用户名: 密码: 验证码:
小麦—冰草多粒新种质的遗传与利用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
穗粒数是小麦产量三因素之一,通过远缘杂交创造具有多粒特性的新种质对于提高产量具有重要意义。本研究以从普通小麦–冰草(Agropyron cristatum (L.) Gaertn.,2n=4x=28, PPPP)远缘杂交后代中获得的具有突出多粒特性的“普冰3504”为材料,通过多年多点种植、遗传效应分析、QTL定位以及差异表达谱分析等方法,试图阐明“普冰3504”多粒特性的生态稳定性,分析与不同穗粒数小麦亲本组配的遗传效应,发掘控制穗粒数等产量相关性状QTL、基因组区段以及幼穗分化过程中差异表达基因/蛋白,为“普冰3504”在育种中的有效利用和候选基因克隆奠定理论基础。
     1、生态稳定性评价。通过在北京、陕西杨凌、四川成都、江苏南京、河北石家庄五个生态区2006-2007及2007-2008连续两个年度的种植和穗粒数性状调查,发现“普冰3504”在五个生态区均表现出多粒特性,穗粒数为82.7–145,平均为102.66,显著高于当地对照品种(41.7–63.26粒/穗)的49.81%–163.39%,说明“普冰3504”的多粒特性具有广泛和稳定的生态适应性。
     2、不同穗粒数小麦背景下的遗传效应分析。采用不完全双列杂交试验设计,将“普冰3504”与9个不同穗粒数的小麦品种(高组>52粒,中组40-52粒,低组<40粒)进行杂交,并分别将F1、F2种植于北京、四川成都、陕西杨凌试验区进行连续三年(2008-2009,2009-2010和2010-2011)的穗粒数和千粒重性状调查,采用QGAStation1.0软件进行遗传分析。结果表明,“普冰3504”与不同小麦亲本组配的F2群体的穗粒数平均数,均显著高于小麦亲本,平均提高46.07%;F2群体穗粒数性状均以加性遗传方差为主,狭义遗传率平均值为31.16%;遗传变异系数平均值为25.19%;在5%和1%选择强度下,群体选择响应(遗传进度)平均值分别为27.86%和36.25%,相对遗传进度分别达44.20%和57.53%;所有亲本中,“普冰3504”的加性效应最为显著,预测值为27.417;同一组合内,“普冰3504”作为父本对穗粒数提高的育种效应优于其作为母本的遗传表现。穗粒数与千粒重负相关程度较低(R~2=0.0024),表明利用“普冰3504”改良小麦时,比较容易从杂交后代中选择出兼具高穗粒数和高千粒重的单株。
     3、“普冰3504”与京4839F_(2:3)群体表型分析。构建“普冰3504”与京4839F_(2:3)群体,并将F2群体在2008-2009年度种植于北京,F_3家系在2009-2010年度分别种植于北京、四川成都、陕西杨凌试验区,调查穗粒数、穗长、小穗粒数、每穗小穗数、千粒重、有效分蘖数、株高等7个重要农艺性状。结果表明,F2:3群体所有调查性状均具有丰富变异,广义遗传力均高于70%。其中,穗粒数性状在四个不同环境中的变异范围达16.78%-26.43%;广义遗传力为87%。并且,穗粒数与小穗粒数,每穗小穗数和穗长均正相关,尤其与小穗粒数正相关程度最高(R~2=0.2809-0.7225);同时,穗粒数与千粒重不相关;穗粒数与有效分蘖数(除2009年北京环境外)存在较低负相关(R~2=0.1521-0.3721)。
     4、遗传连锁图谱构建。利用190对SSR、EST-SSR及STS分子标记,对“普冰3504”与京4839F2代的282个单株进行基因型分析,构建了一张覆盖(除2B染色体外)小麦所有染色体的遗传图谱。总遗传距离为3171.60cM,标记间平均遗传距离为16.69cM。
     5、穗粒数及产量相关性状的QTL定位。利用Network2.0软件,结合构建的遗传图谱,共检测到穗粒数等上述7个产量相关性状的QTL位点37个(单环境分析)和25个(联合分析)。其中,位于1A染色体短臂Xmag834标记附近的QGnps.cd-1A是控制穗粒数的主效QTL,四个环境下可重复检测到,对表型贡献率达13.01%-64.47%;QKps.cd-1A.1,QSns.cd-1A和QSl.cd-2D分别是控制小穗粒数,每穗小穗数和穗长的主效QTL,其中,QKps.cd-1A.1,QSns.cd-1A与QGnps.cd-1A位置相同,条件QTL分析表明,QGnps.cd-1A位点是控制穗粒数、小穗粒数和每穗小穗数3个性状的“一因多效”位点,穗粒数与小穗粒数和每穗小穗数,尤其是与小穗粒数存在较强的遗传相关性。并且也检测到1A染色体上存在控制有效分蘖数的主效QTL QSnp.cd-1A,4B染色体上存在控制千粒重和株高的主效QTL QTgw.cd-4B,QHt.cd-4B。同时,穗粒数、小穗粒数、穗长、有效分蘖数及株高存在QTL与环境互作效应,互作贡献率为0.21%-7.89%。所有性状中70.3%(单环境分析)和57.6%(联合环境分析)QTL位点的加性增效效应由“普冰3504”所提供。
     6、重要基因组区段分析。研究共发现5个与多粒性状相关的重要基因组区段,分布于1A、4A、4B、2D和4D染色体上。其中,1A染色体短臂Xmag834-Xbarc83标记区间是一个新发现的可以显著改良穗部性状,并且具骨干亲本遗传特性的重要基因组区段,在今后改良小麦穗粒数中可能发挥关键作用。此区段内存在控制穗粒数、小穗粒数、每穗小穗数穗部相关性状的主效QTL位点,表型贡献率为1.57%-64.47%;同时还涉及千粒重及有效分蘖数产量相关性状的QTL位点;位点具有良好的环境重复性。除有效分蘖数外,所有性状QTL位点的加性增效基因均来自“普冰3504”。
     7、P基因组遗传成分检测。利用本实验室开发的3362对小麦Fukuho背景下P基因组特异引物,对“普冰3504”进行检测。结果发现,2对特异引物能够在“普冰3504”背景下显示特异扩增,利用“普冰3504”与京4839的F2群体将这2对特异引物分别定位于3A染色体和4A染色体。
     8、基因与蛋白差异表达谱分析。以多粒种质“普冰3504”、“普冰3228”、小麦–冰草附加系“4844-12”及其小麦亲本Fukuho为材料,利用Affymetrix小麦全基因组芯片技术及iTRAQ-MS/MS技术,从转录和翻译水平进行差异比较分析。共检测到差异表达探针组611个(上调表达为272个,下调表达为339个)及差异表达蛋白282个(上调表达为123个,下调表达为159个)。其中,抑制开花因子GASA5及ZCCT2, ZCCT1的上调表达和促进开花因子FCA的下调表达,可能导致茎尖分生组织到花分生组织转变过程延迟,从而利于小穗分化而增加小穗数;控制花器官分化基因包括具有AP2结构域的蛋白激酶及HUA2上调表达,则利于小花分化以增加小花数,上述基因可能参与多粒性状形成的表达。并根据芯片差异表达EST序列开发可追踪小麦Fukuho背景中的P基因组特异标记143对及可能与多粒性状相关的小麦STS分子标记132对,并将其中5对定位于染色体1A、3A、6A和7B上。
Grain number per spike (GNPS) is one of the three factors of wheat yield. High GNPS germplasm iskey genetic resources with high yielding potential. Pubing3504derived from progeny of the crossbetween common wheat and Agropyron cristatum (L.) Gaertn, showed prominent GNPS. In this study,by investigating the ecological stability of Pubing3504in different wheat ecological regions andanalyzing genetic effect of high GNPS under different wheat background, uncovering major QTLs andthe genomic regions of GNPS and yield-related traits, comparing differentially expressed genes andproteins of young panicle in Pubing3504, the genetic nature of high GNPS in Pubing3504wereexplained.
