用户名: 密码: 验证码:
新型超高强度钢的合金优化及其组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在对现有低合金超高强度钢强韧化机理分析的基础上,设计出了30Cr3Si2Mn2NiWMoVNb和30Cr3Si2Mn2NiMoVNb两种新型超高强度钢。采用力学性能测试、光学显微镜(OM)、冷场发射扫描电子显微镜(SEM)、能谱衍射分析(EDAX)、X射线衍射分析(XRD)、透射电子显微镜(TEM)以及物理化学相分析等方法系统地研究了新型超高强度钢及现有的Eglin钢的力学性能以及微观组织,分析了未溶碳化物与热处理温度及组织性能的关系。本文主要的研究内容及获得的成果如下:
     以Eglin钢为原型钢,借用在G50钢中加入较高Si以及加入Nb以改善韧性的设计思路,同时加入约2%的Mn以进一步提高钢的韧性,为保证足够的强度,适当提高了Mo的含量。采用Thermo-Calc热力学方法优化了平衡态高温相组织,设计出了新型低成本超高强度钢30Cr3Si2Mn2NiWMoVNb钢。结果表明,30Cr3Si2Mn2NiWMoVNb钢的最佳热处理制度为950℃×1h,油淬+260℃×2h,空冷。其力学性能为:抗拉强度1870MPa,屈服强度1460MPa,冲击功为66J,延伸率为12%。与Eglin钢相比,在韧性相当的前提下,该钢的抗拉强度提高了约200MPa。30Cr3Si2Mn2NiWMoVNb钢的研制成功,对开发及拓展新的低成本超高强度钢提供了有益的借鉴。
     以G50钢为原型钢,降低Ni元素含量以节约成本,在此基础上,提高1%的Mn以提高钢的韧性,同时提高2%的Cr以改善淬透性,为了适当提高强度并细化晶粒,加入了少量的V元素,同时采用Thermo-Calc热力学方法优化了平衡态高温相组织,设计出了新型低成本超高强度钢30Cr3Si2Mn2NiMoVNb钢。试验结果指出,30Cr3Si2Mn2NiMoVNb (?)冈的最佳热处理制度为950℃×1h,油淬+260℃×2h,空冷,其力学性能为:抗拉强度1750MPa,屈服强度1330MPa,冲击功可达74J,延伸率为13%。相比于Eglin钢,该钢的抗拉强度提高了100MPa,韧性和塑性与之相当,而且其强度对淬火温度不太敏感。与G50钢相比,该钢的力学性能与之相当,成本大幅度降低。
     通过OM、SEM、EDAX、XRD以及TEM等分析手段研究发现:新型超高强度钢的基体均为高位错密度的板条马氏体组织,板条间分布有薄膜状的残余奥氏体及-些未溶碳化物。30Cr3Si2Mn2NiWMoVNb钢中的未溶碳化物为富W、Mo的M6C相以及富Nb、v的MC相,其未溶碳化物颗粒尺寸细小,数量显著增多,具在再加精细的板条组织,这也是30Cr3Si2Mn2NiWMoVNb钢具有更高抗拉强度及屈服强度,而韧性、塑性却与Eglin钢相当的重要原因。30Cr3Si2Mn2NiMoVNb钢未溶碳化物为富Mo的M6C相以及富Nb、V的MC相。相对于Eglin钢,该钢微观组织中的未溶碳化物颗粒尺寸、数量与之相差不显著,但该钢中由于增加了可保持到高温的富Nb、V的MC相,有效细化了晶粒,使得其强度随着奥氏体化温度的升高没有显著变化。
     采用Thermo-Calc热力学软件计算了新型超高强度钢加热时高温相的变化规律,其变化规律与试验结果基本一致。计算结果表明,30Cr3Si2Mn2NiWMoVNb钢的高温相主要为富Nb、V的MC相及富W、Mo的M6C相,其中富W、Mo的M6C相于约970℃时完全溶解;而30Cr3Si2Mn2NiMoVNb钢的高温相主要为富Nb、V的MC相及富Mo的M6C相,其中富Mo的M6C相在约920℃时完全溶解。试验结果也表明,30Cr3Si2Mn2NiWMoVNb钢中的M6C相的完全溶解温度在950℃~980℃之间;30Cr3Si2Mn2NiMoVNb钢中的M6C相的完全溶解温度在890℃~920℃。
Based on the analysis of strengthening and toughening mechanism of low-alloy ultra-high strength steels,30Cr3Si2Mn2NiWMoVNb steel and 30Cr3Si2Mn2NiMoVNb steel are designed. The machaical properties and microstructure of newly designed steels and Eglin steel are systematic investigated by means of mechanics performance testing, optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, the relations between undissolved carbides and austenited temperature are also studied. The main research and conclusions are obtained as follows:
     The toughness of G50 steel can be improved by adding Si and Nb in G50 steel. Based on the method, the toughness of Eglin steel can be improved by adding 2% Mn in Eglin steel. However the strength must be reduced. So the content of Mo can be increased to improve the strength of Eglin steel. So based on Eglin steel,30Cr3Si2Mn2NiWMoVNb steel, a new low cost ultra-high strength steel, can be by thermodynamic calculation by application of Thermo-Calc software. The results show that austenizing at 950℃for 1 hour, oil quenched and then tempered at 260℃for 2 hours followed by air cooling is the optimal heat treatment for 30Cr3Si2Mn2NiWMoVNb steel. Under the conditions, tensile strength of 187OMPa, yield strength of 1460MPa, Charpy U-notch impact toughness of 66J and ductility of 12% were obtained. The tensile strength of new steel is increased about 200Mpa with almost the same toughness against Eglin steel. The successful development of 30Cr3Si2Mn2NiWMoVNb steel can offer a method to develop a low cost ultrahigh strength steels.
