用户名: 密码: 验证码:
三氧化二砷对急性哮喘小鼠CD4~+T细胞凋亡的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章三氧化二砷对急性哮喘小鼠气道高反应性及气道炎症的影响
     目的
     (1)建立急性哮喘小鼠模型,并鉴定建立的模型是否成功;
     (2)观察三氧化二砷对急性哮喘小鼠气道高反应性及气道炎症的影响。
     方法
     将30只SPF级BALB/c雌性小鼠随机分为三组:正常组(PBS组)、哮喘组(OVA/PBS组)和三氧化二砷组(OVA/ATO组),每组10只。所有小鼠适应性饲养一周后按以下方法建立急性哮喘小鼠模型。PBS组于第1、13天经腹腔注射PBS缓冲液(PH7.2-7.4)0.2ml,第19-24天连续6天每天予以6ml PBS缓冲液(PH7.2-7.4)雾化30min,每次雾化前30min予以腹腔注射PBS缓冲液(PH7.2-7.4)0.2ml; OVA/PBS组于第1、13天经腹腔注射OVA与氢氧化铝凝胶的混合溶液(10μgOVA(GradeV)和2mg氢氧化铝凝胶溶于PBS缓冲液中,充分混匀)0.2ml,第19-24天连续6天每天予以5%OVA (GradeV)溶液6ml雾化30min,每次雾化前30mmin予以腹腔注射PBS缓冲液(PH7.2-7.4)0.2ml; OVA/ATO组于第1、13天腹腔注射OVA与氢氧化铝凝胶的混合溶液(10μg OVA(GradeV)和2mg氢氧化铝凝胶溶于PBS缓冲液中,充分混匀)0.2ml,第19-24天连续6天每天予以5%OVA (GradeV)溶液6ml雾化30min,每次雾化前30mmin予以腹腔注射三氧化二砷溶液(用量:2.5mg/kgx小鼠体重,配成0.2ml溶液)。第25天处理所有小鼠,检测以下指标:(1)对小鼠的一般行为活动进行观察;(2)不同浓度的乙酰甲胆碱激发小鼠后,采用有创肺阻抗法测定小鼠的气道反应性;(3)收集BALF行细胞计数及分类;(4)肺组织病理切片观察炎症细胞浸润及黏液分泌情况。计量资料以均数±标准差(x±S)表示。各组数据先行正态检验和方差齐性检验,如果数据不符合正态分布,则经自然对数转换为正态分布的数据。若数据方差不齐,则行Dunnett's T3法。多组均数间比较采用单因素方差分析(Analysis of Variance, ANOVA),各组间两两比较采用LSD检验。P<0.05表示差异有统计学意义。
     结果
     实验前:各组小鼠的外观、行为、对刺激的反应、活动及体重均无明显差异。致敏阶段:各组小鼠的腹腔注射部位无红肿、溃烂。激发阶段:PBS组小鼠饮食正常,活动灵敏,皮毛清洁有光泽,OVA/PBS组小鼠早期出现兴奋、打喷嚏、抓耳挠腮,后期出现匍匐不起、嗜睡症状,OVA/ATO组小鼠出现打喷嚏、兴奋的症状较OVA/PBS组轻,无嗜睡症状。而且,实验全程OVA/ATO组小鼠没有活动减少、厌食、体重减轻等异常症状。
     OVA/PBS组小鼠气道反应性较PBS组显著增高(P<0.05);而OVA/ATO组小鼠气道反应性较OVA/PBS组明显降低(P<0.05)。
     OVA/PBS组小鼠BALF中白细胞总数为21.11±3.28×104/ml、嗜酸性粒细胞数为3.10±0.50×104/ml、淋巴细胞数为6.60±0.97×104/ml、中性粒细胞数为4.92±0.45×104/ml,较PBS组均显著增加(均P<0.01);OVA/ATO组BALF中白细胞总数为13.04±2.58×104/ml、嗜酸性粒细胞数为1.06±0.19×104/ml、淋巴细胞数为2.43±0.28×104/ml、中性粒细胞数为2.36±0.29×104/ml,较OVA/PBS组均明显降低(均P<0.01)。
     与PBS组相比,OVA/PBS组小鼠肺组织大量炎症细胞浸润、杯状细胞增生、气道分泌大量黏液(P<0.01); OVA/ATO组气道炎症和黏液分泌状态较OVA/PBS组有所减轻(P<0.05)。
     结论
     (1)本实验中建立的急性哮喘小鼠模型是成功的;
     (2)三氧化二砷能减轻急性哮喘小鼠的气道高反应性及气道炎症。
     第二章三氧化二砷诱导急性哮喘小鼠CD4+T细胞凋亡
     目的
     检测三氧化二砷干预对急性哮喘小鼠CD4+T细胞凋亡的影响。
     方法
     在体部分:将18只SPF级BALB/c雌性小鼠随机分为三组:正常组(PBS组)、哮喘组(OVA/PBS组)和三氧化二砷组(OVA/ATO组),每组6只,按第一章中的方法建立急性哮喘小鼠模型,第25天处理小鼠,利用免疫磁珠分离纯化各组小鼠脾CD4+T细胞,计数CD4+T细胞总数,然后用完全性RPMI-1640培养基按2×106cell/ml的浓度接种细胞,同时加入ConA (5ug/ml)进行刺激,置于培养箱中培养24h,用流式细胞术检测细胞的凋亡率。