     1. The ecological adaptation was evaluated. Pubing3504were grown in five ecological areasincluding Beijing, Yangling in Shaanxi, Chengdou in Sichuan, Nanjing in Jiangsu and Shijiazhuang inHebei in2006-2007and2007-2008growth seasons and investigated GNPS. The results indicated thatPubing3504showed high GNPS in all ecological areas and the GNPS range from82.7to145with anaverage value of102.66, which was significant higher than control (41.7-63.26). The results indicatedthat Pubing3504had a stable and wide adaptability to different ecological regions.
     2. The genetic effect of GNPS under different genetic background was analyzed. An incompletediallel cross design was explored using Pubing3504as a common parent crossed with nine wheatvarieties (high GNPS level>52, mid GNPS level40-52, low GNPS level <40). The GNPS of F1hybridsand F2populations were investigated in Beijing, Sichuan and Shaanxi in2008-2009,2009-2010and2010-2011growth seasons, respectively. The results showed that the average relative increase ratio ofGNPS in populations was46.07%. Genetic analysis by QGAStation1.0software suggested that GNPSwas mainly controlled by additive genetic effects, and the average narrow-sense heritability was31.16%.Genetic variation coefficient was25.19%; and the genetic advance (selection response) under5%and1%selection intensity was27.86%and36.25%, respectively. The relative genetic advance was44.20%and57.53%, respectively. And additive effect of Pubing3504was the highest in parents with the value of27.417. In the same cross, the breeding effect of Pubing3504as the male parent was superior to itself asthe female parent. Correlation between GNPS and thousand grain weight (TGW) of F2populations waslow (R2=0.0024). The results showed that more individuals with both high GNPS and high TGW couldbe readily screened out from F2segregation populations using Pubing3504as parent.
     3. The F2:3population was developed from the cross between Pubing3504and Jing4839, and theseven yield traits including GNPS, spike length (SL), kernel number per spikelet (KPS), spikelet numberper spike (SNS), TGW, spike number per plant (SNP), plant height (PH) from F2population in Beijing(2008-2009) and F3family lines in Beijing, Sichuan, Shaanxi (2009-2010) were investigated,respectively. The results showed that the broad-sense heritability of all traits were up to70%. Correlationanalysis indicated that the significant positive correlations between GNPS and spike component factorsincluding KPS, SNS and SL, especially KPS (R2=0.2809-0.7225). While GNPS had insignificant correlation with TGW and weak correlation with SNP (R2=0.1521-0.3721).
     4. The genetic linkage map was constructed. A total of190SSR, EST-SSR and STS molecularmarkers were used to genotype the282individuals of F2population.The genetic map involving all thewheat chromosomes except2B, covered the genetic distance of3171.60cM with an average markerinterval of16.69cM.
     5. Based on the constructed genetic map, the QTL analysis by Network2.0for the yield traits wasconducted. As a result, a total of37QTLs (in a single environment) and25QTLs (in joint environment)were identified. A major QTL QGnps.cd-1A, were detected by four environments and explained13.01%-64.47%of the phenotypic variation. QKps.cd-1A.1, QSns.cd-1A and QSl.cd-2D were threemajor QTLs controlling KPS, SNS and SL, respectively. Among them, QKps.cd-1A.1and QSns.cd-1Awere in the same site with QGnps.cd-1A. Conditional QTL analysis showed that QGnps.cd-1A was apleiotropic QTL with GNPS, KPS and SNS. In addition, major QTL QSnp.cd-1A controlling SNP wasdetected, major QTLs including QTgw.cd-4B and QHt.cd-4B were detected, which controlled TGW andHT, respectively. The interaction of QTL×environment were detected with GNPS, KPS, SL, SNP andHT in joint environment analysis, and the contribution rate from QTL×environment interaction was0.21%-7.89%. Additive effects of70.3%(in a single environment) and57.6%(in joint environment)QTLs were positive contributed by Pubing3504alleles.
     6. QTL mapping results show that five important genomic regions on chromosomes1A,4A,4B,2D and4D were detected. Among them, the marker interval Xmag834-Xbarc83on the short arm ofchromosome1A was a novel important genomic region, which included the QTLs that controlled GNPS,KPS, SNS, TGW and SNP with good environmental repeatability. All these QTLs were major QTLsexcepting the TGW and all these QTLs additive effects came from Pubing3504excepting the SNP. Theregions showed the same genetic characteristics as founder parents and might play a very key role inimproving wheat yield in future.
     7. Fragments of P genome in Pubing3504were detected and tracked. There were3362P genomespecific markers in common wheat Fukuho background were used to identify alien P chromosome in“Pubing3504”. The results showed that two markers could be detected in “Pubing3504”, and mappingedon3A and4A chromosomes, respectively.