     In order to reduce the cost, based on the G50 steel, the content of Mn increases by 1% to improve the toughness, the content Cr increases by 2% to improve hardenability and V is added to improve the strength.30Cr3Si2Mn2NiMoVNb steel, a new low cost ultra-high strength steel has been designed by thermodynamic calculation by assistant of Thermo-Calc software. The results show that austenizing at 950℃for 1 hour, oil quenched and then tempered at 260℃for 2 hours followed by air c(?)oling is the optimal heat treatment of 30Cr3Si2Mn2NiMoVNb steel. Under the conditions, tensile strength of 1750MPa, yield strength of 133OMPa, Charpy U-notch impact toughness of 74J and ductility of 13% were obtained. Tensile strength of 30Cr3Si2Mn2NiMoVNb steel is increased about 100MPa with almost the same toughness against Eglin steel and insensitive to austenitizing temperature. 30Cr3Si2Mn2NiMoVNb steel has almost the same mechanical properties as G50 steel, but is much cheaper.
     The microstructure of newly designed steels are characterized through OM, SEM, EDAX, XRD and TEM. The results show that matrix of new designed steels is lath-martensite with high dislocation density, interlath retained austenite and some undissolved carbides.30Cr3Si2Mn2NiWMoVNb steel has finer and more undissolved carbides of W, Mo-rich M6C and Nb, V-rich MC compared with Eglin steel. The undissolved carbides are lead to a finer microstructure, which ensured toughness and increased strength significantly. The undissolved carbides of 30Cr3Si2Mn2NiMoVNb steel are Mo-rich M6C and Nb, V-rich MC. Size and quantity of the undissolved carbides in 30Cr3Si2Mn2NiMoVNb steel are the same as Eglin steel. However, finer grain size according to Nb, V-rich MC lead to insensitive strength of 30Cr3Si2Mn2NiMoVNb steel.
     Variation of high temperature phases during heating in newly designed steels are calculated by Thermo-Calc software and verification test is carried out. Calculation results show that the W, Mo-rich M6C phases of 30Cr3Si2Mn2NiWMoVNb steel are dissolved completely at about 970℃. And the Mo-rich M6C phases of 30Cr3Si2Mn2NiMoVNb steel are dissolved completely at about 920℃. Experimental results showed that undissolved W, Mo-rich M6C carbides of 30Cr3Si2Mn2NiWMoVNb steel are dissolved completely in the range of 950℃-980℃; and undissolved Mo-rich M6C carbides of 30Cr3Si2Mn2NiMoVNb steel are dissolved completely in the range of 890℃-920℃. The calculation results were in accordance with test results.
引文
[1]G.E.Pellissier. Effects of microstructure on the fracture toughness of ultrahigh-strength steels. Engineering Fracture Mechanics,1968,1 (1):55~60
    [2]F.B.Pickering. Phaysical metallurgy and the design of steels. London:Applied Science Publishers LTD,1978
    [3]赵振业.合金钢设计.北京:国防工业出版社,1999
    [4]W.F.Brown, Jr. Aerospace Structural Metals Handbook. Code, Metals and Ceramics Information Center,1989
    [5]W.B.Jones, J.C.Swearengen. Mechanical stability of ultrahigh strength steels. Materials Science and Engineering,1979,41(2):225~235
    [6]E.S.Kagan, Y.M.Potak, V.V.Sachkov. The mechanical properties of stainless maraging steels. Metal Science and Heat Treatment,1969,11(4):254~257
    [7]L.I.Kogan, R.I.Eatin. The influence of deformation quenched austenite upon the properties of steel after hardening. Metal Science and Heat Treatment,1962,4(1-2):1~5
    [8]E.A.Steigerwald. Plane strain fracture toughness of high strength materials. Engineering Fracture Mechanics,1969,1(3):473~484
    [9]Y.V.Murty, T.Z.Kattamis, R.Mehrabian, et,al.. Behavior of sulfide inclusions during thermomechanical processing of AISI 4340 steel. Metallurgical and Materials Transactions A,1977,8A(8):1275-1282
    [10]H.E.Lippard, C.E.Campbell, V.P.Dravid, et,al.. Microsegregation behavior during solidification and homogenization of AerMet100 steel. Metallurgical and Materials Transactions B,1998,29(1):205~210
    [11]G.B.Olson. APFIM study of multicomponent M2C carbide precipitation in AF1410 steel. Surface Science,1991,246(1-3):238~245
    [12]W.R.Broughton, P.J.K.Paterson, W.J.Pollock. Effect of heat treatment on grain boundary chemistry and susceptibility to embrittlement in two low alloy steels. Applications of Surface Science,1983,15(1-4):120~128
    [13]T.J.Koppenaal. Preliminary thermomechanical treatment of D6AC steel. Metallurgical and Materials Transactions B,1970,1(12):3371~3376
    [14]P.Hamnett, G.MungerJohn. Heavy section HP 9Ni-4Co alloys. Nuclear Engineering and Design,1970,11(3):447-456
    [15]A.F.Petrakov, A.P.Gulyaev, N.GPokrovskaya, et,al.. Effects of Ni, Co and heat treatment on the structure and characteristics of VKS6 steel. Metal Science and Heat Treatment,1985,27(12):892-897
    [16]W.A.Spitzig, P.M.Talda, R.P.Wei. Fatigue-crack propagation and fractographic analysis of 18Ni(250) maraging steel tested in argon and hydrogen environments. Engineering Fracture Mechanics,1968,1(1):155~166
    [17]R.P.Gangloff. Gaseous hydrogen assisted crack growth in 18 nickel maraging steels. Scripta Metallurgica,1974,8(6):661-667
    [18JP.P.Sinha, K.Sreekumar, A.Natarajan, et.al.. Grain growth in 18Ni 1800 MPa maraging steel. Journal of Materials Science,1991,26(15):4155~4159
    [19]GB.Olson, M.Azrin, E.S.Wrighteds. Innovations in Ultrahigh Strength Steel Technology, Process 34th Sagamore Army Materials Research Conference, Lake George, NY,1987,30 August-3 September
    [20]James Dahl. Aermet100-an advanced steel for the aerospace industry. Speciality Metals and Alloys. Carpenter Technology Corp.