     离体部分:免疫磁珠分离纯化OVA/PBS组小鼠脾CD4+T细胞,然后用完全性RPMI-1640培养基按2×106cell/ml的浓度接种细胞,加入ConA (5ug/ml)进行刺激,同时分别加入四组不同浓度的三氧化二砷溶液(0μM,1μM,3μM,5μM)培养20小时,用流式细胞术检测细胞的凋亡率。计量资料以均数±标准差(x±S)表示。各组数据先行正态检验和方差齐性检验,如果数据不符合正态分布,则经自然对数转换为正态分布的数据。若数据方差不齐,则行Dunnett's T3法。多组均数间比较采用单因素方差分析(Analysis of Variance, ANOVA),各组间两两比较采用LSD检验。P<0.05表示差异有统计学意义。
     结果
     在体部分:OVA/PBS组小鼠脾CD4+T细胞总数为(17.88±2.13)×108/L,较PBS组显著增多(P<0.01);OVA/ATO组小鼠脾CD4+T细胞总数为(12.92±2.31)×108/L,较OVA/PBS组显著减少(P<0.05)。OVA/PBS组CD4+T细胞的凋亡率为20.69±2.68%,较PBS组显著下降(P<0.05);OVA/ATO组CD4+T细胞的凋亡率为34.71±0.98%,较OVA/PBS组显著升高(P<0.05)。
     离体部分:3μM组CD4+T细胞的凋亡率为31.85±3.73%,较0μM组显著升高(P<0.05);5μM组CD4+T细胞的凋亡率为40.54±1.99%,较0μM组和3μM组均显著升高(P<0.01和P<0.05)。
     结论
     三氧化二砷诱导急性哮喘小鼠CD4+T细胞的凋亡。
     第三章内质网应激-CHOP途径参与三氧化二砷诱导CD4+T细胞的凋亡
     目的
     (1)探讨三氧化二砷干预对CD4+T细胞GRP78和CHOP蛋白表达的影响;
     (2)探索CHOP蛋白在三氧化二砷诱导CD4+T细胞凋亡中的作用。
     方法
     第一部分:免疫磁珠分离纯化第一章中已建模成功的OVA/PBS组小鼠脾CD4+T细胞,体外加入5μM三氧化二砷,分别培养0h,2.5h,5h,7.5h后,检测蛋白GRP78. CHOP的表达。
     第二部分:将OVA/PBS组小鼠脾CD4+T细胞分成两组:CHOP siRNA组和control siRNA组。首先,用可以沉默CHOP表达的CHOP siRNA和无沉默效果的对照片段contol siRNA分别转染两组CD4+T细胞,转染成功后,用real-timePCR和western blot分别检测两组CHOP mRNA和蛋白的表达,评估siRNA的沉默效果,达到满意效果后加入5μM三氧化二砷培养20h,检测各组细胞的凋亡率。
     计量资料以均数±标准差(x±S)表示。各组数据先行正态检验和方差齐性检验,如果数据不符合正态分布,则经自然对数转换为正态分布的数据。若数据方差不齐,则行Dunnett's T3法。两组均数间比较采用独立样本t检验,多组均数间比较采用单因素方差分析(Analysis of Variance, ANOVA),各组间两两比较采用LSD检验。P<0.05表示差异有统计学意义。
     结果
     ATO干预2.5h组,5h组,7.5h组GRP78蛋白的相对表达量较0h组均显著增多(分别是P<0.05,P<0.01,P<0.05);5h组GRP78蛋白的相对表达量较2.5h组和7.5h组均显著升高(均P<0.05);而2.5h组GRP78蛋白的相对表达量与7.5h组之间未见明显组间差异(P>0.05)。
     ATO干预5h组CHOP蛋白的相对表达量较0h组、2.5h组和7.5h组均显著增多(均P<0.05);
     CHOP siRNA组CHOP mRNA和蛋白的表达量较control siRNA组均显著下降(均P<0.01);
     予以ATO干预后CHOP siRNA组CD4+T细胞的凋亡率为32.39±2.30%,较control siRNA组显著下降(P<0.05)。
     结论
     (1)三氧化二砷能影响CD4+T细胞中GRP78蛋白和CHOP蛋白的表达;
     (2)转染CHOP siRNA能沉默CHOP蛋白的表达,并能部分阻断三氧化二砷诱导的CD4+T细胞的凋亡;
     (3)内质网应激-CHOP途径参与三氧化二砷诱导的CD4+T细胞的凋亡。
Chapter1The effect of Arsenic trioxide on airway hyperreactivity and airway inflamation in the acute asthma mouse
     Objective
     (1Establishing a mouse model of acute asthma, and identify the model;
     (2)Observe the effect of ATO (Arsenic Trioxide, ATO) on airway hyperreactivity and airway inflamation in the acute asthma mouse.