     8. Gene and protein expression profiling analysis were carried out. Compared to the control parentFukuho, the gene and protein expression profiling were studied in young spike of high GNPS wheatgermplasm (Pubing3504, Pubing3228and4844-12) using Affymetrix wheat chip and iTRAQ-MS/MStechnology. There were611transcripts (272up-regulated and339down-regulated transcripts) and282proteins (123up-regulated and159down-regulated proteins) expressed differentially in high GNPSgermplasm totally. Among them, flowering repressor GASA5, ZCCT2, ZCCT1were up-regulated, andflowering promotive factor FCA was down-regulated, implying that the conversion of the SAM into thefloral meristem was delayed, which was beneficial to forming more spikelets; Meanwhile, protein kinasewith AP2domain and HUA2were up-regulated, implying that expression of genes controlling thenumbers of floral organs were enhanced, which were beneficial to the floret formation in high GNPS germplasm. Both of the two reasons above might involve the formation of high GNPS characteristics.Furthermore, the143pairs P genome-special STS markers and132pairs the STS markers of wheatrelated to high GNPS were developed by differentially expressed EST sequences in genechips and fiveof them were mapped on1A,3A,6A and7B chromosomes, respectively.
引文
1.安调过,许红星,许云峰.小麦远缘杂交种质资源创新.中国生态农业学报,2011,19(5):1011-1019.
    2.崔金梅,郭天财.小麦的穗.北京:中国农业出版社,2008.
    3.丁同翕,杨桂英.矮秆多花多粒小麦种质新品系天水9160.中国种业,2000,(4):50.
    4.窦全文,陈佩度,解俊峰.巨穗小麦种质中外源遗传物质的细胞遗传学和分子生物学鉴定.植物学报(英文版),2004,45(9):1109-1115.
    5.窦全文,解俊峰,陈志国.利用巨穗小麦种质培育的小麦新品系抗旱特性.西北农业学报,2002,11(3):25-28.
    6.范绍强,郑王义,谢咸升,李峰,宋保林.小麦抗黄矮病材料产量性状遗传分析.华北农学报,2005,20(2):89-92.
    7.耿涛,秦淑琴.冬小麦杂种F2代主要性状遗传进度的研究.塔里木农垦大学学报,1995,7(2):5-9.
    8.何中虎,夏先春,陈新民,庄巧生.中国小麦育种进展与展望.作物学报,2011,37(2):202-215.
    9.黎裕,王建康,邱丽娟,马有志,李新海,万建民.中国作物分子育种现状与发展前景.作物学报,2010,36(9):1425-1430.
    10.李立会,董玉琛,周荣华,李秀全,杨欣明.小麦×冰草属间杂种F1的植株再生及其变异.遗传学报,1992,19(3):250-258.
    11.李立会,董玉琛.普通小麦与沙生冰草属间杂种的产生及细胞遗传学研究.中国科学(B辑),1990,(5):492-496.
    12.李立会,董玉琛.普通小麦×根茎冰草×黑麦三属杂种自交可育性的细胞学机理.遗传学报,1995,22(4):280-285.
    13.李立会,李秀全,李培,董玉深,赵桂慎.小麦一冰草异源附加系的创建.遗传学报,1998a,25(6):538-544.
    14.李立会,杨欣明,李秀全,董玉琛,陈学明.通过属间杂交向小麦转移冰草优异基因的研究.中国农业科学,1998b,31(6):1-5.
    15.李立会.普通小麦与沙生冰草、根茎冰草属间杂种的产生及其细胞遗传学研究.中国农业科学,1991,24(6):1-10.
    16.李维明,吴为人,卢浩然, A.J.Worland, C.N.Law.小麦7D染色体数量性状基因定位和效应估计的研究.作物学报,1996,22(6):641-645.
    17.李小军.小麦骨干亲本碧蚂4号的遗传效应分析.[博士学位论文].北京:中国农业科学院,2009.
    18.李玉玲,董永彬,牛素贞.爆裂玉米3个膨爆特性的非条件和条件QTL分析.分子植物育种,2006,4(3):372-380.
    19.李泽宇.春小麦数量性状的遗传模型分析.黑龙江农业科学,1999,(3):7-10.
    20.廖祥政,王瑾,周荣华,任正隆,贾继增.发掘人工合成小麦中千粒重QTL的有利等位基因.作物学报,2008,34(11):1877-1884.
    21.林红.大豆不同杂交组合类型F2群体遗传变异系数的分析.大豆科学,1997,16(1):71-75.
    22.刘冬成,高睦枪,关荣霞,李润枝,曹双河,郭小丽,张爱民.小麦株高性状的QTL分析.遗传学报,2002,29(8):706-711.
    23.刘三才,郑殿升.两份小麦多粒种质的遗传评价.作物品种资源,1997,(1):22-24.
    24.卢庆善,赵廷昌.作物遗传改良.北京:中国农业科学技术出版社,2011.
    25.栾洋.小麦-冰草异源染色体易位的原位杂交与分子标记鉴定.[硕士学位论文].北京:中国农业科学院,2010.
    26.马育华.植物育种的数量遗传学基础.南京:江苏科学技术出版社,1982.
    27.彭勃,王阳,李永祥,刘成,张岩,刘志斋,谭巍巍,王迪,孙宝成,石云素.玉米籽粒产量与产量构成因子的关系及条件QTL分析.作物学报,2010,36(10):1624-1633.
    28.邱丽娟,郭勇,黎裕,王晓波,周国安,刘章雄,周时荣,李新海,马有志,王建康.中国作物新基因发掘:现状,挑战与展望.作物学报,2011,37(1):1-17.
    29.宋宪亮,孙学振,张天真.偏分离及对植物遗传作图的影响.农业生物技术学报,2006,14(2):286-292.
    30.宿俊吉.普通小麦-冰草异源二体附加系中冰草P染色体的分子标记.[硕士学位论文].杨凌:西北农林科技大学,2007.
    31.王翠玲,高海涛,王书子,段国辉,吴少辉,张学品,吕树作.冬小麦品质与产量性状的遗传分析.麦类作物学报,2003,23(3):26-28.
    32.翟虎渠,王建康.应用数量遗传(第二版).北京:中国农业科学技术出版社,2007.
    33.王健胜,刘伟华,王辉,武军,杨欣明,李秀全,高爱农,李立会.小麦-冰草衍生系3228主要产量性状的遗传分析.植物遗传资源学报,2010,11(2):147-151.
