用户名: 密码: 验证码:
OGT供体底物识别机制及其自身O-GlcNAc糖基化修饰功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
O-GlcNAc糖基化修饰是一种动态的蛋白质翻译后修饰,广泛存在于植物和动物中,能够影响蛋白的催化活性、亚细胞定位以及与其他蛋白之间的相互作用,参与细胞内的信号转导、能量代谢等重要的细胞生理活动,与多种慢性疾病相关。
     O-GlcNAc糖基转移酶(OGT)负责催化O-GlcNAc糖基转移反应的发生。在人体内,OGT有三种亚型,即ncOGT、mOGT和sOGT,其结构的主要差异在于N末端TPR序列数目不同。由于三种亚型C末端催化结构域是完全相同的,因此其催化机制以及其与糖基供体的识别机制也应是相同的。因此在本课题中,我们选取了较为容易表达的sOGT作为研究对象,首先对其底物特异性进行了研究。以CKII十七肽为受体底物,我们探索sOGT对26种UDP-GlcNAc衍生物的催化活性。其中,UDP-6-deoxy-GlcNA、UDP-GlcNPr、UDP-6-deoxy-GalNAc和UDP-4-deoxy-GlcNAc四种化合物能够作为sOGT的供体底物。进一步对其中三种化合物的酶学常数的测定表明,UDP-GlcNAc糖基基团的C2位乙酰氨基上的取代、C6和C4位羟基的脱氧取代以及C4位羟基的异构都会削弱sOGT与供体底物的亲合力。通过OGT与底物的分子对接,并经定点突变验证,我们发现sOGT的Leu653的羰基氧和Thr560位的羟基能够与GlcNAc的C4/C6-OH形成氢键;Met501与UDP-GlcNAc的C2位乙酰氨基间的空间较小,不能容纳体积较大的取代基团,而其附近的疏水环境也利于疏水性取代基团的进入。上述结论为进一步了解OGT与糖基供体的相互作用以及其催化机制有一定帮助。
     已有研究表明,OGT也可以作为自身催化O-GlcNAc糖基转移反应的底物,被糖基化修饰。基于O-GlcNAc修饰的功能,我们认为OGT的自身糖基化参与了对OGT功能的调控。
     本课题运用多种生物学和化学研究方法对OGT的自身糖基化修饰现象进行了研究,发现了6个糖基化位点(S10, T12, S18, T38, S52, T449, T662),定点突变结果证实其中三个糖基化位点(S18,T38,T449)对sOGT糖基化水平有显著影响。通过对过表达的sOGT在细胞质和细胞核的分布及糖基化水平的研究发现,细胞质内sOGT的糖基化水平更高。通过激光共聚焦显微镜对不同sOGT突变体的亚细胞定位进行观察,与野生型相比较,发现T449A和T662A两个突变体转运入核明显减少,而其它突变体变化不大,这表明T449和T662两个位点可能与sOGT转运入核相关。通过Pull down技术以及生物质谱等研究方法,我们发现糖基化修饰对sOGT互作蛋白有显著影响,糖基化修饰sOGT能够作用的互作蛋白更多,差异蛋白中很多与重要的细胞生理活动相关。O-GlcNAc自身糖基化作为OGT自身调控机制的组成部分,其功能和作用机理尚不清晰,我们的研究对其中部分问题做出了解答,为进一步研究OGT自身调控机制奠定了基础,为OGT相关疾病发病机理的研究提供了参考。
O-GlcNAc modification, namely O-GlcNAcylation, is an essential post-translational modification with a single β-N-acetylglucosamine linked to Ser or Thr residues of various nucleocytoplasmic proteins. It contributes to various cellular cascades, including signal transduction, gene expression and protein trafficking. Dysregulation in O-GlcNAcylation is assumed to be tightly linked to chronic diseases, such as cancers, diabetes and neurodegenerative diseases.