    [21]张国英,新型无钴高强高韧钢的微观结构与强韧性机理研究[博士论文],沈阳,东北大学,2000(12)
    [22]M.Dilmore, J.D.Ruhlman. Eglin steel-a low alloy high strength composition. Unated States Patent. C21B, No.WO 2004/067783 A2,2004.8.12
    [23]D.K.Matlock, V.E.Brautigam, J.G.Speer. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel. Mater Sci Forum.2005, 500-501:63-74
    [24]J.G.Speer, A.M.Streicher, D.K.Matlock, et,al. Quenching and partitioning:a fundamentally new process to create high strength TRIP sheet microstructures. In: Symposium on the Thermodynamics, Kinetics, Characterization and Modeling of Austenite Formation and Decomposition. ISS and TMS,Warrendale, PA, USA,2003,505~522
    [25]J.GSpeer, D.K.Matlock, B.C.De Cooman, et.al.. Carbon partitioning into austenite after martensite transformation. Acta Mater.,2003,51(9):2611~2622
    [26]E.D.Moor, S.Lacroix, L.Samek, et,al.. Dilatometric Study of the Quench and Partitioning Process. The 3rd International Conference on Advanced Structural Steels, Gyeongju, Korea,2006, August 22-24
    [27]徐祖耀.钢热处理的新工艺.热处理.2007,22(1):1~11
    [28]T.Y.Hsu. Design of structure, composition and heat treatment process for high strength steel. Mater Science Forum,2007,561-565(3):2283~2286
    [29]徐祖耀.用于超高强度钢的淬火-碳分配-回火(沉淀)(QPT)工艺.热处理.2008,2(2):1~5
    [30]金学军,李洪岩,陈科.低合金超高强度复相钢及其热处理方法.CN101225499,2008,7-23
    [31]H.Y.Li, X.J.Jin. Microstructure and mechanical properties of 50SiMnNiNb steel by a novel quenching-partitioning-austempering heat treatment. Chinese Journal of Mechanical Engineering,2009,22(5):645-650
    [32]李洪岩,金学军.一种新型的热处理工艺:淬火-配分-等温淬火.第八届全国固态相变、凝固及应用学术会议,2009
    [33]Y.Tomita. Low- Temperature improvement of mechanical properties of AISI 4340 steel through high-temperature thermomechanical treatment. Metallurgical and Materials Transactions A,1991,22A(5):1093~1102
    [34]R.O.Robert, F.Benjamin, L.S.William. Evaluation of toughness in AISI 4340 alloy steel austenitized at low and high temperature. Metallurgical Transactions A,1976,7A(6):831~ 838
    [35]W.E.Wood. Discussion of "Evaluation of toughness in AISI 4340 alloy steel austenitized at low and high temperatures". Metallurgical Transactions A,1977,8A(7): 1195-1196
    [36]Y.Tomita. Improved fracture toughness of ultrahigh strength steel through control of non-metallic inclusions. Journal of Materials Science,1993,28:853~859
    [38]W.S.Lee, T.T.Su. Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions. Journal of Materials Processing Technology,1999,87:198-206
    [39]A.G.Allten, P.Payson. The effect of silicon on the tempering of martensite. Transaction of the ASM,1953,499~525
    [40]C.H.Shih, B.L.Averbach, M.Cohen. Some effects of silicon on the mechanical properties of high strength steels. Transaction of the ASM,1956, (48):86~118
    [41]D.Dilipkumar, W.E.Wood. Acoustic-emission analysis of fracture-toughness tests. Experimental Mechanics,1979,19(11):416~420
    [42]J.T.Ryder, F.M.Pickel. Effect of Temperature on Stress Corrosion Cracking of 300M Steel. Journal of Testing and Evaluation,1978,6(2):599~618
    [43]陈大明,康沫狂.起落架用超高强度钢的屈强比问题.航空材料学报,1992,12(1):50-56
    [44]范长刚,董瀚,时捷等.镍含量对2200MPa级超高强度钢力学性能的影响.金属热处理,2007,32(2):16-19
    [45]赵敬世,张利民.300M钢回火过程中位错密度变化.北京航空航天大学学报,1991,1:14-17
    [46]濮汝厚,张伟,赵振业.超高强度钢300M含碳量、等温组织与力学行为的关系.航空材料学报,1994,14(3):14-18
    [47]刘东雨,白秉哲,方鸿生.Si对低合金高合金钢和超高强度钢抗延迟断裂韧性能的影响.国外金属热处理,2001,22(1):25-27,11
    [48]朱子新,杜则裕,胡光立.残余奥氏体对300M超高强度钢冲击疲劳性能的影响.天津大学学报,2001,34(3):379-382
    [49]陈嘉砚,苏杰,高银露等.G50钢残余奥氏体的研究,中国钢铁年会论文集,成都,2001
    [50]唐华.超高强度钢40CrNi2Si2MoVA强韧化工艺研究[硕士论文],成都,西南交通大学,2006
    [51]李志宏30CrMnSiNi2A热处理工艺的优化研究.热加工工艺,2008,37(24):97-99,103
    [52]厉勇,王春旭,田志凌等.一种低合金超高强度钢组织与性能的研究.钢铁,2008,43(5):75-79
    [53]H.J.Wu, Y.Wei, F.L.Huang, et,al.. Experimental investigation on spall fracture of 30CrMnSiNi2A steel. Journal of Beijing Institute of Technology,2010,19(1):1~7
