用户名: 密码: 验证码:
有机碱催化天然磷脂制备L-α-甘油磷脂酰胆碱(GPC)酯交换反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L-α-甘油磷脂酰胆碱(简称GPC)作为一种重要的神经递质和磷脂前体,可通过各种方式参与人体生物化学代谢,对神经系统、生殖系统、内分泌系统等均有重要作用,具有提高人类认知能力、抵抗肌肉萎缩、抗衰老、加快因手术所引起的脑损伤恢复等功效。GPC作为一种医药保健品及功能性食品,其最可靠的制备方法是天然磷脂(天然来源的磷脂酰胆碱(PC))酯交换脱脂肪酰基法,但是传统的无机碱催化酯交换反应过程存在副反应多、乳化现象严重、产物分离困难、原料品质要求苛刻、废水产生量大等缺点。本文利用有机碱催化剂作用条件温和,易于获得等优点,探索采用其催化天然PC酯交换脱脂肪酰基制备GPC,系统地研究催化剂种类和反应条件,分析反应过程的竞争关系,归纳反应的动力学、热力学规律,为工业应用提供预测反应过程的参考,同时为深入地认识此类反应提供理论支持。
     探索将低沸点有机胺用于催化天然PC酯交换脱脂肪酰基反应制备GPC的过程中,筛选出了正丙胺、异丙胺和叔丁胺三种催化活性较高的低沸点胺,系统研究了其催化酯交换制备GPC的工艺条件。研究发现叔胺类催化剂的活性较差,且对于同分异构体而言,支链胺比直链胺的活性高;对于直链胺,其催化活性随碳原子数的增多而降低。在正丙胺、异丙胺和叔丁胺催化酯交换反应制备GPC的过程中表现出基本类似的规律:当体系中催化剂用量为2.4%,磷脂酰胆碱浓度为0.05-0.10mol/L,反应温度为60℃,反应时间为260分钟时,PC转化率和GPC收率均较高,其中异丙胺催化反应时活化能最小。此外优选的低沸点胺催化剂可以与甲醇一起蒸馏回收,再次循环使用时仍具有较高的活性。通过GC和1HNMR分析发现所得产物纯度较高,且过程中无副反应发生。研究了低沸点胺催化酯交换反应制备GPC的反应机理及动力学,发现胺引发烷氧基进攻羰基碳的机理能较好地描述该反应过程,同时依此所推导出的二级动力学与实验结果吻合良好。
     研究季铵碱相转移催化剂催化酯交换反应制备GPC,探索发现了氢氧化胆碱作为催化剂的良好性能,并对氢氧化四丁基铵和氢氧化胆碱催化反应的工艺条件进行了比较研究。在搅拌速率为500rpm、氢氧化四丁基铵用量为0.015mol/L、反应温度为40℃、反应物料比为30:1、反应时间120分钟时,PC转化完全,反应效果较好。在其他条件相同的情况下,若要达到类似的反应效果,氢氧化胆碱的用量仅需0.012mol/L。该类催化剂不仅降低了反应温度,缩短了反应时间,而且氢氧化胆碱本身作为食品中常用的添加剂,即使在产物中有少量残留也不会影响其安全使用。对季铵碱相转移催化酯交换反应制备GPC的反应机理及动力学进行了探讨,其中相转移催化过程可由Starks萃取模型描述,而拟一级动力学能较好关联实验数据,在氢氧化四丁基铵和氢氧化胆碱的催化下反应活化能分别为32.0和30.5kJ/mol。
     探索研究季铵碱相转移催化剂的固载化,以C1-C4的直链叔胺与氯甲基聚苯乙烯季铵化反应制备得到系列固载化季铵碱催化树脂,并尝试用于催化天然PC酯交换反应制备GPC。优化了催化剂的制备条件和酯交换反应的工艺条件。在以1,4-二氧六环为溶剂、三乙胺为胺化剂、60℃下反应180分钟得到的固载化季铵碱树脂TEABR具有较好的催化活性。在搅拌速度为675rpm、催化剂用量为80g/L、反应温度为60℃、PC浓度为0.15mol/L、反应时间210分钟时,TEABR催化酯交换反应的PC转化率可达到99%,同时GPC收率可达88.3%。固载化季铵碱催化树脂不仅简化了GPC的制备工艺,改善了均相催化中产物分离和催化剂回收困难等问题,而且其活性及稳定性良好,在酯交换制备GPC过程中重复使用10次后其活性基本未现衰减。
     对PC与甲醇酯交换反应过程的热力学行为进行了模拟。结果表明,第一步由PC酯交换脱脂肪酰基生成溶血磷脂酰胆碱(LPC)的反应为吸热反应,升高温度有利于反应的进行;同时该步反应△Gθ(T)为正值,不能自发进行。而第二步由LPC再次脱脂肪酰基生成GPC的反应为放热反应,降低温度有利于反应的进行,△Gθ(T)为负值,此步反应可自发进行。酯交换脱脂肪酰基生成GPC的两步反应中,升温、增加醇浓度启动第一步反应为全过程进行的关键。
     对负载季铵碱催化剂TEABR树脂催化磷脂酰胆碱与甲醇酯交换的多相反应动力学进行了研究,并分别建立了以甲醇吸附、表面反应和产物脱附为控制步骤的动力学模型。通过对模型参数的估计和实验数据的模拟发现:以表面反应为控制步骤的模型能较好地描述反应过程,理论计算与实验数据比较吻合。该研究结果可为GPC的工业化生产提供重要的理论指导。
As an important neurotransmitter and phospholipid precursor, L-a-glycerophosphocholine (GPC) can support human health through a variety of mechanisms, it has important roles in the nervous system, reproductive system and endocrine system, et al. GPC has myriad functions for improving people's cognitive ability, resisting muscle atrophy and aging, speeding up the recovery of brain damage caused by surgery. As a medicine product and functional food, the most acceptable method for preparing GPC is to remove fatty acyl from natural lecithin (natural source of phosphatidylcholine (PC)) by transesterification. However, there are many problems existed in the conventional inorganic base-catalyzed transesterification, such as the more side reactions, serious emulsification, difficulties in separation, high quality requirement for the materials, and the large amount of wastewater produced during the processes. In this paper, the organic base catalysts were used instead of the inorganic ones to prepare GPC, because these catalysts were accessible, and the reactions could performed under mild conditions. The reaction conditions were studied in details for each kind of catalyst, and the competition in the process, the reaction kinetics and thermodynamics rules were analyzed, in order to provide a reference for predicting reaction process for industrial applications and a theoretical support for in-depth understanding of such reactions.