     Method
     Thirty SPF BALB/c female mice were randomly divided into three groups:the normal group(PBS group), the asthma group(OVA/PBS group) and the ATO group(OVA/ATO group), each group contains10mice. Establishing a mouse model of acute asthma after all the mice are raise adaptively for one week according to the following methods. The mice of PBS group were intraperitoneal injected with0.2ml PBS buffer(PH7.2-7.4) at the1st and13th day, and were atomized with6ml PBS buffer(PH7.2-7.4) for30min from the19th to the24th day successively (sum6days). The mice of the PBS group received the intraperitoneal injection of0.2ml PBS buffer(PH7.2-7.4)30min before each atomization. The mice of OVA/PBS group were intraperitoneal injected with0.2ml mixed solution of OVA(ovalbumin, OVA) and aluminium hydroxide gel(10μg OVA and2mg aluminium hydroxide gel were dissolved in PBS buffer thoroughly) at the1st and13th day, and were atomized with6ml5%OVA(Grade V) for30min from the19th to the24th day successively (sum6days). The mice of the OVA/PBS group received the intraperitoneal injection of0.2ml PBS buffer(PH7.2-7.4)30min before each atomization. The mice of OVA/ATO group were intraperitoneal injected with0.2ml mixed solution of OVA and aluminium hydroxide gel(10μg OVA and2mg aluminium hydroxide gel were dissolved in PBS buffer thoroughly) at the1st and13th day, and were atomized with6ml 5%OVA(Grade V) for30min from the19th to the24th day successively (sum6days). The mice of the OVA/ATO group received the intraperitoneal injection of0.2ml ATO solution (2.5mg/kgxmouse weights)30min before each atomization. The mice were sacrificed at25th day, the following characters were detected,(1)the ordinary behavior of the mice,(2)airway hyperreactivity was determined after methacholine challenge by invasive pulmonary impedance method,(3) collecting the BALF and carrying out the cell count and cell classification,(4) making lung pathological slices and observing inflammatory cell infiltration and mucus secretion. All the data was presented with Mean±SD, at first, the data was taken test of normality and homogeneity test of variance. If the data does not conform to normal distribution, the natural logarithmic transformation was conducted. In the case of unequal variances, the Dunnett's T3method was conducted. Analysis of Variance(ANOVA) was conducted for Comparison the difference between multiple sets of mean, and the LSD test was conducted for the pairwise comparison of multiple group data. P<0.05brings the statistics significant.
     Result
     Prior to the experiment, there is no difference between each group mice in appearance, behavior, the response to stimulation, activity and weight. During the sensitization phase, there is no red, swollen and ulcerate in the injection site of each mice. During the challenge phase, the mice of PBS group feed normally and possess sensitive reflection with clean and smooth fur. The mice of OVA/PBS group displayed exciting, sneezing and scratching in early stage, which displayed crawling and somnolence in the later stage. The mice of OVA/ATO group showed mild symptoms of exciting and sneezing than the OVA/PBS group, and didn't show obvious somnolence. Meanwhile, there was no activity decrease, anorexia and weight decrease occurred in the mice of OVA/ATO group.
     Compared with the PBS group, airway responsiveness statistically increased in the OVA/PBS group (P<0.05); airway hyperreactivity (AHR) was eased in the OVA/ATO group compared with that in the OVA/PBS group (P<0.05).
     In the BALF of OVA/PBS group, the amount of different cell is list as following, the total of leukocytes is21.11±3.28x104/ml, the Eos is3.10±0.50×104/ml, the Lym is6.60±0.97×104/ml, the Neu is4.92±0.45×104/ml, which are significantly increased (all P<0.01) compared with PBS group. In the OVA/ATO group, the amount of different cell is list as following, the total of leukocytes is13.04±2.58×104/ml, the Eos is1.06±0.19×104/ml, the Lym is2.43±0.28×104/ml, the Neu is2.36±0.29×104/ml, which are significantly decreased (all P<0.01) compared with the OVA/PBS group.
     Compared with the PBS group, inflammatory cell infiltration, goblet cell hyperplasia and mucus secretion in lung were far more obvious in OVA/PBS group (P<0.01); airway inflammation and mucus hypersecretion of OVA/ATO group were significantly alleviated than OVA/PBS group (P<0.05).
     Conclusion
     (1)The mouse model of acute asthma established in this experiment was successful.
     (2)Treatment of ATO can alleviate the AHR and airway inflammation of the acute asthma mouse.
     Chapter2Arsenic Trioxide promotes the CD4+T cells apoptosis in the acute asthma mouse
     Objective
     Detecting of the effect of arsenic trioxide on the CD4+T cells apoptosis in the acute asthma mouse.
     Method
     In vivo:Eighteen SPF BALB/c female mice were randomly divided into three groups:the normal group(PBS group), the asthma group(OVA/PBS group) and the ATO group(OVA/ATO group), each group contains6mice. Establishing a mouse model of acute asthma according the method in the chapter1. The mice were sacrificed at25th day, Splenic CD4+T cells of each group were separated and purified by magnetic cell sorting device (MACS). The number of CD4+T cells of each group was counted. Then CD4+T cells were cultured with RPMI-1640according to the concentration of2×106cell/ml, meanwhile, the ConA(5ug/ml) were added. The CD4+T cells were cultured in the incubator(5%C02,37℃)for24hours. When finishing the culture, flow cytometry(FC) was conducted to detect the apoptosis rate of CD4+T cells.
     In vitro:Splenic CD4+T cells of mice in the OVA/PBS group were separated and purified by MACS. Then CD4+T cells were cultured with RPMI-1640according to the concentration of2×106cell/ml, meanwhile, the ConA(5ug/ml) and ATO were added. The CD4+T cells were divided into four groups according to the concentration of the added ATO which including OμM group, luM group,3μM group, and5μM group. All the CD4+T cells were cultured in the incubator(5%CO2,37℃) for20hours. When finishing the culture, flow cytometry(FC) was conducted to detect the apoptosis rate of CD4+T cells. All the data was presented with Mean±SD. At first, the data of each group was taken test of normality and homogeneity test of variance. If the data does not conform to normal distribution, the natural logarithmic transformation was conducted. In the case of unequal variances, the Dunnett's T3method was conducted. Analysis of Variance(ANOVA) was conducted for Comparison the difference between multiple sets of mean, and the LSD test was conducted for the pairwise comparison of multiple group data. P<0.05brings the statistics significant.
     Result
     In vivo, in the OVA/PBS group, the number of spleen CD4+T cells is (17.88±2.13)×108/L, which is significantly increased when compared with PBS group(P<0.01). The number of the OVA/ATO group is (12.92±2.31)×108/L, which is significantly decreased when compared with OVA/PBS group(P<0.05). In OVA/PBS group, the apoptotic rate of CD4+T cells is20.69±2.68%, which is significantly decreased when compared with PBS group(P<0.05). In OVA/ATO group, the apoptotic rate of CD4+T cells is34.71±0.98%, which is significantly increased when compared with OVA/PBS group(P<0.05).
