用户名: 密码: 验证码:
P型ZnO薄膜的制备及其结构、光学和电学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种具有直接带隙的宽禁带半导体材料,其室温下的带隙宽度为3.37eV,激子束缚能高达60 meV。此外,ZnO还具有来源丰富、价格低廉的优点,使其在短波长的光电子器件方面具有极好的应用前景以及很高的开发和应用价值。然而,经过多年的研究,在ZnO基发光器件方面仍然未能取得突破性进展。目前,制约ZnO基器件发展的瓶颈主要是难以获得高质量、低电阻、性能稳定和可控受主浓度的p型ZnO薄膜材料。近年来,稳定高效的p型ZnO的研制一直是国际研究的热点问题,也是要实现ZnO基光电器件亟待解决的问题。本论文主要围绕ZnO研究领域的这一热点问题,利用磁控溅射结合后热退火处理的方法,开展了p型ZnO薄膜制备的研究工作,取得如下结果:
     1.利用多靶共溅射方法,以Ar和O2的混合气为溅射气体,高纯的Zn(99.999%)和Sb(99.99%)金属为靶材,在n型单晶Si(100)衬底上制备了Sb掺杂ZnO薄膜,衬底温度为550℃。通过固定Zn靶的溅射功率,改变Sb靶的溅射功率,制备出了本征ZnO和Sb掺杂量不同的ZnO薄膜,并对原生样品在750℃真空退火30分钟。研究发现所有样品都具有沿(002)方向择优的纤锌矿结构;原生样品中Sb具有高的氧化态,Sb与O结合形成Sb-O富氧团簇,该团簇在原生薄膜产生很大的内应力,导致随样品中的Sb含量的增加,薄膜的XRD峰位迅速向低角偏移。750℃真空退火后Sb掺杂ZnO薄膜中的Sb-O富氧团簇消失,内应力得到释放。随薄膜中Sb含量由0增加到2.1at.%,薄膜的导电性由n型转变为p型并且低温光致发光中可见发光与紫外发光的发光比急剧降低。富氧团簇的消失是由于退火过程中发生分解反应,分解过程会释放出O,O与薄膜中的本征施主缺陷反应,降低了对应缺陷的浓度,有利于薄膜的p型导电。
     2.用射频磁控溅射的方法,以Ar和O2的混合气为溅射气体,石英为衬底,分别在200℃,350℃和500℃衬底温度下制备了Ag掺杂ZnO薄膜,并对原生样品进行了600℃真空退火处理。EDS和XRD分析结果表明,样品中的Ag含量随衬底温度的升高而降低;衬底温度为200℃的原生样品Ag含量最高,但其中有Ag2O析出,只有很少Ag掺入到ZnO中,退火后Ag全部析出并以Ag单质形式存在;衬底温度为350℃和500℃的原生样品退火前只有ZnO相,Ag全部固溶度到ZnO中,退火后衬底温度350℃的样品中的Ag全部析出,而衬底温度500℃样品中仍有部分Ag掺杂到ZnO中。通过分析样品中晶粒大小与Ag在ZnO固溶度的关系,指出原生样品晶粒较大时有利于提高Ag在ZnO中的固溶度。
     通过研究Ag掺杂ZnO薄膜的吸收和光致发光谱,讨论了退火后析出的Ag单质对薄膜光学性质的影响。最后通过低温光致发光谱方法证明了退火后衬底温度500℃样品中有Ag相关的受主形成。
     3.用射频磁控溅射的方法,以石英为衬底在200℃、350℃和500℃衬底温度下制备了Ag-S共掺杂的ZnO薄膜样品,并对原生样品进行600℃真空退火。XRD、EDS和Hall分析结果说明退火后,衬底温度较高的样品中S含量较少,有Ag单质析出且电子密度较大。通过对比衬底温度为200℃和350℃的样品的低温光致发光发现,衬底温度为200℃的样品中有Ag代Zn(Agzn)缺陷和Agzn与S代O结合形成的复杂缺陷(AgZn-nSO)相关的受主束缚激子峰,而衬底温度为350℃的样品的光谱中没有观察到与Ag相关的发光峰。于是得出结论,在衬底温度较低时有利于提高Ag和S在ZnO中的固溶度,进而有利于形成p型ZnO。
     在上述实验的条件的基础上,降低衬底温度到室温,同时选取石英和Si为衬底,在室温下制备Ag-S共掺的ZnO薄膜样品,并分别在450℃和600℃对样品进行真空退火。XRD和Hall测试结果显示,Si衬底上生长的样品在450℃退火后具有最好的结晶质量,且表现为p型导电性,由其与Al掺杂n型ZnO组成的同质pn结表现出很好的整流效应,验证了Ag-S共掺ZnO薄膜的p型导电性。p型Ag-S共掺ZnO薄膜的XPS结果证明了Ag-S键的存在。
ZnO is a direct band gap semiconductor, which has a band gap of 3.37eV at room temperature and the binding energy of exciton up to 60 meV. Besides. ZnO is abundant in the natural world. All the advantages mentioned above make ZnO one of the most potential materials used in short wavelength electronic devices. However, even though the ZnO based photoelectric device has been investigated for many years, the practical use of ZnO based device has not yet make a breakthrough. At present, the preparation of p-type ZnO film with high crystalline quality, low resistivity, stable and controllable hole concentration has been the bottleneck of ZnO based devices. In resent years, the investigation of stable and reproducible p-type ZnO film has been the focus of international research and also the primary problem. In this thesis, systematical investigations on the preparation of p-type ZnO film is carried out by using magnetron sputtering and annealing techniques. And the details are as follows:
     1. By using multi-target co-sputtering method, Sb-doped ZnO films were fabricated on n-type Si (100) substrate, with the mixture of Ar and O2 as the working gas and high-purity Zn (99.999%) and Sb (99.99%) as the targets. By fixing the sputtering power on Zn target and changing the sputtering power on Sb target, undoped and Sb-doped ZnO with wurtzite structure and (002) preferred orientation were grown at 550℃. and then films were annealed in vacuum at 750℃for 30 minutes. It is deduced from XRD and XPS measurement that the Sb in the as-grown ZnO:Sb has high oxidation state and dopes in the form of oxygen-rich Sb-O clusters. which results in a large inner stress and a great increase of the c-axis lattice constant. After annealing at 750℃under vacuum, the c-axis lattice constant of the ZnO:Sb decreases sharply to near the value of ZnO bulk, the electrical properties change from n-type to p-type and the PL intensity ratio of the visible to ultraviolet emission band goes down greatly, as the Sb content increases from 0 to 2.1 at.%. EDS and XRD measurements indicate that some of Sb dopants escape from the ZnO:Sb films and the oxygen-rich Sb-O clusters vanished after the annealing process. The effect of the change in Sb doping behavior on crystal structure, conductivity and PL is discussed in detail.