    [54]V.N.Gridnev, Y.N.Petrov. Fine structure of martensite in carbon steels. Metal Science and Heat Treatment,1967,9(8):586~590
    [55]F.C.Frank. Martensite. Acta Metallurgica,1953,1(1):15~21
    [56]D.C.Bruce. On the elastic interaction of hydrogen with precipitates in lath martensite. Acta Metallurgica,1977,25(9):1027-1030
    [57]J.L.Youngblood, M.Raghavan. Correlation of Microstructure with mechanical properties of 300M. Metallurgical Transaction A,1977,8A(9):1439~1448
    [58]S.Lee, L.Majno, R.J.Asaro. Correlation of microstructure and fracture toughness in two 4340 steels. Metallurgical Transaction A,1985,16A(9):1633~1648
    [59]G.Malakondaiah, M.Srinitlas, P.Rama Rao. ultrahigh strength low-alloy steels with enhanced fracture toughness. Progress in Materials Science,1997,42:209~242
    [60]那顺桑,姚青芳.金属强韧化原理与应用.北京:化学工业出版社,2006
    [61]俞德刚,谈育煦.钢的组织强度学——组织与强韧性.上海:上海科学技术出版社,1983
    [62]雍岐龙.钢铁材料中的第二相.北京:冶金工业出版社,2006
    [63]M.J.Leap, J.C.Wingert. The effects of grain-refining precipitates on the development of toughness in 4340 steel. Metallurgical and Materials Transactions A,1999,30(1):93~114
    [64]陈嘉砚,苏杰,高银露.G50钢析出相的研究.钢铁(增刊),2001,36:119-122
    [65]T.Swindon, D.A.Oliver. Hardenability of Steel. NATURE,1947,159(4051):853~854
    [66]H.Ishii, T.Kawarazaki, Y.Fujimura. Fatigue in Binary Alloys of bcc Iron. Metallurgical and Materials Transactions A,1984,15(4):679~691
    [67]C.A.Siebebert, D.V.Doane, D.H.Breen. The hardenability of steels-concepts, metallurgical influences, and industrial applications. Metals Park, OHIO 44073 American Society for Metals,1977
    [68]孙珍宝.合金钢手册.北京:冶金工业出版社,1984
    [69]K.W.Andrews. Empirical formulae for calculation of some transformation temperatures. JISI.,1965,203(6):721~732
    [70]李智超,刘鹏砚,王明罡.Ms点的碳当量计算法.辽宁工程技术大学学报(自然 科学版),1998,17(3):293-295
    [71]G.Krauss. Heat treated martensitic steels:microstructural systems for advanced manufacture. ISIJ International,1995,35(4):349~359
    [72]B.P.J.Sandvik, C.M.Wayman. Characteristics of lath martensite:Part Ⅰ. crystallographic and substructural features. Metallurgical and Materials Transactions A,1983,14(4):809~ 822
    [73]T.Maki, C.M.Wayman.Effect of coherent precipitates in austenite on the martensite substructure in an Fe-Ni-Ti-C alloy. Acta Metallurgica, 1977,25(6):695~710
    [74]B.P.J.Sandvik, C.M.Wayman. Characteristics of lath martensite:Part Ⅱ. The martensite-austenite interface. Metallurgical and Materials Transactions A,1983,14 (4): 823~834
    [75]B.P.J.Sandvik, C.M.Wayman.. Characteristics of lath martensite:Part Ⅲ. Some theoretical considerations. Metallurgical and Materials Transactions A,1983,14(4):835~ 844
    [76]G.Y.Lai, W.E.Wood, R.A.Clark, el, at. The effect of austenizing temperature on the microstructure and mechanical properties of as-quenched 4340 steel. Metallurgical Transactions,1974,5(7):1663~1670
    [77]G.S.Ansell. New aspects of martensitic transformation, Kobe,1976
    [78]K.H.Khan,W.E.Wood. The effect of step quenching on the microstructure and fracture toughness of AISI4340 steel. Metallurgical Transactions A,1978,9A(7):899~907
    [79]P.M.Kelly, J.Nutting. The Martensite Transformation in Carbon Steels. Proc. R. Soc. Lond. A,1960,259(1296):45~58
    [80]GR.Speich, R.L.Miller. Improved Rapid-Quenching Hot Stage for Metallography. JISI, 1968,205:385-391
    [81]C.L.Magee, R.G.Davies. The structure, deformation and strength of ferrous martensites. Acta Metallurgica,1971,19(4):345~354
    [82]J.McMahon, G.Thomas. Third Intern. Conf. on Strength of Metals and Alloys, Microstructure and design of alloys" I,1973,1:180~188
    [83]D.H.Huang, G.Thomas. Structure and mechanical properties of tempered martensite and lower bainite in Fe-Ni-Mn-C steels. Metallurgical.and Materials Transactions,1971, 2(6):1587~1598