    34.王健胜,王辉,刘伟华,武军,李立会.小麦-冰草多粒新种质及其多粒性遗传分析.中国农业科学,2009,42(6):1889-1895.
    35.王健胜.小麦—冰草多粒衍生系3228主要产量性状的遗传分析及QTL定位.[博士学位论文].杨凌:西北农林科技大学,2009.
    36.王瑾,廖祥政,杨学举,周荣华,贾继增.人工合成小麦Am3大穗多粒QTL的发掘与利用.植物遗传资源学报,2008,9(3):277-282.
    37.王瑞霞,张秀英,伍玲,王瑞,海林,闫长生,游光霞,肖世和.不同生态环境条件下小麦籽粒灌浆速率及千粒重QTL分析.作物学报,2008,34(10):1750-1756.
    38.徐洪琦,郭建华.五个高产蚕豆品种产量因素遗传变异的分析.遗传,1984,6(5):11-13.
    39.杨恩年,李俊,杨武云,邹裕春.矮杆大穗高产小麦育种亲本SW3243重要农艺性状特性及育种应用效果.中国农学通报,2010,26(12):114-117.
    40.姚金保,任丽娟,张平平,杨学明,马鸿翔,姚国才,张鹏,周淼平.小麦产量构成因素的双列杂交分析.核农学报,2011,25(4):633-638.
    41.姚金保,王书文,姚国才,杨学明.小麦产量构成因素的遗传分析.上海农业学报,2004,20(1):45-48.
    42.张坤普,徐宪斌,田纪春.小麦籽粒产量及穗部相关性状的QTL定位.作物学报,2009,35(2):270-278.
    43.张茂银,刘云英.大赖草DNA导入小麦获得大穗品系的农艺性状和贮藏蛋白研究.麦类作物学报,2000,20(3):6-10.
    44.张文涛,陈新宏,赵继新,武军,刘淑会,杜万里,刘芳军.大穗多花种质B46的选育及细胞遗传学鉴定.西北植物学报,2011,31(3):451-455.
    45.赵会杰,任琴.大穗型小麦兰考906分蘖发育的生理特征及其调控.麦类作物学报,2001,21(4):69-71.
    46.赵庆昌.遗传学.北京:科学出版社,2007.
    47.赵一洲,王志兴,孙中泰.粳稻杂种F2代主要性状的遗传变异及相关分析.垦殖与稻作,2004,(6):3-7.
    48.郑有良,兰秀锦.利用黑麦异源基因选育大穗型超高产小麦新品种研究.四川农业大学学报,1997,15(2):166-170.
    49.郑有良,颜济.小麦多小穗品系“10—A”4个特异性状的基因效应及其相关分析.作物学报,1994,20(5):536-541.
    50.钟永玲,曹慧.中国小麦产业发展现状、调控政策及建议.农学学报,2011,1(10):49-54.
    51.周淼平,任丽娟,张旭,余桂红,马鸿翔,陆维忠.小麦产量性状的QTL分析.麦类作物学报,2006,26(4):35-40.
    52.周荣华,董玉琛,朱振东,贾继增.利用人工合成小麦培育的大穗抗白粉小麦基因资源GB4.植物遗传资源学报,2007,8(3):378-378.
    53.朱军.遗传模型分析方法.北京:中国农业出版社,1994.
    54.朱军.作物杂种后代基因型值和杂种优势的预测方法.生物数学学报,1993,8(1):32-44.
    55.庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社,2003.
    56.左清凡,朱军,刘宜柏,潘晓云,张建中.非等试验设计水稻产量构成性状基因型×环境互作的遗传分析.作物学报,2001,27(4):482-488.
    57. Ammiraju J, Dholakia B, Santra D, Singh H, Lagu M, Tamhankar S, Dhaliwal H, Rao V, Gupta V,Ranjekar P. Identification of inter simple sequence repeat (ISSR) markers associated with seedsize in wheat. Theoretical and Applied Genetics,2001,102(5):726-732.
    58. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q,Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science,2005,309(5735):741-745.
    59. B rner A, Schumann E, Fürste A, C ster H, Leithold B, R der M, Weber W. Mapping ofquantitative trait loci determining agronomic important characters in hexaploid wheat (Triticumaestivum L.). Theoretical and Applied Genetics,2002,105(6):921-936.
    60. Burle I, Smith L, Baulcombe DC, Dean C. Widespread role for the flowering-time regulators FCAand FPA in RNA-mediated chromatin silencing. Science,2007,318(5847):109-112.
    61. Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T. Genetic dissection ofgrain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limitedenvironments. Theoretical and Applied Genetics,2012, DOI10.1007/s00122-012-1831-9.
    62. Blanco A, Mangini G, Giancaspro A, Giove S, Colasuonno P, Simeone R, Signorile A, De Vita P,Mastrangelo A, Cattivelli L. Relationships between grain protein content and grain yieldcomponents through quantitative trait locus analyses in a recombinant inbred line populationderived from two elite durum wheat cultivars. Molecular Breeding,2012,30(1):79-92.
    63. Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W. thicktassel dwarf1encodes a putative maize ortholog of the Arabidopsis CLAVATA1leucine-rich repeatreceptor-like kinase. Development,2005,132(6):1235-1245.
    64. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. Dependence of stem cell fate inArabidopsis on a feedback loop regulated by CLV3activity. Science,2000,289(5479):617-619.
    65. Cadalen T, Sourdille P, Charmet G, Tixier M, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M.Molecular markers linked to genes affecting plant height in wheat using a doubled-haploidpopulation. Theoretical and Applied Genetics,1998,96(6):933-940.
    66. Cao Y, Dai Y, Cui S, Ma L. Histone H2B monoubiquitination in the chromatin of FLOWERINGLOCUS C regulates flowering time in Arabidopsis. The Plant Cell,2008,20(10):2586-2602.
    67. Chen GB, Zhu J. Software for the Classical Quantitative Genetics. Institute of Bioinformatics,Zhejiang University, Hangzhou, China,2003.
    68. Chen X. A microRNA as a translational repressor of APETALA2in Arabidopsis flowerdevelopment. Science,2004,303(5666):2022-2025.
    69. Chen X, Meyerowitz EM. HUA1and HUA2are two members of the floral homeotic AGAMOUSpathway. Molecular Cell,1999,3(3):349-360.