     2. By using RF magnetron sputtering method, Ag doped ZnO films were fabricated on quartz with the mixture of Ar and 02 as working gas, and the substrate temperature were 200℃,350℃and 500℃, respectively. And then the as-grown films were annealed in vacuum at 600℃. EDS and XRD measurements show that the Ag content decreases with the increase of substrate temperature. For the as-grown film deposited at 200℃, the Ag content is the largest, but the Ag dopant incorporated in ZnO is least; while after the annealing process, all of Ag dopant segregates from ZnO. For the as-grown films deposited at 350℃and 500℃, there is only wurtzite phase of ZnO; but after the annealing process, for film deposited at 350℃all of Ag dopant segregates from ZnO, and for film deposited at 500℃there is still some Ag dopant that incorporated in ZnO. By Gaussian fitting of the ZnO (002) diffraction peaks, we gain the full width of half maximum of them and calculated the grain sizes of all samples. By analyzing the dependency relationship between the grain sizes and the solubility of Ag in ZnO, it is deduced that a larger grain size in the as-grown films facilitates improving the solubility of Ag in ZnO.
     By analyzing the absorption and photoluminescence spectra of the Ag-doped films, the effects of Ag metal that segregated from ZnO on the optical properties of the films were also studied. The low-temperature photoluminescence spectrum of the annealed film which deposited at 500℃shows that acceptor about AgZn is formed
     3. By using RF magnetron sputtering method, Ag-S co-doped ZnO films were fabricated on quartz with the substrate temperature of 200℃.350℃and 500℃. And then the as-grown films were annealed in vacuum at 600℃for 15 minutes. The XRD measurements show that the crystal quality of the films is improved with the increase of substrate temperature, which is contrary to the Ag mono-doped ZnO films. XRD, EDS and Hall measurements suggest that in the film grown at higher substrate temperature, there is less S dopant, Ag dopant is easer to separate out and the electron density is higher. By comparison of the low-temperature photoluminescence spectra of the annealed films grown at 200℃and 350℃, it is found that there are A0X emission peak about AgZn and AgZn-nSO in spectrum of the film grown at 200℃, while there is no emission peak about Ag dopant in spectrum of the film grown at 350℃. Above analyzation implies that by using a lower substrate temperature, the solubility limits of Ag and S dopants in ZnO could be improved, and the the p type ZnO film is more likely fabricated.
     Based on the above experiment condition, the substrate temperature is decreased to room temperature and both quartz and Si with high resistance were used as the substrates. The as-grown films were annealed in vacuum at 450℃and 600℃, respectively. XRD and Hall measurements show that the film deposited on Si substrate and annealed at 450℃possesses the best crystal quality and shows p-type conductivity, and a pn homojunction was fabricated to prove its p-type conductivity. EDS measurements suggest that the S content in the film is related to the substrate, while the Ag content is related to the annealing temperature. Both Ag and S contents in the p-type film are larger then that of other films. And XPS measurement show that there are Ag-S bonds in the p-type film.