    [84]G.L.Michael. Grain boundary adsorption and "superhigh plasticity". Acta Metallurgica,1961,9(7):689~694
    [85]F.W.Clinard, O.D.Sherby. Strength of iron during allotropic transformation. Acta Metallurgica,1964,12(8):911~919
    [86]P.C.Maxwell, A.Goldberg, J.C.Shyne. Influence of martensite formed during deformation on the mechanical behavior of Fe-Ni-C Alloys. Metallurgical and Materials Transactions B,1974,5(6):1319~1324
    [87]R.H.Richman, R.W.Landgraf. Some effects of retained austenife on the fatigue resistance of carburized steel. Metallurgical and Materials Transactions A,1975,6(4): 955~964
    [89]Y.Tomita. Improved lower temperature fracture toughness of ultrahigh strength 4340 steel through modified heat treatment. Metallurgical and Materials Transactions A,1987, 18A(8):1495~1501
    [90]Y.Tomita, K.Okabayashi. Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite. Metallurgical and Materials Transactions A,1985,16A(1):73~82
    [91]T.Gladman. Developments in inclusions and their effects on steel properties. Ironmaking and Steelmaking,1992,19(6):457~463
    [92]R.Kiessling. In: Proceeding 2nd International Conference "Clean steels", Balatonfured, Hungary, June 1981, edited and published by the Institute of Metals, London,1983.1~9
    [93]Y.Tomita. Effect of desulphurization and calcium treatments on the inclusion morphology of 0.4C-Cr-Mo-Ni steels. Journal of Materials Science,1994,29:2873~ 2878
    [94]T.Lund, J.Akesson. In:J.J.C.Hoo, editor. Effect of steel manufacturing process on the quality of bearing steels. ASTM STP987. Philadelphia, USA:American Society for Testing and Materials,1988,308~315
    [95]S.K.Paul, A.Ray. Influence of inclusion characteristics on the formability and toughness properties of a hot-rolled deep-drawing quality steel. Journal of Materials Engineering and Performance,1997,6:27~34
    [96]W.A.Spitzig, R.J.Sober. Influence of sulfide inclusions and pearlite content on the mechanical properties of hot-rolled carbon steels. Metallurgical Transactions,1981,12A: 281-291
    [97]Y.Tomita. Improved mechanical properties of ultrahigh strength 0.4C-Cr-Mo-Ni steel through modification of sulphide inclusion shape and microstructural control. Materials Science Technology,1989,5:1084~1089
    [98]H.Suito, R.Inoue. Thermodynamics on control of inclusions composition in ultra-clean steels. ISIJ International,1996,36:528~536
    [99]M.Imagumbai, T.Takeda. Influence of calcium-treatment on sulfide and oxide-inclusions in continuous-cast slab of clean steel-dendrite structure and inclusions. ISIJ International 1994,34(7):574~583
    [100]L.Brinkmeyer, S.D.Melville. Factors affecting cleanliness of continuously cast steel. Ironmaking and Steelmaking 1995,22:45~47
    [101]J.R.Rice, M.A.Johnson. In:M.F.Kanninen, W.G.Adler, A.R.Rosenfield, R.I.Jaffe, editors. Plastic behaviour of solid. New York:McGraw Hill,1970,641~645
    [102]J.H.Tweed, J.F.Knott. Effect of reheating on microstructure and toughness of C-Mn weld metal. Metallurgical Science 1983,17:44~47
    [103]D.E.McRobie, J.F.Knott. Effects of strain and strain aging on fracture toughness of C-Mn weld metal. Materials Science Technology.1985,1:357~365
    [104]A.Ray, S.K.Paul, S.Jha. Effect of inclusions and microstructural characteristics on the mechanical properties and fracture behavior of a high-strength low-alloy steel. Journal of Materials Engineering and Performance.1995,4:679~688.
    [105]Y.Tomita. Effect of morphology of nonmetallic inclusions on tensile properties of quenched and tempered 0.4C-Cr-Mo-Ni steels. Materials Characterization 1995,34:121~ 128.
    [106]Y.Tomita. Effect of morphology of non-metallic inclusions on Charpy impact properties of quenched and tempered 0.4C-Cr-Mo-Ni steels. Materials Science and Technology 1995,11(5):508~513.