    70. Chu CG, Xu S, Friesen T, Faris J. Whole genome mapping in a wheat doubled haploid populationusing SSRs and TRAPs and the identification of QTL for agronomic traits. Molecular Breeding,2008,22(2):251-266.
    71. Chu H, Qian Q, Liang W, Yin C, Tan H, Yao X, Yuan Z, Yang J, Huang H, Luo D. The FLORALORGAN NUMBER4gene encoding a putative ortholog of Arabidopsis CLAVATA3regulatesapical meristem size in rice. Plant Physiology,2006,142(3):1039-1052.
    72. Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by themaize AP2genes ids1and sid1. Development,2008,135(18):3013-3019.
    73. Chuck G, Meeley R, Irish E, Sakai H, Hake S. The maize tasselseed4microRNA controls sexdetermination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Naturegenetics,2007,39(12):1517-1521.
    74. Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ. The control of spikelet meristemidentity by the branched silkless1gene in maize. Science,2002,298(5596):1238-1241.
    75. Cui F, Ding A, Li J, Zhao C, Wang L, Wang X, Qi X, Li X, Li G, Gao J. QTL detection of sevenspike-related traits and their genetic correlations in wheat using two related RIL populations.Euphytica,2012,183(2):207-226.
    76. Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D. Conditional QTLmapping for plant height with respect to the length of the spike and internode in two mappingpopulations of wheat. Theoretical and Applied Genetics,2011,122(8):1517-1536.
    77. Cuthbert JL, Somers DJ, Br lé-Babel AL, Brown PD, Crow GH. Molecular mapping ofquantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.).Theoretical and Applied Genetics,2008,117(4):595-608.
    78. de Buhr MF, M hler M, Geffers R, Hansen W, Westendorf AM, Lauber J, Buer J, SchlegelbergerB, Hedrich HJ, Bleich A. Cd14, Gbp1, and Pla2g2a: three major candidate genes for experimentalIBD identified by combining QTL and microarray analyses. Physiological Genomics,2006,25(3):426-434.
    79. Deng S, Wu X, Wu Y, Zhou R, Wang H, Jia J, Liu S. Characterization and precise mapping of aQTL increasing spike number with pleiotropic effects in wheat. Theoretical and Applied Genetics,2011,122(2):281-289.
    80. Dholakia B, Ammiraju J, Singh H, Lagu M, R der M, Rao V, Dhaliwal H, Ranjekar P, Gupta V,Weber W. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding,2003,122(5):392-395.
    81. Distelfeld A, Tranquilli G, Li C, Yan L, Dubcovsky J. Genetic and molecular characterization ofthe VRN2loci in tetraploid wheat. Plant Physiology,2009,149(1):245.
    82. Doerge RW. Mapping and analysis of quantitative trait loci in experimental populations. NatureReviews Genetics,2002,3(1):43-52.
    83. E. AR. Differentiating between two Norin10/Brevor14semi-dwarf genes in a common geneticbackground. Seiken Ziho,1970,(22):83-90.
    84. EricChan.取自2007-02-06. http://www.biotech.org.cn/news/news/show.php?id=46818
    85. Fondevilla S, Küster H, Krajinski F, Cubero JI, Rubiales D. Identification of genes differentiallyexpressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology.BMC Genomics,2011,12(1):28-42.
    86. Ge X, Chen W, Song S, Wang W, Hu S, Yu J. Transcriptomic profiling of mature embryo from anelite super-hybrid rice LYP9and its parental lines. BMC Plant Biology,2008,8(1):114-133.
    87. Giura A, Saulescu N. Chromosomal location of genes controlling grain size in a large grainedselection of wheat (Triticum aestivum L.). Euphytica,1996,89(1):77-80.
    88. Golabadi M, Arzani A, Mirmohammadi Maibody SAM, Sayed Tabatabaei B, Mohammadi S.Identification of microsatellite markers linked with yield components under drought stress atterminal growth stages in durum wheat. Euphytica,2011,177(2):207-221.
    89. Greenup AG, Sasani S, Oliver SN, Walford SA, Millar AA, Trevaskis B. Transcriptome Analysisof the Vernalization Response in Barley (Hordeum vulgare) Seedlings. PLoS ONE,2011,6(3):e17900.
    90. Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, WingenL, Snape J. Meta-QTL analysis of the genetic control of crop height in elite European winterwheat germplasm. Molecular Breeding,2012,29(1):159-171.
    91. Grini PE, Thorstensen T, Alm V, Vizcay-Barrena G, Windju SS, J rstad TS, Wilson ZA, Aalen RB.The ASH1HOMOLOG2(ASHH2) histone H3methyltransferase is required for ovule and antherdevelopment in Arabidopsis. PLoS ONE,2009,4(11): e7817.
    92. Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein-content, grain yieldand thousand-kernel weight in bread wheat. Theoretical and Applied Genetics,2003,106(6):1032-1040.
    93. Guo Z, Song Y, Zhou R, Ren Z, Jia J. Discovery, evaluation and distribution of haplotypes of thewheat Ppd‐D1gene. New Phytologist,2010,185(3):841-851.
    94. Hai L, Guo H, Wagner C, Xiao S, Friedt W. Genomic regions for yield and yield parameters inChinese winter wheat (Triticum aestivum L.) genotypes tested under varying environmentscorrespond to QTL in widely different wheat materials. Plant Science,2008,175(3):226-232.
    95. Haian Fu RRS, and Shane C.Masters.14-3-3protein:structure,function,and regulation. AnnualReview of Pharmacol Toxicol,2000,40:617-647.
    96. Hallauer AR, Miranda J.Quantitative genetics in maize breeding. Iowa State Univ Press, Ames,1988a.
    97. He G, Elling AA, Deng XW. The epigenome and plant development. Annual Review of PlantBiology,2011,62:411-435.
    98. Heidari B, Sayed-Tabatabaei BE, Saeidi G, Kearsey M, Suenaga K, Gulick P. Mapping QTL forgrain yield, yield components, and spike features in a doubled haploid population of bread wheat.Genome,2011,54(6):517-527.
    99. Holding DR, Hunter BG, Klingler JP, Wu S, Guo X, Gibbon BC, Wu R, Schulze JM, Jung R,Larkins BA. Characterization of opaque2modifier QTLs and candidate genes in recombinantinbred lines derived from the K0326Y quality protein maize inbred. Theoretical and AppliedGenetics,2011,122(4):783-794.