     Series of low boiling point organic amines were used in the catalytic transesterification of natural PC for preparing GPC, the n-propylamine, isopropylamine and tert-butylamine with better activities among the amines were selected and used in the deacylation reaction. It was found that the activity of tertiary amines were poor; and for the isomers, the branched amines showed better activity than the normal amines; for normal alkylamines, the activity decreased with the increase of carbon numbers. The n-propylamine, isopropylamine and tert-butylamine showed similar laws in the deacylation process:when the amount of catalyst was2.4%, concentration of phosphatidylcholine (PC) was0.05-0.10mol/L, reaction temperature was60℃, reaction time was260minutes, both the conversion of PC and yield of GPC were higher, and the reaction activation energy was minimum catalyzed by isopropylamine. In addition, the low boiling point amines can recovered by distillation combined with the recovery of methanol, they could get similar effect to the fresh catalyst after repeatedly used. GC and1H NMR were used to analyze the product, it was indicated that the product had high purity and there was no side reaction between the catalyst and other materials. The mechanism and kinetics of the transesterification catalyzed by the low boiling point amines were studied. It was find that the reaction can be better described by the alkoxy anion mechanism, and the second-order kinetics model deduced from the mechanism was in good agreement with the experimental results.
     The transesterification catalyzed by quaternary ammonium base phase transfer catalyst was studied, and the choline hydroxide showed good performance in the process, then the reaction conditions of the transesterification catalyzed by tetrabutylammonium hydroxide and choline hydroxide were studied comparatively. With tetrabutylammonium hydroxide, PC reacted completely after260minutes under a stirring speed of500rpm, catalyst amount of0.015mol/L, reaction temperature of60℃, and molar ratio of methanol to PC was30:1. With the same conditions, when choline hydroxide used as catalyst, PC could react completely under the catalyst amount of0.012mol/L. This kind of catalyst reduced the reaction temperature and shortened the reaction time, especially for choline hydroxide, which used as a food additive, it can not affect the safe use of GPC even a small amount of residue in the product. The mechanism and dynamic model of the transesterification catalyzed by quaternary ammonium base phase transfer catalyst were discussed, it was found that the catalysis process can be described by the Starks extraction model, and the pseudo-first-order kinetics model associated with the experimental data well, the reaction activation energies were32.0and30.5kJ/mol respectively with tetrabutylammonium hydroxide and choline hydroxide.
     The immobilization of quaternary ammonium base phase transfer catalyst was researched, and a series of quaternary ammonium base resins were prepared from chloromethyl polystyrene and different tertiary amine, the resins were attempted to be used in the catalytic transesterification for preparing GPC from natural PC. Both the resin preparation conditions and the reaction conditions of the transesterification were optimized. The results demonstrated that the resin had better catalytic activity under the conditions of:1,4-dioxane as solvent, triethylamine as aminating agent, temperature was60℃and amination time was3h. With the prepared TEABR resin, the conversion of PC can reach99%, while the yield of GPC was88.3%with the conditions of:the stirring speed was675rpm, amount of catalyst was80g/L, reaction temperature was60℃, concentration of PC was0.15mol/L, and reaction time was210minutes. The use of quaternary ammonium resin as a promising heterogeneous catalyst simplified the craft and minimized the problems existed in the homogeneous catalytic process, and the activity and stability of the catalyst were almost invariant after repeated10times.
     Thermodynamic behavior of the transesterification between PC and methanol was carried out. The results showed that the first step of the transesterification for generating lysophosphatidylcholine (LPC) was endothermic, and higher temperature favored the progress of the reaction; while this step did not occur spontaneously because the AGθ(T) was positive. The second step for generating GPC from LPC was exothermic, and lower temperature favored this reaction; while the AGeθ(T) was negative, this step can be carried out spontaneously. Elevating the reaction temperature to start the first reaction was the key step during the transesterification, so higher temperature and alchols concentration favored the formation of GPC.