     O-Linked β-N-acetylglucosaminyl transferase (OGT) plays an important role in the glycosylation of proteins, which is involved in various cellular events. In human, three isoforms of OGT (short OGT [sOGT]; mitochondrial OGT [mOGT]; and nucleocytoplasmic OGT [ncOGT]) share the same catalytic domain, implying that they might adopt a similar catalytic mechanism, including sugar donor recognition. In this work, the sugar-nucleotide tolerance of sOGT was investigated. Among a series of uridine5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) analogs tested using the casein kinase Ⅱ(CKⅡ) peptide as the sugar acceptor, four compounds could be used by sOGT, including UDP-6-deoxy-GlcNAc, UDP-GlcNPr, UDP-6-deoxy-GalNAc and UDP-4-deoxy-GlcNAc. Determined values of Km showed that the substitution of the N-acyl group, deoxy modification of C6/C4-OH or epimerization of C4-OH of the GlcNAc in UDP-GlcNAc decreased its affinity to sOGT. A molecular docking study combined with site-directed mutagenesis indicated that the backbone carbonyl oxygen of Leu653and the hydroxyl group of Thr560in sOGT contributed to the recognition of the sugar moiety via hydrogen bonds. The close vicinity between Met501and the N-acyl group of GlcNPr, as well as the hydrophobic environment near Met501, were responsible for the selective binding of UDP-GlcNPr. These findings illustrate the interaction of OGT and sugar nucleotide donor, providing insights into the OGT catalytic mechanism.
     Self-glycosylation of OGT was reported by several research groups. Based on the function of O-GlcNAcylation, we proposed that self-glycosylation was involved in the regulation of OGT.
     A variety of biological and chemical approaches were applied in the study of self-glycosylation. Six potential glycosylation sites were found, and three of them had significant influence on the level of glycosylation. The glycosylation level of sOGT was higher in the cytoplasm than that in the nuclear, when it was overexpressed in the HEK293T cells. In the analysis of subcellular localization, the mount of T449A and T662A mutants was much less compared with the wild type, and the mount of other mutants was almost equal to the wild type. It was indicated that T449and T662might be involved in the translocation of sOGT. According to the results obtained with pull down and mass spectrometry, self-glycosylation was supposed to play an essential role in the interaction between sOGT and other proteins, which is associated with various cellular events. As a part of regulation of OGT, the function and mechanism of self-glycosylation'effect on OGT were not fully understood. We provided several clues for the further study of OGT self-glycosylation, as well as for the pathogenesis of chronic diseases associated with O-GlcNAcylation dysregulation.
引文
[1]Crick, F., Central dogma of molecular biology. Nature,1970.227(5258):561-3.
    [2]Rademacher, T.W., R.B. Parekh, and R.A. Dwek, Glycobiology. Annu Rev Biochem,1988.57: 785-838.
    [3]Ohtsubo, K., S. Takamatsu, M.T. Minowa, et al., Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell,2005. 123(7):1307-21.
    [4]Molinari, M., N-glycan structure dictates extension of protein folding or onset of disposal. Nat Chem Biol,2007.3(6):313-20.
    [5]Phillips, M.L., E. Nudelman, F.C. Gaeta, et al., ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science,1990.250(4984):1130-2.
    [6]Czech, M.P., Lipid rafts and insulin action. Nature,2000.407(6801):147-8.
    [7]Laine, R.A., A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide:the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology, 1994.4(6):759-67.
    [8]A., V., Preface, in Essentials of Glycobiology., C.R. Varki A, Esko JD, et al., Editor.2009, Cold Spring Harbor Laboratory Press:Cold Spring Harbor (NY).
    [9]Seeberger, P.H., Automated carbohydrate synthesis to drive chemical glycomics. Chem Commun (Camb),2003(10):1115-21.
    [10]Davies, G.J. and B. Henrissat, Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era. Biochem Soc Trans,2002.30(2):291-7.
    [11]Lairson, L.L., B. Henrissat, G.J. Davies, et al., Glycosyltransferases:structures, functions, and mechanisms. Annu Rev Biochem,2008.77:521-55.
    [12]Bowles, D., J. Isayenkova, E.K.. Lim, et al., Glycosyltransferases:managers of small molecules. Curr Opin Plant Biol,2005.8(3):254-63.
    [13]Bourne, Y. and B. Henrissat, Glycoside hydrolases and glycosyltransferases:families and functional modules. Curr Opin Struct Biol,2001.11(5):593-600.
    [14]Breton, C., L. Snajdrova, C. Jeanneau, et al., Structures and mechanisms of glycosyltransferases. Glycobiology,2006.16(2):29R-37R.
    [15]Vrielink, A., W. Ruger, H.P. Driessen, et al., Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J,1994.13(15):3413-22.
