nonviral gene delivery.J Med Chem, 2006, 49(22):6522-6531.
    20. Sun XH, Tan L, Li CY,et al. A novel gene delivery system targeting urokinase receptor. Acta Biochim Biophys Sin,2004 ,36(7):485-91.
    1. Liu Y,Zheng QX,Du JY,et al.Clonging and expression of transforming growth factorβ1 in osteoblasts. J Tongji Med Univ,2000,20(1):63-65.
    2.郝杰,郑启新,郭晓东等.三嵌段高分子骨组织工程支架材料的制备及细胞粘附性研究.中国生物医学工程学报,2005,24(2):129-133.
    3. Rowlands AS, Lim SA, Martin D,et al. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation.Biomaterials. 2007, 28(12): 2109-2121.
    4.Kuo YC, Leou SN. Effects of composition, solvent, and salt particles on the physico- chemical properties of polyglycolide/poly(lactide-co-glycolide) scaffolds.Biotechnol Prog. 2006,22(6):1664-70.
    5. Jeong SI, Kim SY, Cho SK,et al. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.Biomaterials. 2007, 28(6):1115-22.
    6. Deng C, Tian H, Zhang P,et al. Synthesis and characterization of RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) triblock copolymer. Biomacromolecules. 2006,7(2):590-6.
    7. Otsuka H, Nagasaki Y, Kataoka K. Surface characterization of functionalized polylactide through the coating with heterobifunctional poly(ethylene glycol)/polylactide block copolymers.Biomacromolecules. 2000,1(1):39-48.
    8. Lieb E, Tessmar J, Hacker M,et al. Poly(D,L-lactic acid)-poly(ethylene glycol)- monomethyl ether diblock copolymers control adhesion and osteoblastic differentiation of marrow stromal cells.Tissue Eng. 2003,9(1):71-84.
    9. Barrera D.A, Zylstre E, Langer R, et al. Copolymerization and degradation of poly(lactic acid-co-lysine). Macromolecules, 1995,28:425-432.
    10. Elisseeff J, Anseth, K, Langer R, et al. Synthesis and characterization of photo- cross-linked polymers based on poly(L-lactic acid-co-L-aspartic acid). Macro-molecules, 1997, 30:2182- 2184.
    11. Endo M, Kuroda S, Kondo H,et al. Bone regeneration by modified gene-activated matrix: effectiveness in segmental tibial defects in rats.Tissue Eng. 2006, 12(3): 489- 497.
    12. Guo T, Zhao J, Chang J,et al. Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta1 for chondrocytes proliferation. Biomaterials. 2006, 27(7):1095-1103.
    13. Bonadio J. Tissue engineering via local gene delivery: update and future prospects for enhancing the technology. Adv Drug Deliv Rev. 2000, 44(2-3):185-194.
    14. Bonadio J. Tissue engineering via local gene delivery. J Mol Med. 2000,78(6): 303-311.
    15. Guo T, Zeng X, Hong H,et al. Gene-activated matrices for cartilage defect reparation. Int J Artif Organs. 2006, 29(6):612-621.
    16.Klapperich CM, Bertozzi CR. Global gene expression of cells attached to a tissue engineering scaffold. Biomaterials. 2004 Nov;25(25):5631-5641
    17. Falconnet D, Csucs G, Grandin HM,et al. Surface engineering approaches to micro- pattern surfaces for cell-based assays. Biomaterials. 2006,27(16):3044-63.
    18. Mochizuki M, Yamagata N, Philp D,et al. Integrin-dependent cell behavior on ECM peptide-conjugated chitosan membranes.Biopolymers. 2007,88(2):122-130
    19.Jennifer L, Myles, Brian T, et al. Modification of the adhesive properties of collagen by covalent grafting with RGD peptides. J Biomater Sci Polymer Edn, 11.1:99-86.
    20.Lu Q, Zhang S, Hu K,et al. Cytocompatibility and blood compatibility of multifunc- tional fibroin/collagen/heparin scaffolds.Biomaterials.2007,28(14): 2306-2313.
    21. Miyasako H, Yamamoto K, Nakao A, et al. Preparation of cross-linked poly[(epsilon- caprolactone)-co-lactide] and biocompatibility studies for tissue engineering materials. Macromol Biosci. 2007,7(1):76-83.
    1. Lee JY, Kim KH, Shin SY. Enhanced bone formation by transforming growth factor- beta1-releasing collagen/chitosan microgranules. J Biomed Mater Res A. 2006,76(3): 530- 539.