    100. Huang X, C ster H, Ganal M, R der M. Advanced backcross QTL analysis for the identificationof quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theoreticaland Applied Genetics,2003,106(8):1379-1389.
    101. Huang X, Cloutier S, Lycar L, Radovanovic N, Humphreys D, Noll J, Somers D, Brown P.Molecular detection of QTLs for agronomic and quality traits in a doubled haploid populationderived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied Genetics,2006,113(4):753-766.
    102. Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T.High-throughput genotyping by whole-genome resequencing. Genome Research,2009a,19(6):1068-1076.
    103. Huang X, Kempf H, Ganal M, R der M. Advanced backcross QTL analysis in progenies derivedfrom a cross between a German elite winter wheat variety and a synthetic wheat (Triticumaestivum L.). Theoretical and Applied Genetics,2004,109(5):933-943.
    104. Huang X, Qian Q, Liu Z, Sun H, He S, Xia G, Chu C, Li J, Fu X. Natural variation at the DEP1locus enhances grain yield in rice. Cell,2009b,41(4):494-497.
    105. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z. Genome-wideassociation studies of14agronomic traits in rice landraces. Nature Genetics,2010,42(11):961-967.
    106. Ikeda-Kawakatsu K, Yasuno N, Oikawa T, Iida S, Nagato Y, Maekawa M, Kyozuka J. Expressionlevel of ABERRANT PANICLE ORGANIZATION1determines rice inflorescence form throughcontrol of cell proliferation in the meristem. Plant Physiology,2009,150(2):736-747.
    107. Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION1, encoding an F-box protein, regulates meristem fate. The Plant Journal,2007,51(6):1030-1040.
    108. Ishiguro S, Watanabe Y, Ito N, Nonaka H, Takeda N, Sakai T, Kanaya H, Okada K. SHEPHERDis the Arabidopsis GRP94responsible for the formation of functional CLAVATA proteins. TheEMBO Journal,2002,21(5):898-908.
    109. Jackson D, Sweet GF. Flower initiation in temperate woody plants. Hortic.Abstr.,1972,42:9-24.
    110. Jantasuriyarat C, Vales M, Watson C, Riera-Lizarazu O. Identification and mapping of genetic lociaffecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.).Theoretical and Applied Genetics,2004,108(2):261-273.
    111. Jiang L, Qian Q, Mao L, Zhou QY, Zhai WX. Characterization of the rice floral organ numbermutant fon3. Journal of Integrative Plant Biology,2005,47(1):100-106.
    112. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X. Regulation ofOsSPL14by OsmiR156defines ideal plant architecture in rice. Nature Genetics,2010,42(6):541-544.
    113. Joseph Sambrook, David WR. Molecular Cloning: A Laboratory Manual(3rd ed.). New York:Cold Spring Harbor Laboratory Press,2001.黄培堂等译.北京:科学出版社,2002.
    114. Jun Z. Mixed model approaches for estimating genetic variances and covariances. Journal ofBiomathematics,1992,7(1):1-11.
    115. Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components onchromosome5A of wheat. Theoretical and Applied Genetics,2000,101(7):1114-1121.
    116. Kianian S, Quiros C. Generation of a Brassica oleracea composite RFLP map: linkagearrangements among various populations and evolutionary implications. Theoretical and AppliedGenetics,1992,84(5):544-554.
    117. Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J.LAX and SPA: major regulators of shoot branching in rice. Proceedings of the National Academyof Sciences,2003,100(20):11765-11770.
    118. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required toprevent the formation of axillary meristems and to establish floral meristem identity in ricespikelets. Development,2003,130(16):3841-3850.
    119. Kumar N, Kulwal P, Balyan H, Gupta P. QTL mapping for yield and yield contributing traits intwo mapping populations of bread wheat. Molecular Breeding,2007,19(2):163-177.
    120. Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, Balyan HS, Gupta PK. QTLanalysis for grain weight in common wheat. Euphytica,2006,151(2):135-144.
    121. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimentaland natural populations. Genomics,1987,1(2):174-181.
    122. Lee DY, Lee J, Moon S, Park SY, An G. The rice heterochronic gene SUPERNUMERARY BRACTregulates the transition from spikelet meristem to floral meristem. The Plant Journal,2007,49(1):64-78.
    123. Lee I, Seo YS, Coltrane D, Hwang S, Oh T, Marcotte EM, Ronald PC. Genetic dissection of thebiotic stress response using a genome-scale gene network for rice. Proceedings of the NationalAcademy of Sciences,2011,108(45):18548-18553.
    124. Li J, Lindqvist-Kreuze H, Tian Z, Liu J, Song B, Landeo J, Portal L, Gastelo M, Frisancho J,Sanchez L. Conditional QTL underlying resistance to late blight in a diploid potato population.Theoretical and Applied Genetics,2012,124(7):1339-1350.
    125. Li L, Yang X, Li X, Dong Y, Chen X. Introduction of desirable genes from Agropyron cristatuminto common wheat by intergeneric hybridization. Scientia Agricultura Sinica,1998,31(6):1-5.
    126. Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei T. A intervarietal geneticmap and QTL analysis for yield traits in wheat. Molecular Breeding,2007,20(2):167-178.
    127. Li W, Nelson J, Chu C, Shi L, Huang S, Liu D. Chromosomal locations and genetic relationshipsof tiller and spike characters in wheat. Euphytica,2002,125(3):357-366.
    128. Li Y, Zhou R, Wang J, Liao X, Branlard G, Jia J. Novel and favorable QTL allele clusters forend-use quality revealed by introgression lines derived from synthetic wheat. Molecular Breeding,2012,29(3):627-643.
    129. Lincoln Taiz, Eduardo Zeiger. Plant Physiology. Sinauer Associates Inc,2006.宋纯鹏王学路等译,北京:科学出版社,2009.
    130. Liu R, Wang B, Guo W, Wang L, Zhang T. Differential gene expression and associated QTLmapping for cotton yield based on a cDNA-AFLP transcriptome map in an immortalized F2.Theoretical and Applied Genetics,2011,123(3):439-454.
    131. Liu R, Zhang H, Zhao P, Zhang Z, Liang W, Tian Z, Zheng Y. Mining of Candidate Maize Genesfor Nitrogen Use Efficiency by Integrating Gene Expression and QTL Data. Plant MolecularBiology Reporter,2012,30(2):297-308.