    [16]Mulichak, A.M., H.C. Losey, C.T. Walsh, et al., Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Structure,2001.9(7):547-57.
    [17]Gibson, R.P., J.P. Turkenburg, S.J. Charnock, et al., Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem Biol,2002.9(12):1337-46.
    [18]Gastinel, L.N., C. Cambillau, and Y. Bourne, Crystal structures of the bovine beta4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J,1999.18(13):3546-57.
    [19]Patenaude, S.I., N.O. Seto, S.N. Borisova, et al., The structural basis for specificity in human ABO(H) blood group biosynthesis. Nat Struct Biol,2002.9(9):685-90.
    [20]Lazarus, M.B., Y. Nam, J. Jiang, et al., Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature,2011.469(7331):564-7.
    [21]Wolfenden, R., X.D. Lu, and G. Young, Spontaneous hydrolysis of glycosides. Journal of the American Chemical Society,1998.120(27):6814-6815.
    [22]Wolfenden, R., Degrees of difficulty of water-consuming reactions in the absence of enzymes. Chem Rev,2006.106(8):3379-96.
    [23]Blake, C.C., D.F. Koenig, GA. Mair, et al., Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature,1965.206(4986): 757-61.
    [24]Vocadlo, D.J., G.J. Davies, R. Laine, et al., Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature,2001.412(6849):835-8.
    [25]Strynadka, N.C. and M.N. James, Lysozyme revisited:crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D. J Mol Biol,1991.220(2): 401-24.
    [26]Boomkamp, S.D. and T.D. Butters, Glycosphingolipid disorders of the brain. Subcell Biochem,2008.49:441-67.
    [27]Marshall, S., V. Bacote, and R.R. Traxinger, Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem,1991.266(8):4706-12.
    [28]McKnight, G.L., S.L. Mudri, S.L. Mathewes, et al., Molecular cloning, cDNA sequence, and bacterial expression of human glutamine:fructose-6-phosphate amidotransferase. J Biol Chem,1992.267(35):25208-12.
    [29]Lau, K.S., E.A. Partridge, A. Grigorian, et al., Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell,2007.129(1):-123-34.
    [30]Hawkins, M., N. Barzilai, R. Liu, et al., Role of the glucosamine pathway in fat-induced insulin resistance. J Clin Invest,1997.99(9):2173-82.
    [31]Boehmelt, G, A. Wakeham, A. Elia, et al., Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J,2000.19(19):5092-104.
    [32]Robinson, K.A., M.L. Weinstein, GE. Lindenmayer, et al., Effects of diabetes and hyperglycemia on the hexosamine synthesis pathway in rat muscle and liver. Diabetes,1995. 44(12):1438-46.
    [33]Bosch, R.R., M.J. Pouwels, P.N. Span, et al., Hexosamines are unlikely to function as a nutrient-sensor in 3T3-L1 adipocytes:a comparison of UDP-hexosamine levels after increased glucose flux and glucosamine treatment. Endocrine,2004.23(1):17-24.
    [34]Marshall, S., O. Nadeau, and K. Yamasaki, Dynamic actions of glucose and glucosamine on hexosamine biosynthesis in isolated adipocytes:differential effects on glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels. J Biol Chem,2004.279(34): 35313-9.
    [35]Weigert, C., K. Klopfer, C. Kausch, et al., Palmitate-induced activation of the hexosamine pathway in human myotubes:increased expression of glutamine:fructose-6-phosphate aminotransferase. Diabetes,2003.52(3):650-6.
    [36]Buse, M.G, K.A. Robinson, T.W. Gettys, et al., Increased activity of the hexosamine synthesis pathway in muscles of insulin-resistant ob/ob mice. Am J Physiol,1997.272(6 Pt 1):E1080-8.
    [37]Prescher, J.A. and C.R. Bertozzi, Chemistry in living systems. Nat Chem Biol,2005.1(1): 13-21.
    [38]Vocadlo, D.J., H.C. Hang, E.J. Kim, et al., A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci U S A,2003.100(16):9116-21.
    [39]Freeze, H.H., Genetic defects in the human glycome. Nat Rev Genet,2006.7(7):537-51.
    [40]Torres, C.R. and G.W. Hart, Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem,1984.259(5):3308-17.