    2. Wang Y, Zheng Q, Guo X,et al. Influence of exogenous TGF-beta1 on the expression of smad2 and smad3 in rat bone marrow-derived mesenchymal stem cells. J Huazhong Univ Sci Technolog Med Sci. 2005,25(1):68-71.
    3. Lieb E, Vogel T, Milz S. Effects of transforming growth factor beta1 on bonelike tissue formation in three-dimensional cell culture. II: Osteoblastic differentiation. Tissue Eng. 2004,10(9-10):1414-25.
    4. Kahai S, Vary CP, Gao Y,et al. Collagen, type V, alpha1 (COL5A1) is regulated by TGF-beta in osteoblasts. Matrix Biol. 2004 Nov;23(7):445-55.
    5. Lee JY, Seol YJ, Kim KH,et al. Transforming growth factor (TGF)-beta1 releasing tricalcium phosphate/chitosan microgranules as bone substitutes. Pharm Res. 2004,21(10): 1790-6.
    6. Cai DZ, Zeng C, Quan DP, et al. Biodegradable chitosan scaffolds containing microspheres as carriers for controlled transforming growth factor-beta1 delivery for cartilage tissue engineering.Chin Med J (Engl). 2007,120(3):197-203.
    7. Li Y, Wang DW, Song LW, et al. Effects of TGF beta 1 on the cell cycle of irradiated human lung fibroblasts and its signal transduction mechanism.Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2004,20(3):286-9.
    8. Guo X, Du J, Zheng Q, Liu Y,et al. Molecular tissue engineering: applications for modulation of mesenchymal stem cells proliferation by transforming growth factor beta 1 gene transfer. J Tongji Med Univ. 2001,21(4):314-317.
    9. Zheng Qixin, Yi Chengqing, Guo Xiaodong,et al. Transient expression and stable expression of cultured bone marrow stromal cells transfected with transforming growth factor beta 1 gene in vitro. Chin J Exp Surg,2001,18(4):352-355.
    10. Aydin HM, Turk M, Calimli A,et al. Attachment and growth of fibroblasts on poly(L-lactide/epsilon-caprolactone) scaffolds prepared in supercritical CO2 and modified by polyethylene imine grafting with ethylene diamine-plasma in a glow-discharge apparatus. Int J Artif Organs. 2006 Sep;29(9):873-880.
    11. Kenar H, Kose GT, Hasirci V. Tissue engineering of bone on micropatterned biodegradable polyester films. Biomaterials. 2006 Feb;27(6):885-895.
    12. Kasten P, Vogel J, Luginbuhl R,et al. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Biomaterials. 2005 Oct;26(29):5879-5889.
    13. Du C, Schneider GB, Zaharias R,et al. Apatite/amelogenin coating on titanium promotes osteogenic gene expression. J Dent Res. 2005 Nov;84(11):1070-104.
    14. Turhani D, Weissenbock M, Watzinger E, Invitro study of adherent mandibular osteoblast-like cells on carrier materials. Int J Oral Maxillofac Surg. 2005,34(5):543-50.
    15. Sakano S, Murata Y, Miura T, et a1. Collagen and alkaline phosphatase gene expression during bone morphogenetic protein(BMP)-induced cartilage and bone differenti-ation, Clin Orthop Relat Res, l993, (292): 337-344.
    16. Xiao ZS,Hinson TK,Quarles LD.Cbfa1 isoform overexpression upregulates osteocalcin gene expression in non-osteoblastic and preosteoblastic cells.J Cell Biochem, 1999,74 (4):596-605.
    17. iros PG, Gil AP, Georgakopoulos T, et al.The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem,2002, 277 (26) :23934-23941.
    18. Jimenez MJ,Balbin M,Lopez JM, et al.Collagenase 3 is a target of Cbfa1, a transcri- ption factor of the runt gene family involved in bone formation.Mol Cell Biol,1999, 19 (6) :4431-4442.
    19. Phillips JE, Hutmacher DW, Guldberg RE,et al. Mineralization capacity of Runx2/ Cbfa1-genetically engineered fibroblasts is scaffold dependent. Biomaterials. 2006, 27 (32): 5535-45.
    20. Gronthos S, Akintoye SO, Wang CY,et al. Bone marrow stromal stem cells for tissue engineering. Periodontol 2000. 2006, 41:188-95.
