用户名: 密码: 验证码:
常用跨径桥梁上部结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以往的优化设计都是在满足单梁承载力要求的约束条件下,以造价最低、用料最省为目标进行结构优化,结果桥梁截面尺寸偏小,不能满足交通量的增长,造成今天的诸多隐患。在现今社会的经济条件下,桥梁设计应该在满足现行《桥规》设计荷载标准的前提下,适当提高桥梁的承载能力,增强其使用性能,而不是一味地强调造价最低,这就是桥梁结构优化的内涵。
     桥梁上部结构的损坏造成了其使用寿命的缩短,本文针对这一问题,作了详细的调研,并在此基础上对上部结构产生病害的原因进行了分析。桥梁局部损坏较严重,主要原因是主梁截面尺寸过小、肋板过于薄弱,造成单梁抗扭刚度不足;保护层厚度不够导致钢筋外露引起锈蚀,降低了桥梁的耐久性;各主梁采用横隔梁连接成整体,横隔梁的刚度越大,桥梁的整体性越好,但调查结果显示,实际情况中并不能达到理想的整体刚度。找到更能发挥钢筋混凝土结构的长处、弥补其不足的方法已经迫在眉睫。所有资料表明,设计者普遍重视的是桥梁的抗弯和抗剪承载力,这些方面的理论研究已经比较成熟,但在桥梁的抗扭承载力方面则很少有人问津。由桥梁现状调查结果显示,在上述这种理论指导下设计的桥梁的诸多病害已经显露出来,因此在注重抗弯抗剪的同时,也应注重桥梁的抗扭性能。
     现有常用跨径桥梁的截面形式多为以下几种:T形梁、I形梁、板式截面和箱形截面等,板式截面和箱形截面与T形梁和I形梁这些开口截面相比其抗扭能力更强;但板式截面的自重要比T形梁的自重大得多。综合二者之优缺点,本课题选取T梁截面形式,用增大其细部尺寸的方法,以提高抗扭承载力为目标,满足弯剪等承载力要求为约束条件进行主梁截面的优化。在用横向分布理论计算单梁扭矩过程中,针对现有常用跨径桥梁的截面形式和横向连接状况,选取了两种计算理论:刚性横梁法和铰接梁(板)法,利用结构优化设计原理,建立主梁承载力的数学模型,选择合适的优化计算方法,得出在满足弯剪扭承载力要求时主梁的细部尺寸。肋宽增大后可以从截面形式上作适当的改变,改单肋为双肋,这样既达到美观的效果又增强了梁在运输施工过程中的稳定性。最后以常用跨径中的20m跨径钢筋混凝土简支梁桥为例对优化后的结果进行了承载力验算,根据计算结果与实际状态相比较认为计算桥梁抗扭时,采用刚性横梁法是不安全的,因此建议采用铰接梁(板)法。
In the past, the goal of optimum design is to get low cost and reduce material when bearing capacity of single-beam is satisfied. However, sectional dimension is so lower that bridges can't satisfy traffic rising and make a lot of incipient faults. Under present social economic condition, bridge design should satisfy criterions of design load and increase bearing capacity in order to strengthen service performance. These are contents of bridge structural optimization.
    Diseases in superstructure make the life-span of bridges shortened. In allusion to this problem, detailed investigations were made in this article. On the base of these data, we analyze reasons of scathes of bridges. Local damage of bridges is much serious. Reasons: firstly, sectional dimension is so little that torsional stiffness of single-beam isn't enough. Secondly , protective layer thickness is too thin to protect concrete reinforced bar and reduce durability. Lastly, each main beam is joined by cross girder and the more rigid of cross girder the more entirety of bridge. But from investigation we can see that the fact isn't perfect. It is necessary that we find a method which can exploit the particular advantages and weaken the shortages of reinforced concrete. From data reports we can see that bridge designers emphasize resistance to bending and shear that was studied sophisticatedly, but many experts neglect resistance to torsion. Existing investigation state of bridges shows that diseases of bridges
     designed under the theory are exposed. So we should take care of resistance to torsion.