     In vitro, in the3μM group, the apoptotic rate of CD4+T cells is31.85±3.73%, which is significantly increased when compared with OμM group(P<0.05). In the5μM group, the apoptotic rate of CD4+T cells is40.54±1.99%, which is significantly increased when compared with OμM group or3μM group (P<0.01or P<0.05).
     Conclusion
     Arsenic trioxide promotes the CD4+T cell apoptosis in the acute asthma mouse.
     Chapter3Endoplasmic reticulum stress-CHOP pathway involved in the CD4+T cell apoptosis which induced by arsenic trioxide
     Objective
     (1)Probing the effect of arsenic trioxide on the protein expression of GRP78and CHOP in CD4+T cells.
     (2)Expounding the role of CHOP protein in the CD4+T cell apoptosis which induced by arsenic trioxide.
     Method
     Part one, Splenic CD4+T cells of OVA/PBS group were separated and purified by MACS. The CD4+T cells were cultured with5μM ATO for different time which including Oh,2.5h,5h and7.5h. And the protein expression of GRP78and CHOP were detected.
     Part two, Splenic CD4+T cells of OVA/PBS group were divided into CHOP siRNA group and control siRNA group. Transfection of CHOP siRNA can silent the protein expression of CHOP. But the control siRNA doesn't have any silent effection which was used as a negative control. First we transfected the CD4+T cells in CHOP siRNA group with CHOP siRNA and transfected the CD4+T cells in control siRNA group with control siRNA. Then we detected the expression of CHOP mRNA by real-time PCR and the protein expression by western blot to estimate the silent effect of CHOP siRNA. After the successful transfection, the CD4+T cells of both group were cultured with5μM ATO for20hours. Flow cytometry(FC) were conducted to detect the apoptotic rate of CD4+T cells.
     All the data was presented with Mean±SD. At first, the data of each group was taken test of normality and homogeneity test of variance. If the data does not conform to normal distribution, the natural logarithmic transformation was conducted. In the case of unequal variances, the Dunnett's T3method was conducted. Independent-samples T test were conducted to compare the difference between two groups. Analysis of Variance(ANOVA) was conducted for comparing the difference between multiple sets of mean, and the LSD test was conducted for the pairwise comparison of multiple group data. P<0.05brings the statistics significant.
     Result
     The protein expression of GRP78in2.5h group,5h group and7.5h group was significantly increased when compared with Oh group (P<0.05, P<0.01, P<0.05respectively). The protein expression of GRP78in5h group also is more than the2.5h group and7.5h group(both P<0.05). There is no obvious difference between2.5h group and7.5h group(P>0.05).
     The protein expression of CHOP in5h group is more than Oh group,2.5h group and7.5h group (all P<0.05).
     The mRNA and protein expression of CHOP in CHOP siRNA group both significantly decreased when compared with control siRNA group (both P<0.01).
     After cultured with ATO, the CD4+T cell apoptotic rate in CHOP siRNA group is32.39±2.30%, which is significantly decreased when compared with control siRNA group (P<0.05).
     Conclusion
     (1)Arsenic trioxide effects the protein expression of GRP78and CHOP in CD4+T cells.
     (2)Transfection of CHOP siRNA silents the protein expression of CHOP and partially blocks the CD4+T cells apoptosis, which induced by arsenic trioxide.
     (3)Endoplasmic reticulum stress-CHOP pathway involved in the CD4+T cell apoptosis which induced by arsenic trioxide.
引文
1.钟南山.支气管哮喘—基础与临床.北京:人民卫生出版社;2006.
    2. Graubner W W H. The bronchial muscle spasm in the dog and its relation to medicamentous asthma therapy. Arch Int Pharmacodyn Ther. 1950;84(2):336-348.
    3. Nadel J. Inflammation and asthma. J Allergy Clin Immunol. 1984;73(5):651-653.
    4. Galli S J, Tsai M, Piliponsky A M. The development of allergic inflammation. Nature.2008;454(7203):445-454.
    5.王长征.可望用于临床的治疗难治性哮喘的新药物和新方法.中华结核和呼吸杂志.2010;33(8):132-138.
    6. Barnes P, Greening A, Crompton G Glucocorticoid resistance in asthma. Am J Respir Crit Care Med.1995;152(6):125-140.
    7.冯益真,马沛然.哮喘片治疗小儿支气管哮喘303例远期随访.临床儿科杂志.1989;1(7):328-329.
    8. Chu K H, Lee C C, Hsin S C, et al. Arsenic trioxide alleviates airway hyperresponsiveness and eosinophilia in a murine model of asthma. Cellular and Molecular Immunology.2010;7(5):375-380.
    9.陈小芳,覃冬云,梁标.三氧化二砷对小鼠过敏性哮喘的治疗作用观察.实用临床医学2005;6∽:4-6.
    10.吴曙粤,利华,莫诚航,等.三氧化二砷平喘机制的动物实验研究.广西医科大学学报2006;23(2):223-224.
    11. Mcmillan S J, Lloyd C M. Prolonged allergen challenge in mice leads to persistent airway remodelling. Clin Exp Allergy.2004;34(3):497-507.
    12. Temelkovski J, Hogan S, Shepherd D, Foster P, Kumar R. An improved murine model of asthma:selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax.1998;53(10):849-856.