     The heterogeneous reaction kinetics of the transesterification catalyzed by TEABR resin was studied, and the kinetic model was proposed respectively when methanol adsorption, surface reaction and product desorption as the rate-determining step. From the models the kinetic parameters were estimated, the results demonstrated that the experimental data fit the model better than others when the surface reaction was the rate-determining step, and this model was reliable enough to provide an important guidance for the industrial production of GPC.
引文
[1]Canal N., Franceschi M., Alberoni M., et al. Effect of L-alpha-glyceryl-phosphorylcholine on Amnesia Caused by Scopolamine[J]. International Journal of Clinical Pharmacology, Therapy, and Toxicology,1991,29(3):103-107
    [2]Canal N. Comparison of the Effects of Pretreatment with Choline Alfoscerate, Idebenone, Aniracetam and Placebo on Scopolamine-induced Amnesia[J]. Le Basi Razionali della Terapia,1993,23:102-107
    [3]Dawson R. M. C. The Role of Glycerylphosphorylcholine and Glycerylphosphory-lethanolamine in Liver Phospholipid Metabolism[J]. Biochemical Journal,1955,59(1): 5-8
    [4]Kidd P. M. Alzheimer's Disease, Amnestic Mild Cognitive Impairment, and Age-associated Memory Impairment:Current Uunderstanding and Progress toward Integrative Prevention[J]. Alternative Medicine Review,2008,13(2):85-115
    [5]Kidd P. M. GPC (Glycerophosphocholine) Mind-body Power for Active Living and Healthy Aging[M]. St George:Total Health Communications Inc.,2007:1-21
    [6]Parnetti L., Amenta F., Gallai V. Choline Alfoscerate in Cognitive Decline and in Acute Cerebrovascular Disease:an Analysis of Published Clinical Data[J]. Mechanisms of Ageing and Development,2001,22(16):2041-2055
    [7]Aguglia E., Ban T. A., Panzarasa R. M., et al. Choline Alphoscerate in the Treatment of Mental Pathology Following Acute Cerebrovascular Accident[J]. Functional Neurology, 1993,8:5-24
    [8]Govoni S., Lopez C. M., Battaini F., et al. Chronic Treatment with an Acetylcholine Synthesis Precursor, Alpha-glycerylphosphorylcholine, Alters Brain Parameters Linked to Cholinergic Transmission and Passive Avoidance Behavior[J]. Drug Development Research,1992,26(4):439-447
    [9]Lacomba C, Cagiano R., Maci O., et al. Effects of L-alpha-glycerylphosphorylcholine on the Eeg Power Spectrum in the Rat[J]. Drug Development Research,1992,26(1): 101-107
    [10]Farooqui A. A., Horrocks L. A., Farooqui T. Glycerophospholipids in Brain:Their Metabolism, Incorporation into Membranes, Functions, and Involvement in Neurological Disorders[J]. Chemistry and Physics of Lipids,2000,106(1):1-29
    [11]Tayebati S. K., Tomassoni D., Stefano A. D., et al. Effect of Choline-containing Phospholipids on Brain Cholinergic Transporters in the Rat[J]. Journal of the Neurological Sciences,2011,302(1-2):49-57
    [12]Lodish H., Berk A., Kaiser C. A., et al. Molecular Cell Biology[M]. Fourth Edition, New York:Garland Publishing,2006:23-57
    [13]Tserng K. Y., Griffin R. L. Phosphatidylcholine de Novo Synthesis and Modification are Carried out Sequentially in HL60 Cells[J]. Biochemistry,2004,43(25):8125-8135
    [14]Tattrie N. H., McArthur C. S. The Preparation of Lecithin from L-a-glycerylphosphoryl-choline[J]. Canadian Journal of Biochemistry and Physiology,1957,35(12):1165-1170
    [15]Tomassoni D., Avola R., Mignini F., et al. Effect of Treatment with Choline Alphoscerate on Hippocampus Microanatomy and Glial Reaction in Spontaneously Hypertensive Rats[J]. Brain Research,2006,1120(1):183-190
    [16]Missale C, Sigala S., Rizzonelli P., et al. Effects of Chronic Treatment with L-alpha-glycerylphosphorylcholine on Hippocampal Cholinergic Transmission in the Rat[J]. Drug Development Research,1992,27(3):277-286
    [17]Abbati C., Rondi G., Rasola R., et al. Nootropic Therapy of Cerebral Aging[J]. Advances in Therapy,1991,8(6):268-276
    [18]Bronzetti E., Collier W. L., Felici L., et al. Long-term Choline Alfoscerate Treatment Counteracts Age-dependent Structural Changes in the Rrat Hippocampus[J]. Drug Development Research,1992,26(4):449-459
    [19]Amenta F., Franch F., Ricci A., et al. Cholinergic Neurotransmission in the Hippocampus of Aged Rats:Influence of L-a-Glycerylphosphorylcholine Treatment[J]. Annals of the New York Academy of Sciences,1993,695:311-313
    [20]Perri D. R., Coppola G, Ambrosio L. A., et al. A Multicentre Trial to Evaluate the Efficacy and Tolerability of Alphaglycerylphosphorylcholine versus Cytosine Diphosphocholine in Patients with Vascular Dementia[J]. The Journal of International Medical Research,1991,19(4):330-341
    [21]Frattola L., Piolti R., Bassi S., et al. Multicenter Clinical Comparison of the Effects of Choline Alfoscerate and Cytidine Diphosphocholine in the Treatment of Multi-infarct Dementia[J]. Current Therapeutic Research,1991,49(4):683-693
    [22]Muratorio A., Bonuccelli U., Nuti A., et al. A Neurotropic Approach to the Treatment of Multi-infarct Dementia using L-alpha-glycerylphosphorylcholine[J]. Current Therapeutic Research,1992,52(5):741-752