引文
[1]A. Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. K. Tang, G. K. L.Wong, Y. Segawa, Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE, Mat. Sci. Eng. B 54 (1998) 24-28.
    [2]Z. K. Tang, G. K. L. Wong, P. M. Yu et al., Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Appl. Phys. Lett.,72 (1998)3270-3272
    [3]C. Song, Y. Hang, J. Xu, The research development of ZnO, Ren Gong Jingti Xue Bao,33(2004)81-87.
    [4]J. Kramer, Blue-green luminescence in ZnO:Excitation by 20-eV kinetic energy gas-phase positive ions. J. Appl. Phys.,47 (4) (1976) 1719-1720.
    [5]P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Ultraviolet spontaneous and stimulated emission from ZnO micro-crystallite thin films at room temperature, Solid State Commun.,103 (1997) 459-463.
    [6]D. M. Bagnall, Y. F. Chen,Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, Optically pumped lasing of ZnO at room temperature, Appl. Phys. Lett.,70 (17) (1997) 2230-2232.
    [7]H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y Dai, J. Y. Wu, R. P. H. Chang, Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films, Appl. Phys. Lett.,73 (25) (1998) 3656-3658.
    [8]H. Cao, Y. Ling, J. Y. Xu. C. Q. Cao, P. Kumar, Photon statistics of random lasers with resonant feedback, Phys. Rev. Lett.,86 (2001) 4524-4527.
    [9]X. L. Guo, J. H. Choi, H. Tabata, T. Kawai, Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-Emitting Diode, Jpn. J. Appl. Phys.,40 (2001) L177-L180.
    [10]Report, The 3rd international workshop on ZnO and related materials, October 5-8,2004, Sendai, Japan.
    [11]S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao. J. Y. Zhang, B. H. Li, D. X. Zhao, X. W. Fan, Z. K. Tang, ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. Appl. Phys. Lett.88 (2006) 031911-031913.
    [12]C. G. Van de Walle. Defect analysis and engineering in ZnO, Physica B 899 (2001)308.
    [13]Y. M. Strzhemechny. H. L. Mosbacker. D. C. Look. D. C. Reynolds, C. W. Litton. N. Y. Garces, N. C. Giles. L. E. Halliburton. S. Niki. and L. J. Brillson. Remote hydrogen plasma doping of single crystal ZnO, Appl. Phys. Lett.84 (2004) 2545.
    [14]C. G. Van de Walle, Hydrogen as a Cause of Doping in Zinc Oxide, Phys. Rev. Lett.85 (2000) 1012.
    [15]C. G. Van de Walle, D. B. Laks. G. F. Neumark, and S. T. Pantelides, First-principles calculations of solubilities and doping limits:Li, Na, and N in ZnSe, Phys. Rev. B 47 (1993) 9425.
    [16]T. V. Butkhuzi, A. V. Bureyev, A. N. Georgobiani, N. P. Kekelidze, T. G. Khulordava. Optical and electrical properties of radical beam gettering epitaxy grown n-and p-type ZnO single crystals. J. Crystal Growth,117 (1992) 366-369.
    [17]G. Xiong, J. Willkinson, B. Mischuck, S. Tuzemen, K. B. Ucer, R. Y. Williams, Contol of p- and n-type conductivity in sputter deposition of undoped ZnO,80 (2002) 1195-1197.
    [18]S. Choopun, R. D. Vispute, W. Noch, A. Balsamo. R. P. Sharma, T. Venkatesan, A. Lliadis, D. C. Look, Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire, Appl. Phys. Lett.75 (1999) 3947-3949.
    [19]T. Sekiguchi. K. Haga, K. Inaba, ZnO films grown under the oxygen-rich condition, J. Cryst. Growth.214 (2000) 68-71.
    [20]G. D. Mahan, Intrinsic defects in ZnO varistors, J. Appl. Phys.54 (1983) 3825-3832.
    [21]D. C. Look, Reynolds. C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl. Phys. Lett.81 (2002) 1830.
    [22]J. R. Duclere. M. Novotny. A. Meaney. R. O. Haire, E. McGlymn, M. O. Henry J.-P. Mosnier. Properties of Li-. P-. and N-doped ZnO thin films prepared by pulsed laser deposition, Superlattices and Microstructures,38 (2005) 397-405.
    [23]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. Lan, D. Y. Li, L. P. Zhu. B. H. Zhao. Y. L. Hu. Realization of p-type ZnO via monodoping of Li acceptor, J. Crystal Growth,283 (2005) 180-184.