    13. R P. Animal models for asthma:controversial aspects and unsolved problems. Pathobiology.2003;70(5):252-254.
    14. Melgert B, Postma D, Kuipers I, et al. Female mice are more susceptible to the development of allergic airway inflammation than male mice. Clin Exp Allergy. 2005;35(11):496-503.
    15. Kips J C, Anderson G P, Fredberg J J, et al. Murine models of asthma. European Respiratory Journal.2003;22(2):374-382.
    16. Wang G, Liu Y, Yang M, et al. Effects of beta-arrestin 2 on cytokine production of CD4+T lymphocytes of mice with allergic asthma. Indian J Exp Biol.2011;49(8):585-593.
    17. Liu Y, Wang G Y, Liu S K, et al. β-arrestin2 stimulates interleukin-17 production and expression of CD4+T lymphocytes in a murine asthma model. Iran J Allergy Asthma Immunol.2011; 10(3):171-182.
    18.何权瀛.对我国哮喘动物实验研究的评价与思考.国外医学呼吸系统分册.2005;25(9):718-719.
    19.沈华浩,王苹莉.如何评价哮喘动物模型.医学与哲学2007;28(8):13-15.
    20. Maazi H, Shirinbak S, Bloksma N, Nawijn M C, van Oosterhout A J M. Iron administration reduces airway hyperreactivity and eosinophilia in a mouse model of allergic asthma. Clinical & Experimental Immunology. 2011;166(1):80-86.
    21. Moon H G, Kim Y S, Choi J P, et al. Aspirin attenuates the anti-inflammatory effects of theophylline via inhibition of cAMP production in mice with non-eosinophilic asthma. Experimental and Molecular Medicine. 2010;42(1):47-60.
    22. Quaedvlieg V, Henket M, Sele J, Louis R. Cytokine production from sputum cells in eosinophilic versus non-eosinophilic asthmatics. Clinical and Experimental Immunology.2006;143(1):161-166.
    23. Baraldo S, Turato G, Bazzan E, et al. Noneosinophilic asthma in children: relation with airway remodelling. European Respiratory Journal. 2011;38(3):575-583.
    24. Berry M, Morgan A, Shaw D E, et al. Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax. 2007;62(12):1043-1049.
    25. Zhou L F, Zhu Y, Cui X F, et al. Arsenic trioxide, a potent inhibitor of NF-κB, abrogates allergen-induced airway hyperresponsiveness and inflammation. Respiratory Research.2006;7(1):146-157.
    26. Zhao Y, Yang J, Gao Y. Altered expressions of helper T cell (Th)1, Th2, and Th17 cytokines in CD8(+) and γδ T cells in patients with allergic asthma. J Asthma.2011;48(5):429-436.
    27. Ryzhov S, Goldstein A, Matafonov A, et al. Adenosine-activated mast cells induce IgE synthesis by B lymphocytes:an A2B-mediated process involving Th2 cytokines IL-4 and IL-13 with implications for asthma. J Immunol. 2004; 172(12):7726-7733.
    28. Yamaguchi Y, Hayashi Y, Sugama Y, et al. Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. JExp Med.1988; 167(5):1737-1742.
    29. Cohn L, Tepper J, Bottomly K. Cutting Edge:IL-4-Independent Induction of Airway Hyperresponsiveness by Th2, But Not Thl, Cells. J Immunol 1998;161(8):3813-3816.
    30. McGee H, Agrawal D. TH2 cells in the pathogenesis of airway remodeling: regulatory T cells a plausible panacea for asthma. Immunol Res. 2006;35(3):219-231.
    31. Ramos Barbon D, Presley J F, Hamid Q A, Fixman E D, Martin J G Antigen-specific CD4+ T cells drive airway smooth muscle remodeling in experimental asthma. Journal of Clinical Investigation. 2005; 115(6):1580-1589.
    32. Nagao K, Tanaka H, Komai M, et al. Role of prostaglandin 12 in airway remodeling induced by repeated allergen challenge in mice. Am J Respir Cell MolBiol 2003;29(3):314-320.
    33. Booth B W, Sandifer T, Martin E L, Martin L D. IL-13-induced proliferation of airway epithelial cells:mediation by intracellular growth factor mobilization and AD AM17. Respiratory Research.2007;8(1):51-62.
    34. Elias J, Zhu Z, Chupp G, Homer R. Airway remodeling in asthma. J Clin Invest.1999;104(8):1001-1006.
    35. Sun Y, Zhou Q, Yao W. Sputum interleukin-17 is increased and associated with airway neutrophilia in patients with severe asthma. Chin Med J (Engl). 2005;118(11):953-956.
    36. Doe C, Bafadhel M, Siddiqui S, et al. Expression of the T Helper 17-Associated Cytokines IL-17A and IL-17F in Asthma and COPD. Chest. 2010;138(5):1140-1147.
    37. Wang Q, Li H, Yao Y, Xia D, Zhou J. The Overexpression of Heparin-Binding Epidermal Growth Factor Is Responsible for Thl7-Induced Airway Remodeling in an Experimental Asthma Model. The Journal of Immunology. 2010;185(2):834-841.
    38. Li J, Xiang X, Li J, Li W, Liu S. Change and significance of peripheral blood Thl7 cells in patients with acute asthma. Zhong Nan Da Xue Xue Bao Yi Xue Ban,.2010;35(2):129-133.
    39. McKinley L, Alcorn J, Peterson A, et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. Immunol 2008;181(6):4089-4097.
    40. Jia Y, Liu D, Xiao D, et al. Expression of AFP and STAT3 is involved in arsenic trioxide-induced apoptosis and inhibition of proliferation in AFP-producing gastric cancer cells. PLoS One.2013;8(1):e54774.