    132. Luan Y, Wang X, Liu W, Li C, Zhang J, Gao A, Wang Y, Yang X, Li L. Production andidentification of wheat-Agropyron cristatum6P translocation lines. Planta,2010,232(2):501-510.
    133. Luo J, Ning T, Sun Y, Zhu J, Zhu Y, Lin Q, Yang D. Proteomic analysis of rice endosperm cells inresponse to expression of hGM-CSF. Journal of Proteome Research,2008,8(2):829-837.
    134. Lyttle TW. Segregation distorters. Annual Review of Genetics,1991,25(1):511-581.
    135. Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q. Molecular geneticanalysis of five spike-related traits in wheat using RIL and immortalized F2populations.Molecular Genetics and Genomics,2007,277(1):31-42.
    136. Marza F, Bai GH, Carver B, Zhou WC. Quantitative trait loci for yield and related traits in thewheat population Ning7840×Clark. Theoretical and Applied Genetics,2006,112(4):688-698.
    137. Mayr M, May D, Oren G, Madhu B, Gilon D, Yin X, Xing Q, Drozdov I, Ainali C, Tsoka S.Metabolic homeostasis is maintained in myocardial hibernation by adaptive changes in thetranscriptome and proteome. Journal of Molecular and Cellular Cardiology,2011,50(6):982-990.
    138. McCartney C, Somers D, Humphreys D, Lukow O, Ames N, Noll J, Cloutier S, McCallum B.Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452×'ACDomain'. Genome,2005,48(5):870-883.
    139. Michaels SD, Amasino RM. Loss of FLOWERING LOCUS C activity eliminates thelate-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsivenessto vernalization. The Plant Cell,2001,13(4):935-941.
    140. Mir R, Kumar N, Jaiswal V, Girdharwal N, Prasad M, Balyan H, Gupta P. Genetic dissection ofgrain weight in bread wheat through quantitative trait locus interval and association mapping.Molecular Breeding,2012,29(4):963-972.
    141. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M.OsSPL14promotes panicle branching and higher grain productivity in rice. Nature Genetics,2010,42(6):545-549.
    142. Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T,Handa H, Ishida H. A wheat homolog of MOTHER OF FT AND TFL1acts in the regulation ofgermination. The Plant Cell,2011,23(9):3215-3229.
    143. Narasimhamoorthy B, Gill B, Fritz A, Nelson J, Brown-Guedira G. Advanced backcross QTLanalysis of a hard winter wheat×synthetic wheat population. Theoretical and Applied Genetics,2006,112(5):787-796.
    144. Oikawa T, Kyozuka J. Two-step regulation of LAX PANICLE1protein accumulation in axillarymeristem formation in rice. The Plant Cell,2009,21(4):1095-1108.
    145. Pelgas B, Bousquet J, Meirmans PG, Ritland K, Isabel N. QTL mapping in white spruce: genemaps and genomic regions underlying adaptive traits across pedigrees, years and environments.BMC Genomics,2011,12(1):145(23p.).
    146. Quarrie S, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusi D,Waterman E, Weyen J. A high-density genetic map of hexaploid wheat (Triticum aestivum L.)from the cross Chinese Spring×SQ1and its use to compare QTLs for grain yield across a range ofenvironments. Theoretical and Applied Genetics,2005,110(5):865-880.
    147. Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K,Delcour JA. Combined meta-genomics analyses unravel candidate genes for the grain dietary fibercontent in bread wheat (Triticum aestivum L.). Functional&Integrative Genomics,2011,11(1):71-83.
    148. R der MS, Huang XQ, B rner A. Fine mapping of the region on wheat chromosome7Dcontrolling grain weight. Functional&Integrative Genomics,2008,8(1):79-86.
    149. Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal H, Chhuneja P, Lagu M, Gupt V.QTL mapping of1000-kernel weight, kernel length, and kernel width in bread wheat (Triticumaestivum L.). Journal of Applied Genetics,2010,51(4):421-429.
    150. Rosegrant MW, Agcaoili M. Global food demand,supply,and price prospects to2010.International Food Policy Research Institute, Washington,D.C., U.S.A.
    151. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. Highly specific gene silencing byartificial microRNAs in Arabidopsis. The Plant Cell,2006,18(5):1121-1133.
    152. Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D,Karnitz L. An acetylation site in the middle domain of Hsp90regulates chaperone function.Molecular Cell,2007,25(1):151-159.
    153. Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.). Theoretical and Applied Genetics,2004,109(6):1105-1114.
    154. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes apreviously unknown RING-type E3ubiquitin ligase. Nature Genetics,2007,39(5):623-630.
    155. Sourdille P, Cadalen T, Guyomarc'h H, Snape J, Perretant M, Charmet G, Boeuf C, Bernard S,Bernard M. An update of the Courtot×Chinese Spring intervarietal molecular marker linkage mapfor the QTL detection of agronomic traits in wheat. Theoretical and Applied Genetics,2003,106(3):530-538.
    156. Sourdille P, Tixier M, Charmet G, Gay G, Cadalen T, Bernard S, Bernard M. Location of genesinvolved in ear compactness in wheat (Triticum aestivum L.) by means of molecular markers.Molecular Breeding,2000,6(3):247-255.
    157. Stuber CW, Edwards MD, Wendel JF. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. Crop Science,1987,27(4):639-648.
    158. Suenaga K, Khairallah M, William H, Hoisington DA. A new intervarietal linkage map and itsapplication for quantitative trait locus analysis of" gigas" features in bread wheat. Genome,2005,48(1):65-75.
    159. Suh HS, Heu MH. The segregation mode of plant height in the cross of rice varieties. XI. Linkageanalysis of the semi-dwarfness of the rice variety ‘Tongil’. Korean Journal of Breeding,1978,(10):1-6.
    160. Sun Q, Zhou DX. Rice jmjC domain-containing gene JMJ706encodes H3K9demethylaserequired for floral organ development. Proceedings of the National Academy of Sciences,2008,105(36):13679-13684.
    161. Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS. QTLanalysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica,2009,165(3):615-624.
    162. Suzaki T, Ohneda M, Toriba T, Yoshida A, Hirano HY. FON2SPARE1redundantly regulates floralmeristem maintenance with FLORAL ORGAN NUMBER2in rice. PLoS Genetics,2009,5(10):e1000693.
    163. Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano HY. The gene FLORAL ORGANNUMBER1regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinaseorthologous to Arabidopsis CLAVATA1. Development,2004,131(22):5649-5657.