    [23]Venn R. D. The Sandoz Clinical Assessment Geriatric (SCAG) Scale-a General Purpose Psychogeriatric Rating Scale[J]. Gerontology,1983,29(3):185-198
    [24]Holstein M. F., Holstein S. E., McHugh P. R., et al. Mini-Mental State-a practical Method for Grading the Cognitive State of Patients for the Clinician[J]. Journal of Psychiatric Research,1975,12:189-198
    [25]Barbaga S. G., Barbagallo M., Giordano M., et al. Alpha-glycerophosphocholine in the Mental Recovery of Cerebral Ischemic Attacks[J]. Annals of the New York Academy of Sciences,1994,717:253-269
    [26]Livingstone I. R., Mastaglia F. L., Pennington R. J. T., et al. Choline Chloride in the Treatment of Cerebellar and Spinocerebellar Ataxia[J]. Journal of the Neurological Sciences,1981,50(2):161-174
    [27]高峰,胡盛寿,许建屏等.冠状动脉旁路移植术后神经系统并发症的危险因素分析[J].中华心血管病杂志,2002,30(7):413-416
    [28]叶治,郭曲练.老年病人的术后认知功能障碍[J].国际病理科学与临床杂志,2008,28(1):20-89
    [29]Curatolo W., Radhakrishnan R., Gupta C. M., et al. Photoactivatable Carbene-Generating Phospholipids:Physical Properties and Use in Detection of Phase Separations in Lipid Mixtures[J]. Biochemistry,1981,20:1374-1378
    [30]Vega J. A., Cavallotti C., Del M. E., et al. Nerve Growth Factor Receptor Immunoreactivity in the Cerebellar Cortex of Aged Rats:Effect of Choline Alfoscerate Treatment[J]. Mechanisms of Ageing and Development,1993,69(1-2):119-127
    [31]Corpas E., Harman S. M., Blackman M. R., et al. Human Growth Hormone and Human Aging[J]. Endocrinol Rev Endocrine Reviews,1993,14(1):20-39
    [32]Strobl J. S., Thomas M. J. Human Growth Hormone[J]. Pharmacological Reviews,1994, 46(1):1-34
    [33]Ceda G P., Ceresini G, Denti L., et al. Alpha-glycerylphosphorylcholine Administration Increases the GH Responses to GHRH of Young and Elderly Subjects[J]. Hormone Metabolic Research,1992,24(3):119-121
    [34]Schettini G Effect of Choline Alfoscerate in Elderly Patients with Primary Degenerative Dementia[J]. Le Basi Razionali della Terapia,1993,23(3):108-115
    [35]Mcarthur C. S. Method of Producing L-a-Glycerylphosphorylcholine [P].United States Patent:US 2864848(A),1958-12-16
    [36]Amenta F., Di Tullio M. A., Tomassoni D. The Cholinergic Approach for the Treatment of Vascular Dementia:Evidence from Pre-clinical and Clinical Studies[J]. Clinical and Experimental Hypertension,2002,24(7-8):697-713
    [37]Karrer P., Salomon H. Uber die Glycerin-phosphorsauren aus Lecithin[J]. Helvetica Chimica Acta,1926,9(1):3-23
    [38]Contardi A., Ercoli A. The Enzymic Cleavage of Lecithin and Lysolecithin[J]. Biochemical Journal,1933, (261):275-302
    [39]King E. J., Aloisi M. Phosphoric Esters of the Pancreas:Choline Glycerophosphate[J]. Biochemical Journal,1945,39(5):470-473
    [40]Schmidt G, Hershmak B., Thannhauser S. J. The Isolation of glycerylphosphorylcholine from Incubated Beef. Pancreas:Its Significance for the Intermediary Metabolism of Lecithin[J]. Journal of Biological Chemistry,1945,161:523-536
    [41]Wallace J. C, Wales R. G, White I. G The Respiration of the Rabbit Epididymis and Its Synthesis of Glycerylphosphorylcholine[J]. Australian Journal of Biological Sciences, 1966,19(5):849-856
    [42]Dawson R. M. C., Mann T., White I. G Glycerylphosphorylcholine and Phosphorylcholine in Semen, and their Relation to Choline[J]. Biochemical Journal, 1957,65(4):627-634
    [43]Baer E., Kates M. L-a-Glycerylphosphorylcholine[J]. Journal of the American Chemical Society,1948,70(4):1394-1399
    [44]Maurukas J., Holland. C. V. An Improved Synthesis of Glycerylphosphorylcholine [J]. The Journal of Organic Chemistry,1961,26(2):608-610
    [45]Kanda P., Wells M. A. Synthesis of Sn-glycero-l-phosphocholine[J]. Journal of Lipid Research,1981,22:879-882
    [46]Laura P., Brescia T. Process for preparing alpha-glycerophosphorylcholine[P]. European Patent Application:EP0486100(A1),1992-05-20
    [47]Laura P. Optically Active and Racemic Hydrated Diacetylesters of Alpha-glycero-phosphoryl-choline[P]. European Patent Application:EP0502357(Al),1992-09-09
    [48]Seok S. Y., Seob S. E., Sang K. D., et al. A Process for Preparation of L-alpha-glycerophosphoryl choline[P]. World Intellectual Property Organization:WO145476 (Al),2007-12-21
    [49]陈新,梅以成,梁鹏.一种L-a-甘油磷酸胆碱的合成方法[P].中国专利:CN101544667A,2008-03-27
    [50]Tattrie N. H., McArthur C. S. L-a-Glycerophosphorylcholine[J]. Biochemistry,1958,6: 16-19
    [51]Bennett J. R., Tattrie N. H. The Acylation of Monoacyl L-a-glycerylphosphorylcholine under Various Conditions[J]. Canadian Journal of Biochemistry and Physiology,1961, 39(9):1357-1366
    [52]Brockerhoff H., Yurkowski M. Simplified Preparation of L-a-Glyceryl Phosphoryl Choline[J]. Canadian Journal of Biochemistry,1965,43(10):1777-1783
    [53]孙清瑞,鹿保鑫,刘志明等.化学催化法制备甘油磷酸胆碱的研究[J].粮油加工,2009,11:56-58
    [54]Chadha J. S. Preparation of Crystalline L-a-glycerophosphoryl-choline-cadmium Chloride Adduct from Commercial Egg Lecithin[J]. Chemistry and Physics of Lipids, 1970,4(1):104-108