    21. Gersbach CA, Byers BA, Pavlath GK,et al. Runx2/Cbfa1-genetically engineered skeletal myoblasts mineralize collagen scaffolds in vitro.Biotechnol Bioeng. 2004, 88(3):369-378.
    23. Qu Yanlong,Yang Zhiming,Xie Huiqi, et al. Experimental studies on gradient degradation biomaterials combined with cultured tenocytes in vitro.Chin J Microsurg, 2004, 27(3): 193-196.
    24. Hehlgans S, Haase M, Cordes N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta. 2007,1775(1): 163-180.
    25. Rangel M, Prado MP, Konno K,et al. Cytoskeleton alterations induced by Geodia corticostylifera depsipeptides in breast cancer cells. Peptides. 2006,27(9):2047-2057
    1. Findeis MA,Merwin JM,Spitalny GL,et al.Targeted delivery of DNA for gene therapy via receptors. Tibtech.1993;11(5):202-205.
    2. Chen JH.Application of cationic polymer vector for gene delivery systems. Yao Xue Xue Bao,2003,38(4):316-320.
    3. Schmidt-Wolf GD, Schmidt-Wolf IG. Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol Med,2003, 9(2):67-72.
    4. Mima H, Tomoshige R, Kanamori T,et al. Biocompatible polymer enhances the in vitro and in vivo transfection efficiency of HVJ envelope vector. J Gene Med,2005, 7(7): 888-897.
    5. Arangoa MA, Duzgunes N, Tros de Ilarduya C. Increased receptor-medi-ated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes. Gene Ther,2003,10(1): 5-14.
    6. Anwer K, Kao G, Rolland A,et al. Peptide-mediated gene transfer of cationic lipid/plasmid DNA complexes to endothelial cells. J Drug Target. 2004, 12(4):215-221.
    7. Yin W,Cheng PW. Lectin conjugate-directed gene transfer to airway epithelial cells.Biochem Biophys Res Commun,1994, 205:826-833.
    8. Bottger M,Vogel F,Platzer M,et al.Condensation of vector DNA by the chromosomal protein HMG1 results in efficient transfection. Biochim Biophys Acta,1998, 950:221-228.
    9. Bellocq NC,Pun SH,Jensen GS,et al. Transferrin-containing, cyclodextrin polymer- based particles for tumor-targeted gene delivery. Bioconjug Chem,2003,14(6): 1122-1132.
    10. Ogris M, Wagner E. Tumor-targeted gene transfer with DNA polyplexes. Somat Cell Mol Genet,2002,27(1-6):85-95.
    11. Tong MX,Szoka FC.The influence of polymer structure on the interactions of cationic polymer with DNA and morphology of resulting complexwes.Gene Ther,1997,4: 823.
    12. Kirchler R,Kirchler A.Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery.Gene Ther,1997,4:409.
    13. Akinc A, Thomas M, Klibanov AM,et al. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med,2005,7(5):657-663.
    14. Choi YS, Pack SP, Yoo YJ. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface. Biochem Biophys Res Commun, 2005,329(4):1315-1319.
    15. Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNAcarrier system. J Biol Chem,1987,262(10):4429-4432 .
    16. Hogemann- Savellano D , Bos E, Blondet C, et al. The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia. 2003,5(6):495-506.
    17.Tan PH, Manunta M, Ardjomand N,et al. Antibody targeted gene transfer to endothelium. J Gene Med,2003,5(4):311-323.
    18. Lu D, Zhang H, Koo H,et al. A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem,2005, 2005,280(20):19665-19672
    19. Klink D, Yu QC, Glick Mc,et al. Lactosylated poly-L-lysine targets a potential lactose receptor in cystic fibrosis and non-cystic fibrosis airway epithelial cells. Mol Ther,2003,7(1):73-80.
    20. Kawakami S, Hattori Y, Lu Y,et al. Effect of cationic charge on receptor-mediated transfection using mannosylated cationic liposome/plasmid DNA complexes following the intravenous administration in mice. Pharmazie,2004,59(5): 405-408.
    21. Kim TG, Kang SY, Kang JH,et al. Gene transfer into human hepatoma cells by receptor-associated protein/polylysine conjugates. Bioconjug Chem,2004,15(2): 326-332.
    22. Zhang Y, Boado RJ, Pardridge WM. Marked enhancement in gene expression by targeting the human insulin receptor. J Gene Med,2003,5(2):157-163.