    164. Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS All possible modesof gene action are observed in a global comparison of gene expression in a maize F1hybrid andits inbred parents. Proceedings of the National Academy of Sciences,2006,103(18):6805-6810.
    165. Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B,Bustamante C, Yoshimura A, Doi K. Evolutionary history of GS3, a gene conferring grain lengthin rice. Genetics,2009,182(4):1323-1334.
    166. Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D. Control of a key transitionfrom prostrate to erect growth in rice domestication. Nature Genetics,2008,40(11):1360-1364.
    167. Tasleem-Tahir A, Nadaud I, Girousse C, Martre P, Marion D, Branlard G. Proteomic analysis ofperipheral layers during wheat (Triticum aestivum L.) grain development. Proteomics,2011,11(3):371-379.
    168. Varshney R, Prasad M, Roy J, Kumar N, Dhaliwal H, Balyan H, Gupta P. Identification of eightchromosomes and a microsatellite marker on1AS associated with QTL for grain weight in breadwheat. Theoretical and Applied Genetics,2000,100(8):1290-1294.
    169. Walton P. Quantitative inheritance of yield and associated factors in spring wheat. Euphytica,1972,21(3):553-556.
    170. Wang H, Zhang H, Wong YH, Voolstra C, Ravasi T. Rapid transcriptome and proteome profilingof a non-model marine invertebrate, Bugula neritina. Proteomics,2010,10(16):2972-2981.
    171. Wang J, Liu W, Wang H, Li L, Wu J, Yang X, Li X, Gao A. QTL mapping of yield-related traits inthe wheat germplasm3228. Euphytica,2011,177(2):277-292.
    172. Wang R, Hai L, Zhang X, You G, Yan C, Xiao S. QTL mapping for grain filling rate andyield-related traits in RILs of the Chinese winter wheat population Heshangmai×Yu8679. TAG,2009,118(2):313-325.
    173. Wang W, Meng B, Ge X, Song S, Yang Y, Yu X, Wang L, Hu S, Liu S, Yu J. Proteomic profilingof rice embryos from a hybrid rice cultivar and its parental lines. Proteomics,2008,8(22):4808-4821.
    174. Wang Z, Wu X, Ren Q, Chang X, Li R, Jing R. QTL mapping for developmental behavior of plantheight in wheat (Triticum aestivum L.). Euphytica,2010,174(3):447-458.
    175. Wei G, Tao Y, Liu G, Chen C, Luo R, Xia H, Gan Q, Zeng H, Lu Z, Han Y. A transcriptomicanalysis of superhybrid rice LYP9and its parents. Proceedings of the National Academy ofSciences,2009,106(19):7695-7701.
    176. Wellmer F, Riechmann JL. Gene networks controlling the initiation of flower development.Trends in Genetics,2010,26(12):519-527.
    177. Wichmann F, Asp T, Widmer F, K lliker R. Transcriptional responses of Italian ryegrass duringinteraction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterialwilt resistance. Theoretical and Applied Genetics,2011,122(3):567-579.
    178. Worland A, Korzun V, R der M, Ganal M, Law C. Genetic analysis of the dwarfing gene Rht8inwheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8locus ofwheat as revealed by microsatellite screening. Theoretical and Applied Genetics,1998,96(8):1110-1120.
    179. Worland AJ. The influence of flowering time genes on environmental adaptability in Europeanwheats. Euphytica,1996,89(1):49-57.
    180. Wu J, Yang X, Wang H, Li H, Li L, Li X, Liu W. The introgression of chromosome6P specifyingfor increased numbers of florets and kernels from Agropyron cristatum into wheat. Theoreticaland Applied Genetics,2006,114(1):13-20.
    181. Wu M, Zhang J, Wang J, Yang X, Gao A, Zhang X, Liu W, Li L. Cloning and characterization ofrepetitive sequences and development of SCAR markers specific for the P genome of Agropyroncristatum. Euphytica,2010,172(3):363-372.
    182. Wu X, Wang Z, Chang X, Jing R. Genetic dissection of the developmental behaviours of plantheight in wheat under diverse water regimes. Journal of Experimental Botany,2010,61(11):2923-2937.
    183. Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J. A high-densityintervarietal map of the wheat genome enriched with markers derived from expressed sequencetags. Theoretical and Applied Genetics,2008,117(2):181-189.
    184. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X. Natural variationin Ghd7is an important regulator of heading date and yield potential in rice. Nature Genetics,2008,40(6):761-767.
    185. Yang J, Zhu J, Williams RW. Mapping the genetic architecture of complex traits in experimentalpopulations. Bioinformatics,2007,23(12):1527-1536.
    186. Yao Y, Ni Z, Zhang Y, Chen Y, Ding Y, Han Z, Liu Z, Sun Q. Identification of differentiallyexpressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-basedcDNA subtraction. Plant Molecular Biology,2005,58(3):367-384.
    187. Zaynali Nezhad K, Weber W, R der M, Sharma S, Lohwasser U, Meyer R, Saal B, B rner A.QTL analysis for thousand-grain weight under terminal drought stress in bread wheat(Triticumaestivum L.). Euphytica,2012,186(1):127-138.
    188. Zhang J, Liu W, Yang X, Gao A, Li X, Wu X, Li L. Isolation and characterization of two putativecytokinin oxidase genes related to grain number per spike phenotype in wheat. Molecular BiologyReports,2011,38(4):2337-2347.
    189. Zhang S, Yang C, Peng J, Sun S, Wang X. GASA5, a regulator of flowering time and stem growthin Arabidopsis thaliana. Plant Molecular Biology,2009,69(6):745-759.
    190. Zheng BS, Le Gouis J, Leflon M, Rong WY, Laperche A, Brancourt-Hulmel M. Using probegenotypes to dissect QTL×environment interactions for grain yield components in winter wheat.Theoretical and Applied Genetics,2010,121(8):1501-1517.
    191. Zheng Y, Yen C, Yang J. Monosomic analysis for total and sterile floret number per spike in themultispikelet line10-A of common wheat. Wheat Information Service,1993,77:25-28.
    192. Zhu J.1995. Analysis of conditional genetic effects and variance components in developmentalgenetics. Genetics,1993,141(4):1633-1639.
    193. Zhu QH, Upadhyaya N, Gubler F, Helliwell C. Over-expression of miR172causes loss of spikeletdeterminacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biology,2009,9(1):149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700