    41. Liu Z, Tseng J, Hong D, Huang H. Suppression of TG-interacting factor sensitizes arsenic trioxide-induced apoptosis in human hepatocellular carcinoma cells. Biochem J..2011;438(2):349-358.
    42. Wang Y, Zhang Y, Yang L, et al. Arsenic trioxide induces the apoptosis of human breast cancer MCF-7 cells through activation of caspase-3 and inhibition of HERG channels. Experimental and Therapeutic Medicine. 2011;2(3):481-486.
    43.覃冬云,梁标.亚砷酸钠对哮喘患者及正常人外周血T细胞凋亡诱导作用的比较.中国现代医学杂志.2004;14(7):108-110.
    44. Corrigan C, Kay A. CD4 T-lymphocyte activation in acute severe asthma: relationship to disease severity and atopic status. Am. Rev. Respir.Dis. 1990;141(4):970-977.
    45. Jayaraman S, Castro M, O'Sullivan M, Bragdon M J, Holtzman M J. Resistance to Fas-Mediated T Cell Apoptosis in Asthma. J Immunol 1999;162(3):1717-1722.
    46.覃冬云,吴铁,刘军麟,等.三氧化二砷对哮喘患者及正常人外周血T细胞凋亡的影响.南方医科大学学报2007;27(3):358-361.
    47. Binet, Francois, Chiasson, et al. Evidence that endoplasmic reticulum (ER) stress and caspase-4 activation occur in human neutrophils. Biochemical and Biophysical Research Communications.2010;391(1):18-23.
    48. Elmore S. Apoptosis:A Review of Programmed Cell Death. Toxicol Pathol. 2007;35(4):495-516.
    49. Zhang S X, Sanders E, Wang J J. Endoplasmic reticulum stress and inflammation:mechanisms and implications in diabetic retinopathy. Journal of Ocular Biology, Diseases, and Informatics.2012;4(1-2):51-61.
    50. Xu W, Charles I G, Moncada S. Nitric oxide:orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response. Cell Research.2005;15(1):63-65.
    51. Hosoi T S M, Baba S, Ozawa K. Effect of pranoprofen on endoplasmic reticulum stress in the primary cultured glial cells. Neurochem Int. 2009;54(1):1-6.
    52. Glembotski C C. The Role of the Unfolded Protein Response in the Heart. J Mol Cell Cardiol.2008;44(3):453-459.
    53. Shen X, Zhang K, Kaufman R. The unfolded protein response-a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat. 2004;28(1-2):79-92.
    54. Haas I. BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia.1994;50(11-12):1012-1020.
    55. Lee A. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods.2005;35(4):373-381.
    56. Nugent A E, Speicher D M, Gradisar I, et al. Advanced Osteoarthritis in Humans Is Associated With Altered Collagen VI Expression and Upregulation of ER-stress Markers Grp78 and Bag-1. Journal of Histochemistry and Cytochemistry.2009;57(10):923-931.
    57. Kishi S, Shimoke K, Nakatani Y, et al. Nerve growth factor attenuates 2-deoxy-d-glucose-triggered endoplasmic reticulum stress-mediated apoptosis via enhanced expression of GRP78. Neurosci Res.2010;66(1):14-21.
    58. Liu C Y. The unfolded protein response. Journal of Cell Science. 2003;116(10):1861-1862.
    59. Zhang K, Kaufman R J. Signaling the Unfolded Protein Response from the Endoplasmic Reticulum. Journal of Biological Chemistry. 2004;279(25):25935-25938.
    60. Shen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell.2002;3(1):99-111.
    61. Ma Y, Hendershot L. The unfolding tale of the unfolded protein response. Cell. 2001;107(7):827-830.
    62. Harding H, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell.2000;5(5):897-904.
    63. Scheuner D, Song B, McEwen E, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7(6):165-176.
    64. Harding H, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619-633.
    65. Fawcett T, Martindale J, Guyton K, Hai T, Holbrook N. Complexes containing activating transcription factor (ATF) cAMP responsive element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem. J..1999;339(4):135-141.
    66. McCullough K, Martindale J, Klotz L, Aw T, Holbrook N. Gaddl 53 Sensitizes Cells to Endoplasmic Reticulum Stress by Down-Regulating Bc12 and Perturbing the Cellular Redox State. Molecular and Cellular Biology. 2001;21(4):1249-1259.
    67. Ron D, Habener J. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992;6(3):439-453.
    68. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ.2004;11(4):381-389.
    69. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol.2007;8(7):519-529.
    70. Ferri K, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol.2001;3(11):255-263.
    71. Silva R, Ries V, Oo T, et al. CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. JNeurochem.2005;95(4):974-986.
    72. Hsin T C, Cheng C Y, Fa H C, Wen C Y, Chun C P. Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress. Toxicology and Applied Pharmacology.2009;241(2):173-181.
    73. Choi J, Choi A, Yoon H, Choe W. Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction. Experimental and Molecular Medicine.2010;42(12):811-822.
    74. Chuang M T, Ho F M, Wu C C, et al.15,16-Dihydrotanshinone I, a Compound of Salvia miltiorrhiza Bunge, Induces Apoptosis through Inducing Endoplasmic Reticular Stress in Human Prostate Carcinoma Cells. Evidence-Based Complementary and Alternative Medicine.2011;2011 (3):1-9.
    75.宋小燕,赵永波,周晓玲,等.大鼠脑缺血再灌注后GRP78和GADD153的表达变化研究.中风与神经疾病杂志.2008;25(2):139-141.
    76.吴乐萌,郭秀娟,曹安民,等.内质网应激反应蛋白在光照损伤诱导视网膜变性中的作用.北京大学学报医学版.2008;40(4):425-430.