    23.Kleeff J, Fukahi K, Lopez ME,et al. Targeting of suicide gene delivery in pancreatic cancer cells via FGF receptors. Cancer Gene Ther,2002,9(6):522-532.
    24.Zeng J, Too HP, Ma Y,et al. A synthetic peptide containing loop 4 of nerve growth factor for targeted gene delivery. J Gene Med,2004,6(11):1247-12456.
    25. Ou X, Tan T, He L,et al. Antitumor effects of radioiodinated antisense oligonuclide mediated by VIP receptor. Cancer Gene Ther. 2005,12(3):313-320.
    26. Martinez-Fong D, Navarro-Quiroga I. Synthesis of a non-viral vector for gene transfer via the high-affinity neurotensin receptor. Brain Res Brain Res Protoc,2000,6(1-2):13-24.
    27. Dasi F, Benet M, Crespo J,et al. Asialofetuin liposome-mediated human alpha1-antitrypsin gene transfer in vivo results in stationary long-term gene expression. J Mol Med,2001,79(4):205-212.
    28. McKay T, Reynolds P, Jezzard S,et al. Secretin-mediated gene delivery, a specific targeting mechanism with potential for treatment of biliary and pancreatic disease in cystic fibrosis. Mol Ther,2002,5(4):447-454.
    29. Shi G, Guo W, Stephenson SM,et al. Efficient intracellular drug and gene delivery usingfolate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J Control Release,2002,80(1-3):309-319.
    30. Chiu SJ,Ueno NT,Lee RJ. Tumor-targeted gene delivery via anti-HER2 antibody conjugated polyethylenimine. J Control Release,2004,97(2):357-369.
    31. Guillem VM, Tormo M, Moret I,et al.Targeted oligonucleotide delivery in human lymphoma cell lines using a polyethyleneimine based immunopolyplex. J Control Release,2002,83(1):133-46.
    32. Molas M, Bartrons R, Perales JC. Single-stranded DNA condensed with poly-L-lysine results in nanometric particles that are significantly smaller, more stable in physiological ionic strength fluids and afford higher efficiency of gene delivery than their double-stranded counterparts. Biochim Biophys Acta,2002,1572(1):37-44.
    33. Dizhe EB, Akifiev BN, Missul BV,et al. Receptor-mediated transfer of DNA-gala- ctosylated poly-L-lysine complexes into mammalian cells in vitro and in vivo. Biochem- istry (Mosc),2001,66(1):55-61.
    34. Mukherjee A, Prasad TK, Rao NM,et al. Haloperidol associated stealth liposomes: A potent carrier for delivering genes to human breast cancer cells. J Biol Chem, 2005 ,280(16): 15619- 15627.
    35. Ivanenkov VV, Felici F, Menon AG. Targeted delivery of multivalent phage display vectors into mammalian cells. Biochim Biophys Acta, 1999, 1448(3): 463- 72.
    36. Sun XH, Tan L, Li CY,et al. A novel gene delivery system targeting urokinase receptor. Acta Biochim Biophys Sin (Shanghai),2004,36(7):485-91.
    37. Harbottle RP,Cooper RG,Hart SL,et al.An RGD-Oligolysine peptide:A prototype construct for integrin-mediated gene delivery.Hum Gene Ther,1998,9:1037-1047.
    38. Matsumoto T. Membrane destabilizing activity of influenza virus hemagglutinin- based synthetic peptide: implications of critical glycine residue in fusion peptide. Biophys Chem,1999,79(2):153-162.
    39. Midoux P,Mendes C,Legrand,et al.Specific gene transfer mediated by lactosylated poly-l-lysine into hepatoma cells.Nucleic Acids Res,1993,21(4):871-878.
    40. Hara T, Kuwasawa H, Aramaki Y,et al. Effects of fusogenic and DNA-binding amphiphilic compounds on the receptor-mediated gene transfer into hepatic cells by asialofetuin-labeled liposomes. Biochim Biophys Acta,1996,1278(1):51-58.
    41. Zhang X, Collins L, Fabre JW. A powerful cooperative interaction between a fusogenic peptide and lipofectamine for the enhancement of receptor-targeted, non-viral gene deliveryvia integrin receptors. J Gene Med,2001,3(6):560-568.
    42. Cho CW, Cho YS, Lee HK,et al. Improvement of receptor-mediated gene delivery to HepG2 cells using an amphiphilic gelling agent. Biotechnol Appl Biochem,2000,32 ( Pt 1):21-26.