    There are many cross-section forms such as T cross-section, I cross-section, slab cross-section, box cross-section etc. for common span of bridges. Slab and box cross-section beam's resistance to torsion is stronger than T and I cross-section beam's. But deadweight of slab and box cross-section beam is bigger than it of T and I cross-section beam. Taking advantage of both, this paper choose T cross-section and enlarge detail dimension. The goal of optimum design is to increase torsion inertia moment and reduce shearing stress when moment of flexion and shear bearing capacity of single-beam is satisfied. In allusion to section modality and transverse joint of common span bridges, we choose two kinds of calculating theories in transverse distributing calculate process: the theory of rigidity crossbeam and the theory of hinged girder and slab. Making the use of the theory of optimized design, I constitute mathematics model and choose appropriate calculated method. And find the form and detail
    
    
    dimension of section when beams of the bridge satisfy bending moment^ shearing force and torsional moment. Because width of rib is larger than before, we can change single-rib beam to double-rib beam. Stability in transportation and aethetic effectiveness is improved. In this article we make the example of 20m-span simple-supported reinforced concrete beam-bridge. Compared with existing state about bridges, the latter is more safety than the former when we calculate resistance to torsion.
引文
[1]中华人民共和国交通部.JTJ,021—89,公路桥涵设计通用规范.北京:人民交通出版社,1989年
    [2]中华人民共和国交通部.JTJ,023—85,公路钢筋混凝土及预应力混凝土桥涵设计规范.北京:人民交通出版社,1989年
    [3]铁三院.TB,100021—99,铁路桥涵设计基本规范.北京:中国铁道出版社,2000年
    [4]姚玲森.桥梁工程.北京:人民交通出版社,1988年:100-155
    [5]范立础.桥梁工程.第二版.北京:人民交通出版社,1986年:121~176
    [6]胡肇兹.桥跨结构简化分析.北京:人民交通出版社,1996年:78~95
    [7]李国豪,石洞.公路桥梁荷载横向分布计算.第二版.北京:人民交通出版社,1987年:102~138
    [8]石洞,石志源,黄东渊.桥梁结构电算.上海:同济大学出版社,1987年:56~75
    [9]程翔云.梁桥理论与计算.北京:人民交通出版社,1986年:29~36
    [10]宋一凡.公路桥梁荷载试验与结构评定.北京:人民交通出版社,2002年:8~102
    [11]胡兆同,陈万春.桥梁通用构造及简支梁桥.北京:人民交通出版社,2001年:132~154
    [12]叶见署.结构设计原理.北京:人民交通出版社,1997年:91~103
    [13]邵容光.结构设计原理.北京:人民交通出版社,1988年:93~104
    [14]张士铎.桥梁设计理论.北京:人民交通出版社,1984年:77~86
    [15]张士铎.结构理论及在桥梁上的应用.北京:中国建筑工业出版社,1981年:92~103
    [16]Walter Podolny, Jr. Construction and Design of Prestressed Concrete Segmental Bridge. John Wiley & sons, 1982
    [17]T. Y. Lin & NedH. Bums. Design of Prestressed Conerete Structures. JohnWiley & sons, 1981
    [18]Zhu Xinqun. Vehicular load on bridge deck. Dissertation Abstracts International, Volume: 62-10, Section: B, page: 4675. Supervisor: SiuSeongLaw. AAI3028819