    [55]Gozzoli M., Scolastico C. Process for the Preparation of L-a-Glycerylphosphoryl choline[P]. UK Patent Application:GB2058792(A),1981-04-15
    [56]Tronconi G Process for the Preparation of L-a-glycerylphosphorylcholine, L-alpha-glycerylphosphorylethanolamine from Crude and/or Deoleated Lecithins[P]. European Patent Application:EP0217765(A2),1987-04-08
    [57]Tronconi G Process for the Preparation of L-a-glycerylphosphorylcholine and of L-a-glycerylphosphorylethanolamine[P]. The International Patent Application:WO 90/13552,1990-05-04
    [58]Zhang K. Y., Wang X. G., Huang J. H., et al. Purification of L-alpha-glycerylphosphorylcholine by Column Chromatography[J]. Journal of Chromatography A,2012,1220(13):108-114
    [59]谢国剑.高酸值泔水油制取生物柴油的研究[J].化工技术,2005,13(4):20-22
    [60]杨丽特,朱金华,文庆珍.酸催化合成生物柴油的研究现状[J].化学与黏合,2007,29(2):126-130
    [61]施姗姗,郑国钧.硼酸催化酯交换法合成p-酮酸酯[J].北京化工大学学报(自然科学版),2009,36:23-26
    [62]朱丽苹,吕志凤,战风涛等.酸催化制备生物柴油的研究[J].应用化工,2007,10:1014-1016
    [63]钟鸣,张秀兰,李玉玲等.磷酸催化地沟油制备生物柴油的研究[J].信阳师范学院学报(自然科学版),2008,4:570-572
    [64]盖玉娟.酸催化制备生物柴油的研究[D].北京:中国石油大学,2009
    [65]Goff M. J., Bauer N. S., Lopes S., et al. Acid-catalyzed Alcoholysis of Soybean Oil[J]. Journal of the American Oil Chemists' Society,2004,81(4):415-420
    [66]任立国,张晓丽,余济伟.二氧化硅-磺酸固体酸催化大豆油与异丙醇的酯交换反应[J].化学与生物工程,2010,5:72-75
    [67]高根之,于世涛,杨锦宗.SO42-/TiO2-Al2O3-SnO2催化剂的研制及其催化合成己二酸二辛酯[J].催化学报,1996,17(1):83-86
    [68]徐玲,陈建军,张立明等.负载型磷钨酸催化剂的制备、表征及酯交换制备生物柴油[J].吉林大学学报(理学版),2012,2:346-350
    [69]乔仙蓉,李福祥,吕志平等.固体酸SO42-/SnO2-SiO2催化制备生物柴油[J].太原理工大学学报,2010,1:51-55
    [70]Russbueldt B. M. E., Hoelderich W. F. New Sulfonic Acid Ion-exchange Resins for the Preesterification of Different Oils and Fats with High Content of Free Fatty Acids[J]. Applied Catalysis A:General,2009,362(1-2):47-57
    [71]Ozbay N., Oktar N., Tapan N. A. Esterification of Free Fatty Acids in Waste Cooking Oils(WCO):Role of Ion-exchange Resins[J]. Fuel,2008,87(10-11):1789-1798
    [72]方建华,陈波水,王九等.SO42-/TiO2-ZrO2固体酸催化剂催化废弃动植物油脂制备生物柴油[J].化学与生物工程,2011,10:25-27
    [73]翟德伟,乐英红,华伟明等.Al2O3掺杂SO42-/SnO2固体酸催化剂上的酯化和酯交换反应[J].物理化学学报,2010,7:1867-1872
    [74]Feng Y. H., He B. Q, Cao Y. H., et al. Biodiesel Production Using Cation-exchange Resin as Heterogeneous Catalyst[J]. Bioresource Technology,2010,101(5):1518-1521
    [75]Encinar J. M., Gonzalez J. F., Rodriguez J. J., et al. Biodiesel Fuels from Vegetable Oils: Transesterification of Cynara Cardunculus L. Oils with Ethanol[J]. Energy Fuels,2002, 16(2):443-450
    [76]盛梅,邬国英,徐鸽等.生物柴油的制备[J].高校化学工程学报,2004,8(2):231-236
    [77]Ghadge S. V., Raheman H. Biodiesel Production from Mahua Oil Having High Free Fatty Acids[J]. Biomass and Bioenergy,2005,28(6):601-605
    [78]邬国英,林西平,巫淼鑫等.棉籽油间歇式酯交换反应动力学的研究[J].高校化学工程学报,2003,17(3):314-318
    [79]张扬,易文银,方云进.乙醇钠催化碳酸丙烯酯与乙醇酯交换反应动力学研究[J].石油化工,2010,5:518-523
    [80]金宁,毕艳兰,李东锐.甲醇钠催化猪油酯-酯交换的研究[J].河南工业大学学报(自然科学版),2007,6:42-45+62
    [81]李巧,张胜涛.碳酸钾催化酯交换合成碳酸甲戊酯的研究[J].化工中间体,2008,10:43-46
    [82]韩毅,邓宇,郝敬梅等.NaOH催化微波法制备生物柴油的工艺研究[J].精细石油化工进展,2008,1:38-41
    [83]彭亮,宋志华,腾传震等.甲醇钠催化酯交换制备中/长链结构甘三酯[J].中国油脂,2011,3:5-9
    [84]Leung D. Y. C., Guo Y. Transesterification of Neat and Used Frying Oil:Optimization for Biodiesel Production[J]. Fuel Processing Technology,2006,87(10):883-890
    [85]王默,赵新强,安华良等.碳酸钾催化碳酸丙烯酯与乙醇酯交换合成碳酸二乙酯[J].高校化学工程学报,2010,24(4):663-669
    [86]黄仕钧.用于生物柴油生产的固体碱催化剂CaO的低温活化[D].太原:太原理工大学,2010
    [87]Granados M. L., Alonso D. M., Sadaba I., et al. Leaching and Homogeneous Contribution in Liquid Phase Reaction Catalysed by Solids:The Case of Triglycerides Methanolysis using CaO[J]. Applied Catalysis B:Environmental,2009,89(1-2):265-272
    [88]Wan Z., Hameed B. H. Transesterification of Palm Oil to Methyl Ester on Activated Carbon Supported Calcium Oxide Catalyst[J]. Bioresource Technology,2011,102(3): 2659-2664
    [89]曹平,杨先贵,辛阳等.碳酸二甲酯和乙酸苯酯合成碳酸二苯酯的研究-焙烧温度对MoO3催化剂性能的影响[J].分子催化,2011,6:520-526
    [90]Albuquerque M. C. G., Santamaria-Gonzalez J., Merida-Robles J., et al. MgM (M=Al and Ca) Oxides as Basic Catalysts in Transesterification Processes[J]. Applied Catalysis A:General,2008,347(2):162-168
    [91]Sun H, Ding Y. Q, Duan J. Z., et al. Transesterification of Sunflower Oil to Biodiesel on ZrO2 Supported La2O3 Catalyst[J]. Bioresource Technology,2010,101(3):953-958
    [92]李玉芹.镁铝复合氧化物制备及其酯交换多相催化过程研究[D].湘潭:湘潭大学,2006
    [93]刘悦.MoO3/TiO2-SiO2催化苯酚和草酸二甲酯酯交换合成草酸二苯酯研究[D].天津:天津大学,2007
    [94]Tittabut T., Trakarnpruk W. Metal-Loaded MgAl Oxides for Transesterification of Glyceryl Tributyrate and Palm Oil[J]. Industrial and Engineering Chemistry Research, 2008,47(7):2176-2181
    [95]言浩,胡望明,沈律明.PbO-Yb2O3催化苯酚与碳酸二甲酯的酯交换反应[J].高校化学工程学报,2007,1:146-149
    [96]Gao L. J., Teng G Y., Xiao G. M., et al. Biodiesel from Palmoil via Loading KF/Ca-Al Hydrotalcite Catalyst[J]. Biomass and Bioenergy,2010,34(9):1283-1288
    [97]Gao L. J., Xu B., Xiao G. M, et al. Transesterification of Palm Oil with Methanol to Biodiesel over a KF/Hydrotalcite Solid Catalyst[J]. Energy & Fuels,2008,22(5): 3531-3535
    [98]温守东,胡兴兰,巩金龙等.MoO3/γ-Al2O3催化剂中钼含量对草酸二甲酯与苯酚酯交换反应催化活性的影响[J].化工进展,2008,9:1439-1441