    [107]T.B.Cox, J.R.Lcw. An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels. Metallurgical and Materials Transactions B,1974,5(6): 1457-1470
    [108]W.C.Leslie. The Physical Metallurgy of Steels.McGraw-Hill Int. Book Co., Tokyo, 1982
    [109]J.Pacyna. Effect of non-metallic inclusions on fracture toughness of tool steels. Steel Research 1986,57:586-592
    [110]Y.Tomita. Application of decreased hot-rolling reduction treatments for improved mechanical properties of quenched and highly-tempered low alloy structural steels. Journal of Materials Science,1991,26(1):35~42
    [111]Y.Tomita. Fracture toughness of calcium-modified ultrahigh-strength 4340 steel. Metallurgical and Materials Transactions A,1990,21A(10):2739~2746
    [112]Y.Tomita. Effect of hot-rolling reduction on shape of sulfide inclusions and fracture toughness of AISI 4340 ultrahigh strength steel. Metallurgical and Materials Transactions A, 1988,19A(6):1555~1561
    [113]W.M.Garrison. The effect of silicon and nickel additions on the sulfide spacing and fracture toughness of a 0.4 carbon low alloy steel. Metallurgical and Materials Transactions A,1986,17A(4):669~678
    [114]北京钢铁学院《中国冶金简史》编写小组.中国冶金简史.北京:科学出版社,1978
    [115]徐祖耀.金属学原理.上海:上海科技出版社,1964,1
    [116]徐祖耀.马氏体相变与马氏体(第二版).北京:科学出版社,1999
    [117]崔忠圻.金属学与热处理.北京:机械工业出版社,2000
    [118]B.V.Rao, G.Thomas. Transmissions electron microscopy characterization of dislocated "lath" martensite. In:Proc. Int. Conf. Martensitic Transformations, ICOMAT-79, MIT, 1979,12~16
    [119]G.Thomas, M.Sarikaya. Lath martensites in carbon steels are bainitic. In:Proc. Int. Conf. Solid-Solid Phase Transformations,1981, Ed Aaronson H I, et,al.. TMS-AIME,1982, 999~1004
    [120]G.Krauss. Steels:heat treatment and processing principles,2nd ed. ASM, Materials Park, OH,1990
    [121]D.V.Edmonds, K.He, F.C.Rizzo, et,al.. Quenching and partitioning martensite—A novel steel heat treatment. Materials Science and Engineering A,2006,438-440:25~34
    [122]Y.Tomita, K.Okabayashi. Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrahigh strength low alloy steels. Metallurgical and Materials Transactions A,1985,16A(1):83~91
    [123]L.Kaufman, J.Marshall. Phase Relationship in high temperature alloys. Fall Meeting, AIME, Chicago, III,1966,10.30
    [124]T.Nishizawa. Progress of CALPHAD. Transactions of Japan Inst. Met.,1992,33: 140-146
    [125]Bo Sundman. Thermo-Calc user's guide. Div of computational Thermodynamics Dept of Materials Science and Engineering,Royal Institute of Technology S-100 44 Stockholm. Sweden,1997:1
    [126]郝士明.材料热力学.北京:化学工业出版社,2004
    [127]刘宗昌.材料组织结构转变原理.北京:冶金工业出版社,2006
    [128]M.Hillert. Phase Equilibria, Phase Diagrams and Phase Transformations Their Thermodynamic Basis. Cambridge University Press,1998
    [129]J.Andersson, H.Thomas, H.Lars, et,al.. Thermo-Calc & DICTRA, computational tools for materials science. Calpbad,2002,26(2):273~312
    [130]T.H.Lee, C.S.Oh, C.G.Lee. Precipitation of sigma-phase in high-nitrogen austenitic 18Cr-18Mn-2Mo-0.9N stainless steel during isothermal aging. Scripta materialia,2004, 50(10):1325-1328
    [131]B.Jansson, B.Jonsson, B.Sundman, et,al.. The thermo Calc project. Thermochimica Acta,1993,214(1):93~96
    [132]周媛.TRIP钢的组织控制计算[博士论文].上海,上海大学,2002
    [133]商延赓,许飞霞,孙大千等.热力学计算在SnAgCu合金成分设计中应用.电子工业技术,2007,28(1):10~12
    [134]T.Yamashita, K.Okuda, T.Obara. Application of Thermo-Calc to the development of high-performannce steels. Journal of Phase Equilibrium,1999,20(3):231~237
    [135]H.Tagaw, T.Fujino, T.Yamashit. Formation and some chemical properties of of alkaline-earth metal monouranates. Journal of Inorganic and Nuclear Chemistry,1979, 41(12):1729-1735
    [136]T.Inoue. Influence of cementite distribution on machinability and tool life of high carbon Cr-bearing steel铁ソ钢,1998,84(5):67~72
    [137]常辉.Ti-B19合金的固态相变动力学及其组织演变规律[博士论文].西安,西北工业大学,2006,10
    [138]B.Anders, H.Mats. Complex carbide growth,dissolution and coarsening in a modified 12 pet chromium steel-an experimental and theoretical study. Metallurgical and Materials Transactions A,2001,32A:19~27
    [139]Z.K.Liu, H.Lars, B.Jansson, et,al.. An experimental and theoretical study of cementite dissolution in an Fe-Cr-C alloy. Metallurgical Transactions A,1991,22A:1745~1752
    [140]沙维Thermo-Calc热力学计算系统及其在材料研究中的应用.材料科学与工程学报,1992,2:40~43,32
    [141]J.Agren. Thermodynamics and heat treatment. Materials Science Forum,1994, 163-165:3-14
    [142]胡心彬,李麟,吴晓春.新型热作模具钢的合金设计.热处理,2004,19(3):27-31
    [143]王海涛,何燕霖,张梅.A1元素对TRIP钢组织的影响.上海金属,2005,27(5):23-26