    [19]Yu Ling, Accounting for bridge dynamic loads using moving force identification system (MFIS). Source: Dissertation Abstracts International, Volume: 63-05, Section: B, page: 2498. Supervisors: Tommy Hung-TinChan: S. S. Law. AAI3053215
    [20]Estes, Allen Crispin. A system reliability approach to the lifetime optimization of inspection and repair of highway bridges. Dissertation Abstracts Intemational, Volume: 58-03, Section: B, page: 1419. Director: Dan M. Frangopol. AAI9725725
    [21]Choi Eunsoo. Seismic Analysis and Retrofit of Mid-America Bridges. Source: Dissertation Abstracts International. Volume: 63-03, Section: B, page: 1468. Director: Reginald DesRoches. AAI3046882
    [22]苏金明,阮沈勇.MATLAB6.1实用指南.北京:电子工业出版社,2002年:40~52
    [23]车宏亚,颜德妲,程文瀼.混凝土结构.北京:中国建筑工业出版社,1998年:175~192
    [24]GBJ10-89.混凝土结构设计规范.北京:中国建筑工业出版社,1989年
    
    
    [25]张炳华等.土建结构优化设计.上海:同济大学出版,1998年:3~12
    [26]钱令希.工程结构优化设计.北京:水利电力出版社,1983年:8~15
    [27]刘海军等.钢筋混凝土梁的优化设计.基建优化.1997,3
    [28]Ralph L. Barnett.Survey of Optimum Structure Design. Experimental Mechanics. 1996
    [29]魏权龄等.数学规划与优化设计.北京:国防工业出版社.1984年:7~9
    [30]朱伯芳等.结构优化设计原理与应用.北京:水利电力出版社,1984年:6~7
    [31]陶全心等.结构优化设计方法.北京:清华大学出版社,1985年:10~12
    [32]S.S雷欧.工程优化原理及应用.北京:北京理工大学出版社,1990年:247~290
    [33]王光远,董明耀.结构优化设计.北京:高等教育出版社,1987年:45~48
    [34]李炳威.结构的优化设计.北京:中国科学出版社,1979年:56~62
    [35]黄胜伟,方维凤,赵法起.基于Matlab语言的结构优化设计.建筑技术开发,2002,6:1~3
    [36]王伟忠,张军雄.钢筋混凝土矩形梁的实用优化设计探讨.四川建筑,2001,8:46~48
    [37]王昕.宽翼缘预应力混凝土板桥的优化设计.辽宁交通科技,2001,8:18~20
    [38]白青侠,郭梅.钢筋混凝土公路简支T梁优化设计.华东公路,1999,4:15~17
    [39]桂国梁,刘光宗,丁成辉等.钢筋混凝土框架结构优化设计.南昌大学学报,2000,12:60~67
    [40]周健生,蔡荫林.基于强度和刚度可靠度的结构优化设计.强度与环境,2002,3:27~34
    [41]周健民.基于可靠性分析的混凝土结构耐久性优化设计.铁道学报,2000,5:57~61
    [42]舒翔等.惠河高速公路东江大桥的优化设计及施工控制.广东公路交通,2000:60~62
    [43]汪树玉,刘国华等.结构优化设计的现状与发展.基建优化,1999:3~14
    [44]朱学军等.利用神经网络实现复杂结构的多目标优化设计.机械科学与技术,2000,5:386~370
    [45]杜群贵,迟永滨.通用结构优化设计系统的研究与实现.机械,2001,3:22~24
    [46]柴志,赵磊等.基于耐久性的桥梁优化设计模型.河南科学,2002,6:273~275
    [47]任礼行,李康元等.多层次结构优化设计.应用科学与计算数学学报,1994,12:72~83
    [48]于新,隋允康.二维连续体结构优化中常用单元应力约束的有效处理.力学与实践,1999,4:48~49
    [49]王石刚等.大型板结构优化的齿形法.华中理工大学学报:19~23
    [50]荣见华等.渐进结构优化设计的现状与发展.长沙交通学院学报,2001,9:16~23
    [51]方刚,康达昌.大型薄壁箱形体的结构优化.重型机械,2000:50~54
    [52]Haftka R T, Gurdal Z. Elements of Structure Optimization[A]. 3rd revised edition[C]. Dordrecht: Kluwer Acndemic publishers, 1992
    [53]Xie Y M, Steven G P. Evolutionary Structural Optimization[M]. Berlin: Springer-Verlag, 1997
    [54]Mattbeck C. Design in Nature:[M]. Berlin: Springer-Verlag, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700