    [24]L. L. Chen. H. P. He, Z. Z. Ye. Y. J. Zeng, J. G. Lu, B. H. Zhao, L. P. Zhu, Influence of post-annealing temperature on properties of ZnO:Li thin films. Chem. Phys. Lett.420 (2006) 358-361.
    [25]B. Xiao, Z. Z. Ye, Y. Z. Zhang, Y. J. Zeng, L. P. Zhu. B. H. Zhao, Fabircation of p-type Li-doped ZnO films by pulsed laser deposition, Appl. Surf. Sci.,253 (2006) 895-897.
    [26]Y. Kanai, Admittance spectroscopy of Cu-doped ZnO crystal, Jpn. J. Appl. Phys., 30(1991)703-707.
    [27]O. Volnianska. P. Boguslawski, J. Kaczkowski, et al., Theory of doping properties of Ag acceptors in ZnO,80 (2009) 245212.
    [28]R. Deng, B. Yao. Y.F. Li, T.Yang, B.H. Li. Z.Z. Zhang, C.X. Shan, J.Y Zhang and D.Z. Shen. Influence of oxygen/argon ratio on structural, electrical and optical properties of Ag-doped ZnO thin films, Journal of Crystal Growth 312 (2010) 1813-1816
    [29]K. Iwata, P. Fons, A. Yamada, K. Matsubara, S. Niki, Nitrogen-induced defects in ZnO:N grown on sapphire substrate by gas source MBE.J. Crystal. Growth,209 (2000)526.
    [30]E. C. Lee, Y S. Kim, Y. G. Jin. K. J. Chang, Compensation mechanism for N acceptors in ZnO, Phys. Rev. B,64 (2001) 085120-085124.
    [31]T. Matsushita. Yasushi. Koiwai, Y. Kikuchi, et al. Growth of p-type zinc oxide films by chemical vapor deposition, Jpn. J. Appl. Phys.,36 (1997) L1453.
    [32]K. K. Kim, H. S. Kim. D. K. Hwang. H. Lim. S. J. Park. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant.Appl. Phys. Lett.83 (2003) 63-65.
    [33]X. Guo. H. Tabata and T. Kawai. p-Type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N2O plasma. Optical Material, 19 (2002) 229.
    [34]X. Li, Y. An. T. A. Gessert, C. L. Perkins. D. Young, C. DeHart, M. Young and T. J. Coutts, Chemical vapor deposition-formed p-type ZnO thin films. J. Vac. Sci. Technol.,A21 (2003)1342.
    [35]W. Z. Xu, Z. Z. Ye, T. Zhou, B. H. Zhao.L. P. Zhu, J. Y Huang, Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source,Journal of Crystal Growth,265 (2004) 133.
    [36]Y. Yan, S. B. Zhang, Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO, Phys. Rev. lett.,86 (2001) 5723.
    [37]H. D. Ryu. B. K. Hyun, M. C. Jeong. J. M. Myong, Efects of RF power variation on properties of ZnO thin films and electrical properties of p-n homojunction, Journal of Crystal Growth,254 (2003) 449.
    [38]Y. R. Ryu, T. S. Lee, H. W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition, Appl. Phys. Lett.,83 (2003) 87.
    [39]J. C. Sun, J. Z. Zhao, H. W. Liang, J. M. Bian, L. Z. Hu, H. Q. Zhang, X. P. Liang, W. F. Liu, and G. T. Du, Excitonic ultraviolet lasing in ZnO-based light emitting devices,Appl. Phys. Lett.,90 (2007) 131115.
    [40]K. H. Bang, D. K. Hwang, M. C. Park, Y D. Ko, I. Yun, J. M. Myong, Formation of p-type ZnO film on InP substrate by phosphor doping, Applied Surface Science. 210(2003)177.
    [41]K. Ip, Y. M. Heo, D. P. Norton, S. J. Pearton. J. R. Laroche, F. Ren, Zn0.9Mg0.1O/ZnO p-n junctions grown by pulsed-laser deposition, Appl. Phys. Lett., 85(2004) 1169.
    [42]D. C. Look, G. M. Renlund. R. H. Burgener, J. R. Szelove, As-doped p-type ZnO produced by evaporation/sputtering process,85 (2004) 5269-5271.
    [43]B. Yao. Y. P. Xie, C. X. Cong, H. J. Zhao. Y. R. Sui, T. Yang and Q. He, Mechanism of p-type conductivity for phosphorus-doped ZnO thin film, J. Phys. D: Appl. Phys.42 (2009) 015407
    [44]F. X. Xiu. Z. Yang. L. J. Mandalapu. D. T. Zhao, J. L. Liu, W. P. Beyermann, High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy, Appl. Phys. Lett.87 (2005)152101.
    [45]L. J. Mandalapu, Z. Yang. F. X. Xiu, D. T. Zhao, and J. L. Liu, Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection, Appl. Phys. Lett.,88(2006)092103.