    77. Xiang J, Gu X, Qian S, Chen Z. Endoplasmic Reticulum Stress-Mediated Apoptosis Involved in Indirect Recognition Pathway Blockade Induces Long-Term Heart Allograft Survival. Journal of Biomedicine and Biotechnology.2010;2010(1):1-10.
    78. Matsumoto M, Minami M, Takeda K, Sakao Y, Akira S. Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBSLett.1996;395(2):143-147.
    79. MH. v d S, Meems H, Houweling M, Helms J B, Vaandrager A B. Induction of CCAAT/Enhancer-binding Protein (C/EBP)-homologous Protein/Growth Arrest and DNA Damage-inducible Protein 153 Expression during Inhibition of Phosphatidylcholine Synthesis Is Mediated via Activation of a C/EBP-activating Transcription Factor-responsive Element. Journal of Biological Chemistry.2004;279(50):52007-52015.
    80. Zhang L, Li K, Ma L B, et al. Effects and mechanism of arsenic trioxide on reversing the asthma pathologies including Th17-IL-17 axis in a mouse model. Iran J Allergy Asthma Immunol.2012;11(2):133-145.
    81. Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev.1998;12(7):982-995.
    82. Tsukano H, Gotoh T, Endo M, et al. The Endoplasmic Reticulum Stress-C/EBP Homologous Protein Pathway-Mediated Apoptosis in Macrophages Contributes to the Instability of Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology.2010;30(10):1925-1932.
    83. Xia J, Li Y, Yang Q, et al. Arsenic Trioxide Inhibits Cell Growth and Induces Apoptosis through Inactivation of Notch Signaling Pathway in Breast Cancer. International Journal of Molecular Sciences.2012; 13(12):9627-9641.
    [1]You-Young Kim. Past, Present, and Future of Allergy in Korea. Allergy Asthma Immunol Res.2010.2(3):155-164.
    [2]Adcock IM, Marwick J, Casolari P,et al. Mechanisms of Corticosteroid Resistance in Severe Asthma and Chronic Obstructive Pulmonary Disease (COPD). Curr Pharm Des.2010.16(32):3554-3573
    [3]覃冬云,梁标.三氧化二砷对小鼠过敏性哮喘的治疗作用及机制.中国临床药理学与治疗学,2004.9(4):430-433
    [4]Burchiel SW, Mitchell LA, Lauer FT, et al. Immunotoxicity and biodistribution analysis of arsenic trioxide in C57B1/6 mice following a 2-week inhalation exposure. Toxicol Appl Pharmacol.2009.241(3):253-259
    [5]Bobe P, Bonardelle D, Benihoud K,et al. Arsenic trioxide:A promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/1pr mice. Blood.2006.108(13):3967-3975
    [6]Yan S, Zhang QY, Zhou B,et al. Arsenic trioxide attenuated the rejection of major histocompatibility complex fully-mismatched cardiac allografts in mice. Transplant Proc.2009.41(5):1855-1858
    [7]Singer M, Trugnan G, Chelbi-Alix MK, et al. Arsenic trioxide reduces 2,4, 6-trinitrobenzene sulfonic acid-induced murine colitis via nuclear factor-κB down-regulation and caspase-3 activation. Innate Immun.2010.17(4):365-374.
    [8]Ansel KM, Djuretic I, Tanasa B, et al. Regulation of Th2 differentiation and 114 locus accessibility. Annu Rev Immunol,2006.24(2):607-656.
    [9]Weaver CT, Hatton RD, Mangan PR, et al. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol,2007. 25(1):821-852.
    [10]Sakaguchi S, Yamaguchi T, Nomura T, et al. Regulatory T cells and immune tolerance. Cell,2008.133(3):775-787.
    [11]Zhu J, Yamane H, Cote-Sierra J, et al. GATA-3 promotes Th2 responses through three different mechanisms:Induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Thl cell-specific factors. Cell Res,2006. 16(1):3-10.
    [12]Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, et al. Signaling mechanisms, interaction partners, and target genes of STAT6. Cytokine Growth Factor Rev, 2006.17(3):173-188.
    [13]Chen Z, O'Shea J J. Th17 cells:a new fate for differentiating helper T cells. Immunol Res 2008.41(2):87-102.
    [14]Chen Z, Laurence A, O'Shea J J. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin Immunol 2007.19(6):400-408.
    [15]Wetzler M, Earp JC, Brady MT, et al. Synergism between arsenic trioxide and heat shock protein 90 inhibitors on signal transducer and activator of transcription protein 3 activity-pharmacodynamic drug-drug interaction modeling. Clin Cancer Res,2007.13(7):2261-2270
    [16]Yang, X.O., Pappu, B.P., Nurieva, R., et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity, 2008.28(1):29-39.
    [17]Schraml, B.U., Hildner, K., Ise, W., et al. The AP-1 transcription factor Batf controls T (H)17 differentiation. Nature,2009.460(7253):405-409.
    [18]Huber, M, Brustle, A., Reinhard, K., et al. IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc. Natl. Acad. Sci. USA,2008.105(52):20846-20851.
    [19]Chung Y, Chang SH, Martinez GJ, et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity,2009.30(4):576-587.
    [20]Schraml BU, Hildner K, Ise W, et al. The AP-1 transcription factor Batf controls T(H)17 differen-tiation. Nature,2009.460(7253):405-409.
    [21]Dardalhon V, Awasthi A, Kwon H, et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates L-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol,2008.9(12):1347-1355.
    [22]Wakashin H, Hirose K, Maezawa Y, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med,2008.178(10):1023-1032.