    43. Uherek C, Fominaya J, Wels W. A modular DNA carrier protein based on the structure of diphtheria toxin mediates target cell-specific gene delivery. J Biol Chem, 1998,273(15):8835-88341.
    44. Kumar VV, Pichon C, Refregiers M,et al. Single histidine residue in head-group region is sufficient to impart remarkable gene transfection properties to cationic lipids: evidence for histidine-mediated membrane fusion at acidic pH. Gene Ther. 2003,10(15):1206-15.
    45. Ross GF, Bruno MD, Uyeda M,et al. Enhanced reporter gene expression in cells transfected in the presence of DMI-2, an acid nuclease inhibitor. Gene Ther,1998,5(9):1244-12450.
    46. Mountain A. Gene therapy: the first decade.Trends Biotechnol,2000,18(3):119-28.
    47. Ross PC,Hui SW.Lipoplex size is a major determinant of in vitro lipofection efficiency.Gene Ther,1999;6(4):651-657.
    48. Wagner E.Application of membrance-active peptides for nonviral gene delivery.Adv Drug Deliv Rev,1999,38(3):279-305.
    49. Collins L, Fabre JW. A synthetic peptide vector system for optimal gene delivery to corneal endothelium. J Gene Med. 2004, 6(2):185-194.
    50. Walker GF, Fella C, Pelisek J,et al. Toward synthetic viruses: endosomal ph-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol Ther,2005,11(3):418-425.
    51. Ward CM, Pechar M, Oupicky D,et al. Modification of pLL/DNA complexes with a multivalent hydrophilic polymer permits folate-mediated targeting in vitro and prolonged plasma circulation in vivo. J Gene Med,2002,4(5):536-547.
    52. Kursa M, Walker GF, Roessler V,et al. Novel shielded transferrin-polyethylene glycol- polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug Chem, 2003, 14(1): 222-31.
    53. Shi W,Bartlett JS.RGD inclusion in VP3 provides adeno-associated virus type 2 (AAV2)-based vectors with a heparan sulfate-independent cell entry mechanism. Mol Ther,2003,7(4):515- 525.
    1. R.T. Bartus, M.A. Tracy, D.F. Emerich, et al. Sustained delivery of proteins for novel therapeutic products. Science, 281 (1998) 1161–1162.
    2. P.R. Kuhl, L.G. Griffith-Cima. Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase, Nat. Med, 2 (1996) 1022–1027.
    3. G. Zhu, S.R. Mallery, S.P.Schwendeman. Stabilization of proteins encapsulated in injectable poly (lactide-co-gly-colide). Nat. Biotech, 18 (2000)52–57.
    4. U. Ripamonte, B.van den Heever, et al. Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (OP-1, bone morphogenetic protein-7). Growth Factors, 123 (1996) 273–289.
    5. W. Meyer-Ingold. Wound therapy: growth factors as agents to promote healing. Trends Biotech, 11 (1993) 387–392.
    6. J.Bonadio.Local gene delivery for tissue regeneration. e-biomed 1 (2000) 25–29.
    7. D.Lew, S.E.Parker, T.Latimer,et al. Cancer gene therapy using plasmid DNA: pharmacokinetic study of DNA follow-ing injection. Hum Gene Ther, 6 (1995) 553–564.
    8. D.V. Schaffer, D.A. Lauffenburger, Targeted synthetic gene delivery vectors. Curr Opin Mol. Therapeut, (2000)306-312.
    9. J. Bonadio. Tissue engineering via local gene delivery, J Mol Med,78 (2000) 303–311.
    10. J. Bonadio, E. Smiley, P.Patil,et al. Localized, direct plasmid-gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med, 5 (1999) 753–759.
    11. T. Ochiya, Y. Takahama, S. Nagahara, et al. New delivery system for plasmid DNA invivo using atelocollagen as a carrier material: the minipellet. Nat. Med, 5 (1999) 707–710.
    12. K.W. Leong, H.Q. Mao,V.L. Truong-Le, et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Contr Rel, 53 (1998) 183–193.
    13. S. Brunner, T. Sauer, S. Carotta, et al. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther, 7 (2000) 401–407.
    14. V. Budker, T. Budker, G. Zhang, et al. Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J Gene Med, 2 (2000) 76–88.
    15. J. Fang, Y.-Y. Zhu, E. Smiley, et al. Stimu-lation of new bone formation by direct transfer of osteoin-ductive plasmid genes. Proc Natl Acad Sci, USA 93 (1996) 5753–5758.