    [46]J. Z. Zhao, H. W. Liang. J. C. Sun. J. M. Bian. Q. J. Feng, L. Z. Hu. H. Q. Zhang. X. P. Liang, Y. M. Luo, and G. T. Du, Electroluminescence from n-ZnO/p-ZnO:Sb homojunction light emitting diode on sapphire substrate with metal-organic precursors doped p-type ZnO layer grown by MOCVD technology, J. Phys. D:Appl. Phys.,41 (2008) 195110.
    [47]A. Krtschil. A. Dadgar, N. Oleynik, J. Biasing. A. Diez, and A. Krost, Local p-type conductivity in zinc oxide dual-doped with nitrogen and Arsenic, Appl. Phys. Lett.,87 (2005) 262105-262107.
    [48]X. H. Wang. B. Yao, Z. P. Wei, D. Z Sheng, Z. Z. Zhang, B. H. Li, Y. M. Lu, D.. X. Zhao, J. Y. Zhang, X. W. Fan, L. X. Guan, and C. X. Cong, Acceptor formation mechanisms determination from electrical and optical properties of p-type ZnO doped with lithium and nitrogen, J. Phys. D:Appl. Phys.,39 (2006) 4568-4571.
    [49]T.T. Zhao, T. Yang, B. Yao, C.X. Cong, Y.R. Sui. G.Z. Xing, Y. Sun, S.C. Su, H. Zhu, D.Z. Shen. Growth ambient dependent electrical properties of lithium and nitrogen dual-doped ZnO films prepared by radio-frequency magnetron sputtering. Thin Solid Films,518 (2010) 3289-3292.
    [50]T. Yamamoto. H. Katayama-Yoshida. Solution Using a Codoping Method to Unipolarity for the fabrication of p-type ZnO, Jpn. J. Appl. Phys.,38 (1999) 166.
    [51]Y. R. Sui. B. Yao, J. H. Yang, L. L.Gao, T. Yang, R. Deng. M. Ding. T. T. Zhao. X.M. Huang. H. L. Pan and D. Z. Shen. Post-annealing influence on electrical properties and photoluminescence of B-N codoping ZnO thin films. Journal of Luminescence 130(2010) 1101-1105
    [52]Z. G. Fei. Z. Z. Ye. L. P. Zhu. J. G. L. B. H. Zhao. J. Y. Huang, Z. H. Zhang. L. Wang, Z. G. Ji, Electrical and optical properties of Al-N codoped p-type zinc oxide films. J. Crystal Growth,268 (2004) 163-168.
    [53]M. Joseph, H. Tabata. H. Saeki, K. Ueda. T. Kawai. Fabrication of the low resistive p-type ZnO by codoping method, Phys. B,302 (2001) 140-148.
    [54]J. M. Bian, X. M. Li. X. D. Gao, W. D. Yu, L. D. Chen. Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis, Appl. Phys. Lett.84 (2004) 541-543.
    [55]C. Persson. Strong Valence-Band Offset Bowing of ZnO1-xSx Enhances p-Type Nitrogen Doping of ZnO-like Alloys, Phys. Rev. Lett.97 (2006) 146403.
    [56]H.L. Pan, T. Yang, B. Yao, R. Deng, R.Y. Sui, L.L. Gao and D.Z. Shen. Characterization and properties of ZnO1-xSx alloy films fabricated by radio-frequency magnetron sputtering, Applied Surface Science 256 (2010) 4621-4625
    [57]H. L. Pan. B. Yao, T. Yang, Y. Xu. B. Y. Zhang, W. W. Liu, and D. Z. Shen, Electrical properties and stability of p-type ZnO film enhanced by alloying with S and heavy doping of Cu, Appl. Phys. Lett.97 (2010) 142101
    [1]. Syuichi Takada, Relation between optical property and crystallinity of ZnO thin films prepared by rf magnetron sputtering, J. Appl. Phys.,73 (1993) 4739.
    [2].丛秋滋《多晶二维X射线衍射》科学出版社1997,p36.
    [3]. J. I. Pankove, Optical Processes in Semicounductor, Pretice-Hall,Englewood clifts. 1971.
    [4]Lermann G, Bischof T, Matemy A, Kiefer W, Kummell T, Bacher G. Forchel A. Landwehr G. Resonant micro-Raman investigations of the ZnSe-LO splitting in Ⅱ-Ⅵ semiconductor quantum wires [J]. J. Appl. Phys.1997,81:11446.
    [5]马金鑫,朱国凯.扫描电子显微镜入门[M].北京:科学出版社,1985.
    [1]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett. (2002),81,1830-1832.
    [2]J. G. Lu, Y. Z. Zhang, Z. Z. Ye, Y. J. Zeng. H. P. He, L. P. Zhu, J. Y. Huang, L. Wang, J. Yuan, B. H. Zhao, and X. H. Li, Control of p- and n-type conductivities in Li-doped ZnO thin filmsJ. Appl. Phys. Lett. (2006),89,112113-112115.