    [23]Wilson RH, Whitehead GS, Nakano H, et al. Allergic sensitization through the airway primes Thl7-dependent neutrophilia and airway hyperres-ponsiveness. Am J Respir Crit Care Med,2009.180:(2)720-730.
    [24]Kate L. Tomlinson, GarethC. G. Davies, Daniel J. Sutton, et al. Neutralisation of Interleukin-13 in Mice Prevents Airway Pathology Caused by Chronic Exposure to House Dust Mite. PLOS ONE.2010.5 (10):131-36
    [25]YAO Xin, HE Hai-yan, YANG Yan, et al. Inhibition of interleukin-13 gene expression in T cells through GATA-3 pathway by arsenic trioxide. Chin Med J 2008.121(22):2346-2349
    [26]Kuan-HuaChu, Chen-Chen Lee, Shao-Chi Hsin et al. Arsenic trioxide alleviates airway hyperresponsive-ness and eosinophilia in a murine model of asthma. Cellular & Molecular Immunology,2010.7(5):375-380
    [27]Qin DY, Huang R, Wu T.In vitro arsenic trioxide induces apoptosis in T cells of asthmatic patients by a Bcl-2 related mechanism. Yao Xue Xue Bao.2008. 43(1):35-43
    [28]Eguchi R, Fujimori Y, Takeda H, et al. Arsenic trioxide induces apoptosis through JNK and ERK in human mesothelioma cells. J Cell Physiol.2010. 226(3):762-768
    [29]Mei Y, Zheng Y, Wang H,et al. Arsenic Trioxide Induces Apoptosis of Fibroblast-like Synoviocytes and Represents Antiarthritis Effect in Experimental Model of Rheumatoid Arthritis. J Rheumatol.2011.38(1):36-43
    [30]Redondo-Munoz J, Escobar-Diaz E, Her-nandez Del Cerro M,et,al. Induction of B chronic lymphocytic leukemia cell apoptosis by arsenic trioxide involves suppression of the phosphoinositide3-kinase/Akt survival pathway via c-jun-NH2 terminal kinase activation and PTEN upregulation. Clin Cancer Res.2010. 16(17):4382-91.
    [31]姚欣,孙培莉,黄茂,等。砷剂防治哮喘气道炎症的分子机制:砷剂对丝裂原活化蛋白激酶磷酸酶基因表达作用的研究.中国临床康复2004,8(30):6652-6653
    [32]毕新岭,李瑾,顾军,等.三氧化二砷下调JAK3表达并抑制淋巴细胞增殖.中国皮肤性病学杂志,2009.23(12):787-789
    [33]Kim CK, Choi J, Callaway Z, et al. Increases in airway eosinophilia and a thl cytokine during the chronic asymptomatic phase of asthma. Respir Med.2010 104(10):1436-1443
    [34]Venge P. The eosinophil and airway remodelling in asthma. Clin Respir J.2010 1(4):15-9
    [35]丁礼仁,沈华浩,崔巍.砷剂对支气管哮喘大鼠气道炎症的影响.中华结核和呼吸杂志2002.25(11):686-687
    [36]莫诚航,吴曙粤,李建民,等.喷射雾化吸入三氧化二砷对哮喘豚鼠气道EOS的影响.广西中医学院学报,2003.6(4):1-3
    [37]Benton AS, Kumar N, Lerner J,et al. Airway Platelet Activation is Associated With Airway Eosinophilic Inflammation in Asthma. J Investig Med.2010. 58(8):987-990
    [38]周林福,殷凯生.小剂量三氧化二砷对哮喘豚鼠气道嗜酸细胞凋亡和核因κB表达作用的相关性研究.中华结核和呼吸杂志,2002.25(7):439-439
    [39]Binet F, Chiasson S, Girard D. Interaction between arsenic trioxide (ATO) and human neutrophils. Hum Exp Toxicol.2011.30(5):416-424
    [40]Francois Binet, Sonia Chiasson, Denis Girard. Arsenic trioxide induces endoplasmic reticulum stress-related events in neutrophils. International Immunopharmacology 2010.10(4):508-512
    [41]Choi JH, Park HS, Oh HB, et al. Leukotriene-related gene polymorphisms in ASA-intolerant asthma:an association with ahaplotype of 5-lipoxygenase. Hum Genet,2004.114(4):337-344.
    [42]姚卫民,梁标,刘钰瑜.砒石对哮喘小鼠白三烯B4 5-脂氧合酶基因表达的影响.中国临床药理学与治疗学,2004.9(2):193-196
    [43]姚卫民,梁标,刘钰瑜.砒石对哮喘小鼠5-脂氧合酶激活蛋白基因表达及白三烯C4的影响.中国呼吸与危重监护杂志,2004.3(1):22-25
    [44]殷凯生,周林福.三氧化二砷治疗哮喘作用机制的实验研究.江苏医药杂志,2002.2(9):662-665
    [45]王优,苏赞彩,黄秀兰.三氧化二砷对哮喘小鼠神经激肽A的影响及其分子机制.中国儿童保健杂志,2006.14(5):495-497
    [46]郭红荣,韦国桢,俞小卫等.三氧化二砷对支气管哮喘小鼠气道成纤维细胞增殖及原癌基因表达的影响.国外医学呼吸系统分册,2005.25(9):641-643
    [47]冯益真,马沛然.哮喘片治疗小儿支气管哮喘303例远期随访.临床儿科杂志,1989.2(7):328-329
    [48]Kearley J, Erjefalt JS, Andersson C,et al. IL-9 Governs Allergen-induced Mast Cell Numbers in the Lung and Chronic Remodeling of the Airways. Am J Respir Crit Care Med.2011.183(7):865-875

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700