    [99]王立慧,杨先贵,刘吕花等.TiO2/SiO2催化碳酸二甲酯与乙酸苯酯酯交换合成碳酸二苯酯[J].石油化工,2012,7:770-777
    [100]Sun H., Han J. X., Ding Y. Q., et al. One-pot Synthesized Mesoporous Ca/SBA-15 Solid Base for Transesterification of Sunflower Oil with Methanol[J]. Applied Catalysis A:General,2010,390(1-2):26-34
    [101]罗淑文,陈彤,童东绅等.杂原子介孔分子筛Me-HMS催化酯交换合成碳酸二苯酯[J].催化学报,2007,11:937-939
    [102]张术栋,徐成华,冯良荣等.Ti-p分子筛催化苯酚和碳酸二甲酯合成碳酸二苯酯[J].精细化工,2005,2:115-117+144
    [103]郭宏利,王胜平,马新宾等.Sn改性TS-1分子筛催化苯酚和草酸二甲酯合成草酸二苯酯[J].催化学报,2003,6:423-427
    [104]曹映玉,王亚权,郝金库.磺酸基功能化的MCM-41催化三乙酸甘油酯与甲醇的酯交换反应[J].高等学校化学学报,2011,5:1138-1143
    [105]赵天生,李永听,陈兴权等.钾盐修饰KX分子筛催化酯交换反应合成碳酸二甲酯(英文)[J].宁夏大学学报(自然科学版),2001,3:310-313
    [106]Gelbard G. Organic Synthesis by Catalysis with Ion-Exchange Resins[J]. Industrial and Engineering Chemistry Research,2005,44:8468-8498
    [107]秦世嵘.阴离子型树脂催化制备生物柴油的研究[D].大连:大连理工大学,2008
    [108]蔡钒,张彬彬,林静等.酯交换制生物柴油的CaO固体碱催化剂[J].物理化学学报,2008,24(10):1817-1823
    [109]Liu X. J., He H. Y., Wang Y. J., et al. Transesterification of Soybean Oil to Biodiesel Using CaO as a Solid Base Catalyst[J]. Fuel,2008,87(2):216-221
    [110]Reddy C. R. V., Oshel R., Verkade J. G. Room-temperature Conversion of Soybean Oil and Poultry Fat to Biodiesel Catalyzed by Nanocrystalline Calcium Oxides [J]. Energy Fuels,2006,20(3):1310-1314
    [111]Dossin T. F., Reyniers M., Berger R. J., et al. Simulation of Heterogeneously MgO-catalyzed Ttransesterification for Fine-chemical and Biodiesel Industrial Production[J]. Applied Catalysis B:Environmental,2006,67(1-2):136-148
    [112]孟永禄.Ca/Al复合氧化物催化剂制备生物柴油的研究[D].天津:天津大学,2010
    [113]颜姝丽,鲁厚芳,汤贤龙等.Zn/Al复合氧化物催化剂用于菜籽油甲醇酯交换反应制备生物柴油[J].四川大学学报(工程科学版),2007,6:76-80+162
    [114]Chuayplod P., Trakarnpruk W. Transesterification of Rice Bran Oil with Methanol Catalyzed by Mg(Al)La Hydrotalcites and Metal/MgAl Oxides[J]. Industrial and Engineering Chemistry Research,2009,48(9):4177-4183
    [115]Kim M. J., Park S. M., Chang D. R., et al. Transesterification of Triacetin, Tributyrin, and Soybean Oil with Methanol over Hydrotalcites with Different Water Contents [J]. Fuel Processing Technology,2010,91(6):618-624
    [116]Oku T., Nonoguchi M., Moriguchi T. Method of Producing of Fatty Alkyl Glycerine and Acid Alkyl Ester-containing Composition[P]. The International Patent Application: WO2005/021697,2005-03-10
    [117]Shumaker J. L., Crofcheck C., Tackett S. A., et al. Biodiesel Production from Soybean Oil Using Calcined Li-Al Layered Double Hydroxide Catalysts[J]. Catalysis letters 2007,115(1-2):56-61
    [118]王胜平,杨霞,马新宾.负载型Ti02催化剂的制备及其酯交换反应性能[J].天津大学学报,2005,11:941-945
    [119]宋华民,李继红,徐桂转等.负载型Cs20固体碱催化剂的制备及催化酯交换反应性能[J].农业工程学报,2009,3:189-192
    [120]范燕平,王庆印,杨先贵等.KF/MgO催化碳酸二甲酯与月桂醇酯交换合成碳酸二月桂酯[J].催化学报,2010,1:38-43
    [121]Alonso D. M., Mariscal R., Moreno-Tost R., et al. Potassium Leaching during Triglyceride Transesterification using K/γ-Al2O3 Catalysts [J]. Catalysis Communications,2007,8(12):2080-2086
    [122]崔晓燕,沈健.K2O/SBA-15的制备及其催化性能研究[J].应用化工,2011,6:1048-1051
    [123]Ramos M. J., Casas A., Rodnguez L., et al. Transesterification of Sunflower Oil over Zeolites using Different Metal Loading:A case of Leaching and Agglomeration Studies[J]. Applied Catalysis A:General,2008,346(1-2):79-85
    [124]Shibasaki-Kitakawa N., Honda H., Kuribayashi H., et al. Biodiesel Production using Aanionic Ion-exchange Resin as Heterogeneous Catalyst[J]. Bioresource Technology, 2007,98(2):416-421
    [125]柯中炉,奚立民,朱魏.强碱性阴离子交换树脂催化菜籽油酯交换反应合成脂肪酸甲酯[J].离子交换与吸附,2010,26(2):145-152
    [126]叶伟东,沈润溥,虞国棋等.碱性阴离子交换树脂催化酯交换反应制备1-羟基-2- 甲基4-乙酰氧基-2-丁烯的研究[J].高校化学工程学报,2008,22(2):316-319
    [127]阮新,曾健青,张镜澄等.有机溶剂中脂肪酶催化酯交换反应的研究[J].广州化工,1998,1:26-31
    [128]Iso M., Chen B. X, Eguchi M., et al. Production of Biodiesel Fuel from Triglycerides and Alcohol Using Immobilized lipase[J]. Journal of Molecular Catalysis B:Enzymatic, 2001,16(1):53-58
    [129]陈志锋,吴虹,宗敏华.固定化脂肪酶催化高酸废油脂酯交换生产生物柴油[J].催化学报,2006,2:146-150
    [130]曾家豫,刘雄雄,孔维宝等.离子液体的特性及其在生物催化和生物转化中的应用[J].分子催化,2010,4:378-386
    [131]纪俊敏,杨国龙,毕艳兰等.离子液体([BMIM]BF4)催化大豆油酯交换制备脂肪酸甲酯[J].中国粮油学报,2010,10:65-68+77
    [132]王国松,王玖钊,裴继凯等.一种2-甲基咪唑离子液体的合成及其在酯交换反应中的应用[J].山西大学学报(自然科学版),2009,1:72-75
    [133]张小里,李红亚,张甜甜等.一种天然L-a-甘油磷脂酰胆碱及其制备方法[P].中国专利:102516292,2012-06-27
    [134]Lotero E., Liu Y. J., Lopez D. E., et al. Synthesis of Biodiesel via Acid Catalysis[J]. Industrial and Engineering Chemistry Research,2005,44(14):5353-5363
    [135]万涛.制备生物柴油的非均相碱催化剂研究[D].武汉:武汉大学,2010
    [136]杨振强,谢文磊,李海涛.酸催化油脂醋交换反应研究进展[J].粮食与油脂,2006,3:13-15
    [137]Lam M. K., Lee K. T., Mohamed A. R. Homogeneous, Heterogeneous and Enzymatic Catalysis for Transesterification of High Free Fatty Acid Oil (Waste Cooking Oil) to Biodiesel:A review[J]. Biotechnology Advances,2010,28(4):500-518
    [138]Lopez D. E, Goodwin J. G, Bruce D. A. Transesterification of Triacetin with Methanol on Nafion Acid Resins[J]. Journal of Catalysis,2007,245(2):381-391