    [3]Y. J. Zeng, Z. Z.Ye, J. G. Lu, W. Z. Xu, L. P. Zhu, B. H. Zhao, and S. Limpijumnong, Identification of acceptor states in Li-doped p-type ZnO thin films, Appl. Phys. Lett.89 (2006) 042106-042108.
    [4]K.Minegishi, Y.Koiwai,Y.Kikuchi, K.Yano, M.Kasuga, and A.Shimizu, Growth of p-type zinc oxide films by chemical vapor deposition., Jpn. J.Appl. Phys.,36 (1997) L1453-L1455.
    [5]Zhi-zhen Ye, Jian-Guo Lu,Han-Hong Chen, Yin-Zhu Zhang,Lei-Wang, Bing-Hui Zhao, Jing- Yun Huang, Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering J.Crystal Growth,(2003),253,258-264.
    [6]Ji Zhenguo, Yang Chengxin, Liu Kun, Ye Zhizhen,Fabrication and characterization of p-type ZnO films by pyrolysis of zinc-acetate-ammonia solution, Journal of Crystal Growth, (2003),253,239-242.
    [7]Nakahara K., Takasu H., Fons P., Yamada A., Iwata K., Matsubara K., Hunger R., S. Niki, Growth of N-doped and Ga+N-codoped ZnO films by radical source molecular beam epitaxy, Journal of Crystal Growth, (2002),237-239,503-508.
    [8]A. Krtschil, A. Dadgar, N. Oleynik, J. Blasing, A. Diez, and A. Krost, Local p-type conductivity in zinc oxide dual-doped with nitrogen and Arsenic, Appl. Phys. Lett. (2005),87,262105-262107.
    [9]J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu. L. Wang, and B. H. Zhao, Q. L. Liang, Low- resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method, Appl. Phys. Lett.,88,2006,222114.
    [10]T. Aoki, Y, Hatanaka, D. C. Look, ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett., (2000).76 3257-3259.
    [11]J. L. Lyons, A. Janotti, C. G. VandeValle, Why nitrogen cannot lead to p-type conductivity in ZnO. Appl. Phys. Lett.95 (2009) 252105
    [12]T. Aoki,Y. Shimizu. A. Miyake, A. Nakamura. Y. Nakanishi, Y. Hatanaka, p-Type ZnO Layer Formation by Excimer Laser Doping, Phys. Status Solidi (b) 229 (2002) 911-914.
    [13]F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, W. P. Beyermann. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy, Appl.Phys. Lett.87 (2005)152101.
    [14]E. Prze'zdziecka, E. Kami'nska. I. Pasternak, A. Piotrowska, J. Kossu. Photoluminescence study of p-type ZnO:Sb prepared by thermal oxidation of the Zn-Sb starting material, Phys. Rev. B 76 (2007) 193303.
    [15]X. H. Pan, Z. Z. Ye, J. S. Li, X. Q. Gu, Y. J. Zeng, H. P. He, L. P. Zhu, Y. Che. Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition, Appl. Surf. Sci.253 (2007) 5067-5069.
    [18]W. W. Zhong, F. M. Liu, L. G. Cai. C. C. Zhou, P. Ding, H. Zhang, Annealing effects of co-doping with Al and Sb on structure and optical-electrical properties of the ZnO thin films, J. Alloys Compd.499 (2010) 265-268.
    [16]P. Wang, N. F. Chen. Z. G. Yin, F. Yang, C. T. Peng, Fabrication and properties of Sb-doped ZnO thin films grown by radio frequency (RF) magnetron sputtering, J. Cryst. Growth 290 (2006) 56-60.
    [17]D. H. Kim, N. G. Cho. K. S. Kim. S. Han. H. G. Kim, Structural and electrical properties of Sb-doped p-type ZnO thin films fabricated by RF magnetron sputtering, J. Electroceram.22 (2009) 82-86.
    [18]J. M. Qin. B. Yao. Y. Yan, J. Y. Zhang. X. P. Jia. Z. Z. Zhang, B. H. Li, C. X. Shan, and D. Z. Shen, Formation of stable and reproducible low resistivity and high carrier concentration p-type ZnO doped at high pressure with Sb. APPLIED PHYSICS LETTERS 95 (2009) 022101
    [19]S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, Doping by Large-Size-Mismatched Impurities:The Microscopic Origin of Arsenicor Antimony-Doped p-Type Zinc Oxide, Phys. Rev. Lett.92 (2004) 155504.