    [144]A.Borgenstam, A.Engstrom, L.Hoglund, et,al..DICTRA, a Tool for Simulation of Diffusional Transformations in Alloys. Journal of Phase Equilibria,2000,21(3):269~280
    [145]F.Tancret. Thermo-Calc and Dictra simulation of constitutional liquation of gamma prime (γ') during welding of Ni base superalloys. Computational Materials Science,2007, 41(1):13~19
    [146]E.Anders, H.Lars, A.John. Computer simulation of diffusion in multiphase systems. Metallurgical and Materials Transactions A,1994,25(6):1127~1134
    [147]P.E.A.Turchi, L.Kaufman, Z.K.Liu. Modeling of Ni-Cr-Mo based alloys:Part Ⅱ Kinetics. CALPHAD,2007,31(2):237~248
    [148]何燕霖.高性能预硬型塑料模具钢的计算机合金设计[博士论文].上海,上海大学,2004,5
    [149]H.Du. Forr(?)ation of compound layers on iron during gas nitriding. Surface Engineering,1995,11(4):301~307
    [150]H.Nordberg, B.Aronsson. Solubility of niobium carbide in austenite. JISI,1968,12: 1263-1266
    [151]R.P.Smith. The solubility of niobium carbide in gamma iron.Trans. AIME,1966,236: 220-221
    [152]T.H.Johansen. The solubility of niobium carbide in gamma iron.Trans. AIME,1967, 239:1651-1654
    [153]H.L.Andrade, M.GAkben, J.J.Jonas. Effect of molybdenum, niobium and vanadium on static recovery and recrystallization and on solute strengthing in microalloyed steels. Metall Trans,1983,14A:1967~1977
    [154]K.Narita. Physical chemistry of the groups IVa(Ti,Zr), Va(V,Nb,Ta) and the rare earth elements in steel. Trans ISIJ,1975,15:145~152
    [155]E.J.Palmiere, C.I.Garcia, A.J.DeArdo. Compositional and micro structural changes which attend reheating and grain coarsening in steels containing niobium. Metallurgical Transactions A,1994,25A:277~286
    [156]S.Koyama, T.Ishii, K.Narita. Solubility of vanadium carbide and nitride in Ferric iron. Journal of Jpa Institute Metals,1973,37:191~196
    [157]K.Kehsin. Carbides in chromium,molybdenum,and tungsten steels. Journal of the iron and steel institute,1953,4:363~375
    [158]梁新邦,李久林,陶立英等.GB/T 228-2002,金属材料室温拉伸试验方法.北京:中国标准出版社,2002
    [159]朱林茂,高怡斐,刘卫平等.GB/T 229-2007,金属材料夏比摆锤冲击试验方法.北京:中国标准出版社,2007
    [160]http://www.antpedia.com/viewspace-79640
    [161]魏全金.材料电子显微分析.北京:冶金工业出版社,1990
    [162]陈世朴,王永瑞.金属电子显微分析.北京:机械工业出版社,1982
    [163]陆金生,王彪,姚影澄.钢和合金中常见相X-射线鉴定手册.北京:钢铁研究总院,1990
    [164]J.R.Paules, M.F.Dilmore, K.J.Handerhan. Development of Eglin Steel—A new, Ultrahigh-Strength Steel for Armament Aerospace Applications, Materials Science and Technology, Pittsburgh, PA,2005,2:13~23
    [165]R.M.Horn, R.O.Ritchie. Mechanisms of tempered martemsite embrittlement in low alloy steels. Metallurgical Transactions A,1978,9A(8):1039~1053
    [166]M.R.Carlson, B.V.N.Rao, G.Thomas. The effect of austenitizing temperature upon the microstructure and mechanical properties of experimental Fe/Cr/C steels. Metallurgical Transactions A,1979,10A(9):1273~1284
    [167]T.J.McCaffrey. Combined strength and toughness characterize new aircraft alloy. Advanced Materials and Processes,1992,9:47~50
    [168]夏志新,杨卓越,苏杰等.夹杂物的类型与形态对超高强度钢塑性的影响.航空材料学报,2008,28(5):17~21
    [170]H.J.Rack and D.Kalish. Austenite grain growth in 18Ni(350) maraging steel. Metal Trans,1972,3A(4):1012~1014
    [171]M.Q.Wang, H.Dong, W.J.Hui, et,al.. Effect of heat treatment on microstructure and mechanical properties of Cr-Ni-Mo-Nb steel. Materials Science and Technology,2007, 23(8):963~969
    [172]俞宝罗,胡光立.合金钢与高温合金.北京:国防工业出版社,1981
    [173]K.Shimizu and Z.Nishiyama. Electron microscopic studies of martensitic transformations in iron alloys and steels. Metallurgical and Materials Transactions B,1972, 3(5):1055~1068
    [174]G.S.Ansell, S.J.Donachie, R.W.Messler. The effect of quench rate on the martensitic transformation in Fe-C alloys. Metallurgical and Materials Transactions B,1971,2(9): 2443-2449
    [175]G.S.Ansell and E.M.Breinan. The influence of austenite strength upon the austenite-martensite transformation in alloy steels. Metallurgical and Materials Transactions B,1970,1(6):1513~1520
    [176]P.Payson and C.H.Savage. Martensite Peactiom in Alloy Steels. Trans. ASM,1944,33: 261~265
    [177]E.S.Rowland, S.R.Lyle. The application of MS Points Case depth measurement. Trans. ASM,1946,37,27-38
    [178]R.A.Grange, H.M.Stewart. The temperature range of martensite formation. Transactions of the AIME,1946,167:467~474
    [179]W.Steven, A.GHaynes. The temperature formation of martensite and bainite in low-alloy steels some effects of chemical composition. J. Iron Steel Inst.,1956,183:349~ 359
    [180]K.W.Andrews. Empirical formulae for Calculation of Transformation Temperatrues. J. Iron Steel Inst.,1965,203:721~728