    16. L.D. Shea, E. Smiley, J. Bonadio,et al. Controllable DNA delivery from three- dimensional polymer matrices. Nat. Biotech, 17 (1999) 551–554.
    17. Y.Y. Zhu, S.L. Voytik, S.F. Badylak, et al. Direct gene transfer into regenerating Achilles’tendon. Trans Ortho Res Soc, 19 (1994) 233.
    18. V. Labhasetwar, J. Bonadio, S. Goldstein, et al. A DNA controlled-release coating for gene transfer: transfection in skeletal and cardiac muscle, J. Pharm. Sci. 87 (1998) 1347– 1350.
    19. M. Berry, A.M. Gonzalez, W. Clarke,et al. Sustained effects of gene activated matrices after CNS injury. Mol. Neurosci, (2000)456-462.
    20. R.C. Adami, W.T. Collard, S.A. Gupta, et al. Stability of peptide-condensed plasmid DNA formulations. J Pharm Sci, 87 (1998) 678–683.
    21. D.V. Schaffer, D.A. Lauffenburger. Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery. J Biol Chem, 273 (1998) 28004–28009.
    22. R. Pasqualini, E. Ruoslahti. Organ targeting in vivo using phage display peptide libraries. Nature, 380 (1996) 364–366.
    23. R. Pasqualini. Vascular targeting with phage peptide libraries. J Nucl Med, 43 (1999) 159–162.
    24. M. Brisson, W.C. Tseng, C. Almonte,et al. Subcellular trafficking of the cytoplasmic expression system. Hum Gene Ther, 10 (1999) 2601–2613.
    25. Z. Bebok, A.M. Abai, J.Y. Dong, et al. Efficiency of plasmid delivery and expression after lipid-mediated gene transfer to human cells in vitro, J Pharmacol Exp Ther, 279 (1996) 1462–1469.
    26. D.V. Schaffer, D.A. Lauffenburger.Optimization of cell surface binding enhancesefficiency and specificity of molec-ular conjugate gene delivery. J Biol Chem, 273 (1998) 28004–28009.
    27. C. Piechaczek, C. Fetzer, A. Baiker,et al. Nucleic Acids Res, 27 (1999) 426–428.
    28. A. Baiker, C. Maercker, C. Piechaczek, et al. Nat Cell Biol, 2 (2000) 182.
    29. S.R. Yant, L. Meuse, W. Chiu, et al. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet, 25 (2000) 35–41.
    30. M.A. Kay, D. Liu, P.M. Hoogerbrugge. Proc Natl Acad Sci USA 94 (1997) 12744– 12746.
    31. J. Zhu, M. Grace, J. Casale,et al. Charac-terization of replication-competent adenoviral isolates from large-scale production of a recombinant adenoviral vector, Hum. Gene Ther. 10 (1999) 113–121.
    32. Y. Yang, Q. Li, H.C. Ertl, J.M. Wilson. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adeno- viruses. J. Virol, 69 (1995) 2004–2015.
    33. M.A. Kay. Transient immunomodulation with anti-CD40 ligand antibody and CTLA4Ig enhances persistence and secondary adenovirus-mediated gene transfer into mouse liver. Proc Natl Acad Sci USA, 94 (1997) 4684–4691.
    34. Y.J. Hernandez, J. Wang, W.G. Kearns,et al. Latent adeno-associated virus infection elicits humoral but not cell-mediated immune responses in a non-human primate model, J. Virol. 73 (1999) 8549–8558.
    35. P.E.Monahan, R.J. Samulski. AAV vectors: is clinical success on the horizon?, Gene Ther. 7 (2000) 24–30.
    36. C.Summerford, R.J. Samulski. Viral receptors and vector purification: new approaches for generating clinical-grade reagents. Nat Med, 5 (1999) 587–588.
    37. C.Summerford, R.J. Samulski. Membrane-associated heparan sulfate proteogly-can is a receptor for adeno-associ-ated virus type 2 virions. J Virol,72 (1998) 1438–1445.
    38. H.Fan, Y. Lu, A. Stump,et al. Rapid prototyping of patterned functional nanostructures, Nature 405 (2000) 56– 60.
    39. J. Fritz, M.K. Baller, H.P. Lang,et al. Translating biomolecular recognition into nano- mechanics. Science, 288 (2000) 316–318.
    40. T.Friedmann. Principles for human gene therapy studies. Science, 287 (2000) 2163– 2165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700