    [20]P. Wang, N. F. Chen, Z. G. Yina, F. Yang, C. T. Peng, Fabrication and properties of Sb-doped ZnO thin films grown by radio frequency (RF) magnetron sputtering, Journal of Crystal Growth 290 (2006) 56-60
    [21]F. X. Xiu, Z. Yang, et al., High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy, Applied Physics Letters 87 (2005) 152101
    [22]X. H. Pan, Z. Z. Ye, J. S. Li, X. Q. Gu. Y. J. Zeng, H. P. He, L. P. Zhu, Y. Che, Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition, Appl. Surf. Sci.253 (2007) 5067-5069.
    [23]黄胜涛,固体X射线学,北京:高等教育出版社出版,1985
    [24]F. Conchon, P.O. Renault, P. Goudeau, E. Le Bourhis. E. Sondergard, E. Barthel. S. Grachev, E. Gouardes, V. Rondeau, R. Gy, R. Lazzari, J. Jupille, N. Brun, X-ray diffraction analysis of thermally-induced stress relaxation in ZnO films deposited by magnetron sputtering on (100) Si substrates, Thin Solid Films 518 (2010) 5237-5241.
    [25]T. Yang, B. Yao, T. T. Zhao, G Z. Xing, H. Wang, H. L. Pan. R. Deng, Y. R. Sui, L. L. Gao, L. G. Zhang, T. Wu and D. Z Shen, Sb doping behavior and its effect on crystal structure, conductivity and photoluminescence of ZnO film in depositing and annealing processes. J. Alloys Compd.509 (2011) 5426-5430
    [26]W. E. Morgan, W. J. Stec, J. R. Van Wazer, Inner-orbital binding-energy shifts of antimony and bismuth compounds, Inorg. Chem.12 (1973) 953.
    [27]P. A. Akishin, V. P. Spiridonov, Zh. Strukt. Khim.2 (1961) 542.
    [28]B. Kaiser. T. M. Bernhardt, M. Kinne, T. M. Bernhardt, M. Kinne, and K. Rademann, Formation, stability, and structures of antimony oxide cluster ions. J. Chem. Phys.110 (1999) 1437-1449
    [29]O. Volnianska, P. Boguslawski, J. Kaczkowski, P. Jakubas. A. Jezierski. and E. Kaminska, Theory of doping properties of Ag acceptors in ZnO, Phys. Rev. B,80 (2009)245212.
    [30]D.H. Kim. N.G. Cho, K.S. Kim, S. Han and H.G. Kim. Structural and electrical properties of Sb-doped p-type ZnO thin films fabricated by RF magnetron sputtering. J. Electroceram 22 (2009) 82-86
    [31]The melting point of antimony pentoxide is 380 oC (decomposes), http://en.wikipedia.org/wiki/Antimony_pentoxide
    [32]S. Limpijumnong, S. B. Zhang, S. H Wei and C. H. Park, Doping by Large-Size-Mismatched Impurities:The Microscopic Origin of Arsenic- or Antimony-Doped p-Type Zinc Oxide, Phys. Rev. Lett.92 (2004) 155504
    [33]U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkocd. A comprehensive review of ZnO materials and devices, J. Appl. Phys.98(2005)041301
    [1]D. K. Hwang, M. S. Oh, J. H. Lim, C. G. Kang, and S. J. Park,Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO, [J]. Appl. Phys. Lett. 2007,90:021106-021108.
    [2]B. Q. Cao, M. Lorenz, A. Rahm, et al., Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition, [J]. Nanotechnology 18 (2007) 455707.
    [3]D. D. Wang, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. W. Churney, and R. W. Nuttall, The NBS tables of chemical thermodynamic properties [J]. J. Phys. Chem. Ref.,1982,371.
    [4]Pascal P. Nouveau traite de Chimie minerale, Tome V, Masson, Paris 1962; Thermodata (Banque de donnees thermochimiques, BP 66,38402, Saint-Martin-d'Heres. France).
    [5]O. Volnianska, P. Boguslawski, J. Kaczkowski. P. Jakubas. A. Jezierski, and E. Kaminska, Theory of doping properties of Ag acceptors in ZnO, Phys. Rev. B 80 (2009)245212.
    [6]赵世玺,刘韩星,钛酸钡陶瓷晶界结构、偏析与性能,《功能材料》31(2000)233。
    [7]D. Y. Lei, J. Li, and H. C. Ong, Tunable surface plasmon mediated emission from semiconductors by using metal alloys, Appl. Phys. Lett.91 (2007) 021112.
    [8]P. Cheng, D. Li. and D. Yang, Influence of substrates in ZnO devices on the surface plasmon enhanced light emission, Opt. Express 16 (2008) 8896.