    [181]C.Liu, Z.B.Zhao, D.O.Northwood, et,al..A new empirical formula for the calcution of Ms temperatures in pure iron and super-low carbon alloy steels. Journal of Materials Processing Technology,2001,113:556~562
    [182]S.K.Das, G.Thomas. On the morphology and substructure of martensite. Metallurgical and Materials Transactions B,1970,1(1):325~327
    [183]I.N.Bogachev, A.A.Rudakov. Effect of specimen length on the fatigue strength of unstable austenitic and austenitic-martensitic steels. Materials Science.1969,4 (2):166~ 169
    [184]G.Kranss. In hardenability concepts with applications to steel, D.V. Doane and J. Kirkaldy, eds., TMS-AIME,1978,229~250
    [185]A.M.Llopis. Ph.D. Thesis, University of California, Berkeley, CA,1976
    [186]C.Y.Kung, J.J.Rayment.An examination of the validity of existing empirical formulae for the calculation of Ms temperature. Metallurgical Transactions A,1982,13A(2):328~ 331
    [187]李智超,李屏,李凯.硼钢马氏体转变开始温度(Ms)的计算与分析.热加工工艺,1997,6:33~35
    [188]Z.X.Xia, C.Zhang, Z.Y.Yang. Effect of austenitising temperature on microstructure and mechanical properties of 30Si2CrNi4MoNb ultrahigh strength steel. Materials Science and Technology,2011,27(1):282~286
    [189]B.V.N.Rao, GThomas. Microstructure-mechanical property relationships of dual-phase steel wire. Metallurgical and Materials Transactions A,1985,16(5):831~840
    [190]C.J.McMahon, Jr., A.K.Cianelli, et,al..The influence of Mo on P-induced temper embrittlement in Ni-Cr steel. Metallurgical Transactions A,1977,8A(7):1055~1057
    [191]孙强,周重光,袁书强等.超高强度钢研究进展及其在军事上的应用.材料导报网刊,2006,3
    [192]K.B.Lee, H.R.Yang, and H.Kwon. Effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior for martensitic steels containing both Mo and W. Metallurgical and Materials Transactions A,2001,32A(7):1659~1670
    [193]R.Padmanabhan, W.E.Wood. Precipitation of ε carbide in martensite. Materials Science and Engineering,1984,65:289~297
    [194]陈克明,苏杰,李荣等.无钻二次硬化超高强度钢合金设计.钢铁,2000,35(8):40-44
    [195]邓玉昆.高速工具钢.北京:冶金工业出版社,2002
    [196]J.Agren. Computer simulation of diffusion reaction in complex. ISIJ International, 1992,32(3):291~296
    [197]J.O.Andersson, J.Agren. Models for numerical treatment of multicomponent diffusion in simple phase. J Appl Phys,1992,72(4):1350~1355
    [198]GC.Coelho, J.A.Golczewski, H.F.Fischmeister. Thermodynamic calculation for Nb-containing high-speed steels and white-cast-iron alloys. Metallurgical and Materials Transactions A,2003,34A:1749~1758
    [199]W.Sha. Thermodynamic calculations for precipitation in maraging steels. Materials Science and Technology,2000,16:1434~1436
    [200]姜越.马氏体时效不锈钢高温析出相的热力学计算.特殊钢,2007,28(3):38~40
    [201]丁雅丽,苏杰,陈嘉砚等.S-04马氏体时效不锈钢析出相的热力学计算及强化工艺的优化.钢铁研究学报,2003,15(6):38~41
    [202]S.Wilmes, GZwick. Effect of niobium and vanadium as an alloying element in tool steels with high chromium content. The use of tool steels:experience and research, Proceedings of the 6th international tooling conference, Swenden,2002:227~241
    [203]F.Karin. Thermodynamic modelling of multicomponent cubic Nb, Ti and V carbides/carbonitrides. Computer Coupling of Phase Diagrams and Thermochemistry,2008, 32:326~337
    [204]F.Karin, B.G.Johan, M.Andreas. Thermodynamic modelling of the M6C carbide in cemented carbides and high-speed steel.Computer Coupling of Phase Diagrams and Thermochemistry,2005,29:91~96
    [205]胡光立,谢希文.钢的热处理(原理及工艺).第二版.西安:西北工业大学出版社,1996.3
    [206]A.R.Rosenfield, GT.Hahn. Effect of cold work on mechanical properties of high strength ferrous alloys. Trans. ASM,1966,59:1043~1055
    [207]S.Zhirafar, A.Rezaeian, M.Pugh. Effect of cryogenic treatment on the mechanical properties of 4340 steel.Journal of Materials Processing Technology,2007,186:298~303
    [208]E.J.Ripling. Tensile properties of a heat treated low alloy steel at subzero temperatures. Trans.ASM,1950,42:439~454
    [209]D.Dulieu. Discussion to paper by V.F.Zackay, E.R.Parker, and W.E.Wood, Process Third Intl. Conf. on the Strength of Metals and Alloys,2:383~391
    [210]W.E.Wood, E.R.Parker, V.F.Zackay. Rept. No. LBL-1474, Lawrence Berkeley Laboratory, University of Colifornia, Berkeley, Calif.94720,1973,5
    [211]李杰,王丽,李志.热处理对高Co2Ni超高强度钢冲击断口的影响.航空材料学报,2008,28(1):35-39
    [212]KOJ.I.Sato. Improving the Toughness of Ultrahigh Strength Steel. Berkeley: University of California,2002.
    [213]C.Zhang, Z.X.Xia, Z.GYang, et,al.. Imfluence of prior austenite deformation and non-metallic inclusions on ferrite formation in low-carbon steels. Journal of Iron and Steel Research International,1010,17(6):36~42
    [214]雍岐龙,马鸣图,吴宝榕.微合金钢物理和力学冶金.北京:机械工业出版社,1989
    [215]万翛如,许昌淦.高强度及超高强度钢.北京:机械工业出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700