    [139]Bikou E., Louloudi A., Papayannakos N. The Effect of Water on the Transesterification Kinetics of Cotton Seed Oil with Ethanol[J]. Chemical Engineering & Technology, 1999,22(1):70-75
    [140]Komers K., Skopal F., Stloukal R., et al. Kinetics and Mechanism of the KOH Catalyzed Methanolysis of Rapeseed Oil for Biodiesel Production[J]. European Journal of Lipid Science and Technology,2002,104:728-737
    [141]张素娟.酯交换法合成碳酸二甲酯固体碱催化剂的制备[D].北京:中国石油大学,2009
    [142]周春晖,黄慧华.酯交换反应及其在油脂工业应用[J].粮食与油脂,2001,7:12-13
    [143]Liu Y. X., Jin Q. Z., Shan L. A., et al. The Effect of Ultrasound on Lipase-catalyzed Hydrolysis of Soy Oil in Solvent-free System[J]. Ultrasonics Sonochemistry,2008, 15(4):402-407
    [144]Huang J. H., Liu Y. X., Song Z. H., et al. Kinetic Sstudy on the Effect of Ultrasound on Lipase-catalyzed Hydrolysis of Soy Oil:Study of the Interfacial Area and the Initial Rates[J]. Ultrasonics Sonochemistry,2010,17(3):521-525
    [145]Cerce T., Peter S., Weidner E. Biodiesel-Transesterification of Biological Oils with Liquid Catalysts:Thermodynamic Properties of Oil-Methanol-Amine Mixtures [J]. Industrial and Engineering Chemistry Research,2005,44(25):9535-9541
    [146]鞠庆华.有机碱催化制备生物柴油模拟体系的研究[D].南京:南京工业大学,2005
    [147]Tang Z. Y, Wang L. Y., Yang J. C. Transesterification of Rapeseed Oil Catalyzed by Liquid Organic Aamine in Supercritical Methanol in a Continuous Tubular-flow Reactor[J]. European Journal of Lipid Science and Technology,2008,110(8):747-753
    [148]Zhang L. X., Guo W. J., Liu D., et al. Low Boiling Point Organic Amine-Catalyzed Transesterification for Biodiesel Production[J]. Energy & Fuels,2008,22(2): 1353-1357
    [149]Yao J. F., Ji L., Sun P. Y., et al. Low Boiling Point Organic Amine-catalyzed Transesterification of Cottonseed Oil to Biodiesel with Trace Amount of KOH as Co-catalyst[J]. Fuel,2010,89(12):3871-3875
    [150]Potter P. E., Meek J. L., Neff N. H. Acetylcholine and Choline in Neuronal Tissue Measured by HPLC with Electrochemical Detection[J]. Journal of Neurochemistry, 1983,41(1):188-194
    [151]Yavin E., Tanaka Y., Ando S. Phospholipid-derived Choline Intermediates and Acetylcholine Synthesis in Mouse Brain Synaptosomes[J]. Journal of Neuroscience Research,1989,24(2):241-246
    [152]Cook S. J., Wakelam M. J. O. Analysis of the Water-soluble Products of Phosphatidylcholine Breakdown by Ion-exchange Chromatography[J]. Biochemical Journal,1989,263(2):581-587
    [153]Pomfret E. A., Costa K. A., Schurman L. L., et al. Measurement of Choline and Choline Metabolite Concentrations using High-pressure Liquid Chromatography and Gas Chromatography-mass Spectrometry[J]. Analytical Biochemistry,1989,180(1):85-90
    [154]Klein J., Gonzalez R., Koppen A., et al. Free Choline and Choline Metabolites in Rat Brain and Body Fluids:Sensitive Determination and Implications for Choline Supply to the Brain[J]. Neurochemistry International,1993,22(3):293-300
    [155]Kawaguchi T., Murai S., Saito H. In vivo Changes in Free Choline Level Induced by Autonomic Agonists in Mouse Organs, Including Three Major Salivary Glands[J]. Comparative Biochemistry and Physiology,2000,127(3):281-290
    [156]Murai S., Saito H., Shirato R., et al. An Improved Method for Assaying Phosphocholine and Glycerophosphocholine in Mouse Tissue[J]. Journal of Pharmacological and Toxicological Methods,2002,46(2):103-109
    [157]Huennekens F. M., Hanahan D. J., Uziel M. Paper Chromatography of Lecithins[J]. Journal of Biological Chemistry,1954,206:443-447
    [158]Witter R. F., Marinetti G. V., Morrison A., et al. Paper Chromatography of Phospholipides with Solvent Mixtures of Ketones and Acetic Acid[J]. Archives of Biochemistry and Biophysics,1957,68(1):15-20
    [159]Pritchard P. H., Vance D. E. Choline Metabolism and Posphatidylcholine Biosynthesis in Cultured Rat Hepatocytes[J]. Biochemical Journal,1980,196(1):261-267
    [160]夏玉宇.化学实验室手册[M].北京:化学工业出版社,2004:807-823
    [161]李薇,肖翔林,张丹雁.常用中药薄层色谱鉴定[M].北京:化学工业出版社,2004:1-40
    [162]Starks C. M. Phase-Transfer Catalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts[J]. Journal of the American Chemical Society,1971,93(1):195-199
    [163]赵地顺.相转移催化原理及应用[M].北京:化学工业出版社,2007:3-35
    [164]Zhang Y., Stanciulescu M., Ikura M. Rapid Transesterification of Soybean Oil with Phase Transfer catalysts[J]. Applied Catalysis A:General,2009,366(1):176-183
    [165]Abdullah A. Z., Wibowo T. Y., Zakaria R. Effect of Tetramethyl Ammonium Hydroxide on the Activity of LiOH-intercalated Montmorillonite Catalyst in the Transesterification of Methyl Laurate with Glycerol[J]. Chemical Engineering Journal,2011,167(1): 328-334
    [166]Starks C. M., Liotta C. L., Halpern M. Phase Transfer Catalysis, Fundamentals, Applications, and Industrial Perspectives [M]. New York:Chapman & Hall Inc.,1994: 34-122
    [167]彭少君.离子交换树脂催化合成乳酸异丁醋和乳酸正丁醋的动力学研究[D].北京:北京化工大学,2009
    [168]Kim M., Salley S., Ng K. Y. S. Transesterification of Glycerides Using a Heterogeneous Resin Catalyst Combined with a Homogeneous Catalyst[J]. Energy Fuels,2008,22(6): 3594-3599