    [9]C. W. Lai. J. An, and H. C. Ong, Surface-plasmon-mediated emission from metal-capped ZnO thin films, Appl. Phys. Lett.86 (2005) 251105
    [10]P. Cheng, D. Li. Z. Yuan. P. Chen, and D. Yang. Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film, Appl. Phys. Lett.92(2008)041119
    [11]P. H. Cheng. D. H. Li, X. Q. Li, T. Liu, and D. R. Yang, Localized surface plasmon enhanced photoluminescence from ZnO films:Extraction direction and emitting layer thickness. J. Appl. Phys.106 (2009) 063120
    [12]D. M. Schaadt. B. Feng, and E. T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles, Appl. Phys. Lett.86 (2005)063106
    [13]S. H. Lim. W. Mar. P. Matheu, D. Derkacs. and E. T. Yu, Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles, J. Appl. Phys.101 (2007) 104309
    [14]S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, Nanoparticle-Induced Enhancement and Suppression of Photocurrent in a Silicon Photodiode. Nano Lett.8 (2008)624
    [15]J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, Integrated plasmonic lens photodetector, Appl. Phys. Lett.94 (2009) 083501
    [16]D. Derkacs. W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu. Nanoparticle-induced light scattering for improved performance of quantum-well solar cells. Appl. Phys. Lett.93 (2008) 091107
    [17]R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, and A. Burger, Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes, Appl. Phys. Lett.91 (2007) 191111
    [18]I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller. U. K. Mishra. and S. P. DenBaars, Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Phys. Rev. B 60 (1999) 11564-11567
    [19]K. W. Liu, B. Liu, S. J. Wang, Z. P. Wei. T. Wu. C. X. Cong, Z. X. Shen. X. W. Sun and H. D. Sun. Influence of thin metal nanolayers on the photodetective properties of ZnO thin films, J. Appl. Phys.106 (2009) 083110
    [20]H. S. Kang. G. H. Kim, D. L. Kim. H. W. Chang, B. D. Ahn, and S. Y. Lee. Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film. Appl. Phys. Lett.89 (2006) 181103
    [21]A. Teke.U. Ozgur. S. Dogan. X. Gu. H. Morkoc. B. Nemeth. J. Nause. and H. O. Everitt, Excitonic fine structure and recombination dynamics in single-crystalline ZnO, Phys. Rev. B 70 (2004) 195207
    [22]F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy, Appl. Phys. Lett.87 (2005) 252102
    [23]H. S. Kang, B. D. Ahn, J. H. Kim. G. H. Kim, S. H. Lim. H. W. Chang, and S. Y. Lee. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant, Appl. Phys. Lett.88 (2006) 202108
    [1]D. K.bHwang, M. S. Oh, J. H. Lim. C. G. Kang, and S. Park, Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO [J]. Appl. Phys. Lett, 2007,90:021106-021108.
    [2]O. Volnianska, P. Boguslawski, J. Kaczkowski, P. Jakubas, A. Jezierski, and E. Kaminska, Theory of doping properties of Ag acceptors in ZnO, Physical Review B 80(2009)245212
    [3]The melting point (decomposition) of Ag2O is 280℃, http://en.wikipedia.org/wiki/Silver_oxide.
    [4]The melting point (decomposition) of Ag2S is 825℃, http://en.wikipedia.org/wiki/Silver_sulfide
    [5]L. J. Sun, J. Hu, H. Y. He, X. P. Wu, X. Q. Xu, B. X. Lin, Z. X. Fu and B.C. Pan, Effects of S incorporation on Ag substitutional acceptors in ZnO:(Ag, S) thin films, Solid State Communications 149 (2009) 1663-1665
    [6]H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film, Appl. Phys. Lett.89 (2006) 181103
    [7]V. Vaithianathan, B. T. Lee, and S. S. Kim, Pulsed-laser-deposited p-type ZnO films with phosphorus doping, J. Appl. Phys.98 (2005) 043519
    [8]L. Duan, X. C. Yu, L. Gou, and L. Ni, Effect of Si substrate on the properties of p-type ZnO:Ag films, Optoelectronics and Advanced Materials-Rapid Communications,4 (2010) 1608-1611
    [9]G. T. Du, W. F. Liu, J. M. Bian, L. Z. Hu, H. W. Liang, X. S. Wang, A. M. Liu, T. P. Yang, Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis, Appl. Phys. Lett.89 (2006) 052113.
    [10]D. K. Hwang, S. H. Kang, J, H. Lim, E. J. Yang, J. Y. Oh, J. H.Yang, S. J. Park, p-ZnO/n-GaN heterostructure ZnO light-emitting diodes, Appl. Phys. Lett.86 (2005) 222101.
    [11]H. Y. Xu, Y. C. Liu. Y. X. Liu, C. S. Xu, C. L. Shao, R. Mu, Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes. Appl. Phys. B 80 (2005) 871-874.
    [12]B. D. Ahn, H. S. Kang, J. H. Kim, G. H. Kim, H. W. Chang, and S. Y. Lee, Synthesis and analysis of Ag-doped ZnO, J. Appl. Phys.100 (2006) 093701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700