    [169]Marchetti J. M., Miguel V. U., Errazu A. F. Heterogeneous Esterification of Oil with High Amount of Free Fatty Acids [J]. Fuel,2007,86(5-6):906-910
    [170]欧植泽,徐满才,俞善信等.聚苯乙烯固载季铵盐相转移催化活性比较[J].湖南师范大学自然科学学报,1999,22(2):55-59
    [171]Lorenzo D. F., Fausto B., Guido C. A Process for the Preparation of Glycerophospholidpids[P]. European Patent Application:EP0575717A1,1993-03-24
    [172]赫连朋丽,范云鸽,史作清.含三乙烯二胺强弱碱功能基阴离子交换树脂的制备及其吸附性能[J].应用化学,2005,22(10):1055-1059
    [173]王方.离子交换树脂标准手册[M].北京:中国标准出版社,2003:10-15
    [174]肖国林,赫连朋丽,范云鸽等.强碱阴离子交换树脂合成及热稳定性能研究[J].离子交换与吸附,2005,21(6):514-521
    [175]俞善信,欧植泽,王彩荣等.聚苯乙烯三乙醇胺树脂的合成与表征[J].合成化学,1999,7(1):98-101
    [176]张开.高分子物理学[M].北京:化学工业出版社,1981:42
    [177]庄儒彬,高保娇,张健等.在交联聚合物微球GMA/MMA表面接枝固载聚乙二醇的研究[J].高分子学报,2009,7:620-626
    [178]宋栩冰,许承威.薄层色谱法测定聚苯乙烯的溶解度参数[J].高等学校化学学报,1982,3(2):271-274
    [179]Bialk M., Prucker O., Ruhe J. Grafting of Polymers to Solid Surfaces by Using Immobilized Methacrylates[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,198-200:543-549
    [180]杨元法,曾朝霞,罗孟飞等.胺基化树脂负载Pd(0)对Heck反应催化性能的研究[J].化学学报,2005,63(16):1469-1473
    [181]周蕊,魏荣卿,刘晓宁等.氯磺酸磺化聚苯乙烯-二乙烯基苯树脂[J].化工学报,2010,61(4):1049-1051
    [182]Masella R., Cantafora A. Determination of Phospholipids in Bbiological Samples by an Improved Densitometric Method on Thin-layer Chromatograms[J]. Clinica Chrmica Acta,1988,176(1):63-70
    [183]Poling B. E., Prausnitz J. M., O'Connell J. P.气液物性估算手册[M].第五版.赵红玲,王凤坤,陈圣坤等.北京:化学工业出版社,2006
    [184]Davies M., Kybett B. Sublimation and Vaporization Heats of Long-chain Aalcohols[J]. Transaction of the Faraday Socirty,1965,61:1608-1617
    [185]King A. M., Garner W. E. The Heats of Crystallization of Methyl and Ethyl Esters of Monobasic Fatty Acids[J]. Journal of the Chemical Society,1936,1372-1376
    [186]Gerasimov P. A., Blokh E. L., Gubareva A. I., et al. Standard Heats of Formation of Intermediates of Vitamin A[J]. Termodin. Org. Soedin.,1986,15:26-27
    [187]Freedman B., Bagby M. O., Khoury H. Correlation of Heats of Combustion with Empirical Formulas for Fatty Alcohols[J]. Journal of the American Oil Chemists Society,1989,66(4):595-596
    [188]马沛生.有机化合物实验物性数据手册一含碳、氢、氧、卤部分[M].北京:化学工业出版社,2006
    [189]Kolska Z., Ruzicka V., Gani R. Estimation of the Enthalpy of Vaporization and the Entropy of Vaporization for Pure Organic Compounds at 298.15 K and at Normal Boiling Temperature by a Group Contribution Method[J]. Industrial & Engineering Chemistry Research,2005,44(22):8436-8454
    [190]赵国良,靳长德.有机物热力学数据的估算[M].北京:高等教育出版社,1983
    [191]Westwell M. S., Searle M. S., Wales D. J., et al. Empirical Correlations between Thermodynamic Properties and Intermolecular Forces[J]. Journal of the American Chemical Society,1995,117(18):5013-5015
    [192]Arce A., Martinez-Ageitos J., Soto A. Vapor-Liquid Equilibria at 101.32 kPa of the Ternary Systems 2-Methoxy-2-methylpropane + Methanol+Water and 2-Methoxy-2-methylprpane+Ethanol+Water[J]. Journal of Chemical & Engineering Data,1998,43(5):708-713
    [193]Bonhorst C. W., Althouse P. M., Triebold H. O. Esters of Naturally Occurring Fatty Acids. Physical Properties of Methyl, Propyl, and Isopropyl Esters of C6 to C18 Saturated Fatty Acids [J]. Industrial & Engineering Chemistry,1948,40(12):2379-2384
    [194]Althouse P. M., Triebold H. O. Physical Constants of Methyl Esters of Commonly Occurring Fatty Acids Vapor Pressure[J]. Industrial & Engineering Chemistry Analytical Edition,1944,16(10):605-606
    [195]Khasanshin T. S., Zykova T. B. Specific Heat of Saturated Monatomic Alcohols[J]. Journal of Engineering Physics,1989,56(6):991-994
    [196]韩德刚,高盘良.化学动力学基础[M].北京:北京大学出版社,1987:1-8
    [197]Freedman B., Butterfield R. O., Pryde E. H. Transesterification Kinetics of Soybean Oil[J]. Journal of the American Oil Chemists' Society,1986,63(10):1375-1380
    [198]Noureddini H., Zhu D. Kinetics of Transesterification of Soybean Oil[J]. Journal of the American Oil Chemists' Society,1997,74(11):1457-1463
    [199]Mittelbach M., Trathnigg B. Kinetics of Alkaline Catalyzed Methanolysis of Sunflower Oil[J]. Fat Science and Technology,1990,92(4):145-148
    [200]Darnoko D., Cheryan M. Kinetics of Palm Oil Transesterification in a Batch Reactor [J]. Journal of the American Oil Chemists' Society,2000,77(12):1263-1267
    [201]Wang L. Y., Yang J. C. Transesterification of Soybean Oil with Nano-MgO or not in Supercritical and Subcritical Methanol[J]. Fuel,2007,86(3):328-333
    [202]杨继涛.非均相催化反应动力学[M].北京:石油工业出版社,1999:153-159
    [203]郭锴,唐小恒,周绪美.化学反应工程[M].北京:化学工业出版社,2000:142-147
    [204]孙康.宏观反应动力学及其解析方法[M].北京:冶金工业出版社,1998:38-46
    [205]Bozek-Winkler E., Gmehling J. Transesterification of Methyl Acetate and n-Butanol Catalyzed by Amberlyst 15[J]. Industrial and Engineering Chemistry Research,2006, 45(20):6648-6654
    [206]马鸿宾.固体碱催化合成生物柴油的基础研究[D].天津:天津大学,2008
    [207]黄华江.实用化工计算机模拟-MATLAB在化学工程中的应用[M].北京:化学工业出版社,2007:175-238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700