    [41]Holt, GD. and G.W. Hart, The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J Biol Chem, 1986.261(17):8049-57.
    [42]Davis, L.I. and G. Blobel, Identification and characterization of a nuclear pore complex protein. Cell,1986.45(5):699-709.
    [43]Snow, C.M., A. Senior, and L. Gerace, Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol,1987.104(5):1143-56.
    [44]Hanover, J.A., C.K. Cohen, M.C. Willingham, et al., O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J Biol Chem,1987.262(20):9887-94.
    [45]Turner, J.R., A.M. Tartakoff, and N.S. Greenspan, Cytologic assessment of nuclear and cytoplasmic O-linked N-acetylglucosamine distribution by using'anti-streptococcal monoclonal antibodies. Proc Natl Acad Sci U S A,1990.87(15):5608-12.
    [46]Comer, F.I., K. Vosseller, L. Wells, et al., Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal Biochem,2001.293(2):169-77.
    [47]Holt, G.D., C.M. Snow, A. Senior, et al., Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol,1987.104(5):1157-64.
    [48]Hart, G.W., M.P. Housley, and C. Slawson, Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature,2007.446(7139):1017-22.
    [49]Chou, C.F., A.J. Smith, and M.B. Omary, Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. J Biol Chem,1992.267(6):3901-6.
    [50]Roquemore, E.P., M.R. Chevrier, R.J. Cotter, et al., Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin. Biochemistry,1996.35(11):3578-86.
    [51]O'Donnell, N., N.E. Zachara, GW. Hart, et al., Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol,2004.24(4):1680-90.
    [52]Haltiwanger, R.S., K. Grove, and GA. Philipsberg, Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-beta-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate. J Biol Chem, 1998.273(6):3611-7.
    [53]Cole, R.N. and G.W. Hart, Cytosolic O-glycosylation is abundant in nerve terminals. J Neurochem,2001.79(5):1080-9.
    [54]Akimoto, Y., F.I. Comer, R.N. Cole, et al., Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in rat cerebellar cortex. Brain Res,2003.966(2):194-205.
    [55]Love, D.C., J. Kochan, R.L. Cathey, et al., Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J Cell Sci,2003.116(Pt 4):647-54.
    [56]Jones, S.P., N.E. Zachara, G.A. Ngoh, et al., Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation,2008.117(9):1172-82.
    [57]Hu, Y., J. Suarez, E. Fricovsky, et al., Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem,2009.284(1):547-55.
    [58]Papanastasiou, P., M.J. McConville, J. Ralton, et al., The variant-specific surface protein of Giardia, VSP4A1, is a glycosylated and palmitoylated protein. Biochem J,1997.322 (Pt 1): 49-56.
    [59]Banerjee, S., P.W. Robbins, and J. Samuelson, Molecular characterization of nucleocytosolic O-GlcNAc transferases of Giardia lamblia and Cryptosporidium parvum. Glycobiology, 2009.19(4):331-6.
    [60]Shen, A., H.D. Kamp, A. Grundling, et al., A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev,2006.20(23):3283-95.
    [61]Taoka, K., B.K. Ham, B. Xoconostle-Cazares, et al., Reciprocal phosphorylation and glycosylation recognition motifs control NCAPP1 interaction with pumpkin phloem proteins and their cell-to-cell movement. Plant Cell,2007.19(6):1866-84.
    [62]Kilcoyne, M., M. Shah, J.Q. Gerlach, et al., O-glycosylation of protein subpopulations in alcohol-extracted rice proteins. J Plant Physiol,2009.166(3):219-32.
    [63]Greis, K.D., W. Gibson, and G.W. Hart, Site-specific glycosylation of the human cytomegalovirus tegument basic phosphoprotein (UL32) at serine 921 and serine 952. J Virol, 1994.68(12):8339-49.
    [64]Chen, D., S. Juarez, L. Hartweck, et al., Identification of secret agent as the O-GlcNAc transferase that participates in Plum pox virus infection. J Virol,2005.79(15):9381-7.
    [65]Kelly, W.G. and G.W. Hart, Glycosylation of chromosomal proteins:localization of O-linked N-acetylglucosamine in Drosophila chromatin. Cell,1989.57(2):243-51.
    [66]Sinclair, D.A., M. Syrzycka, M.S. Macauley, et al., Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc Natl Acad Sci U S A,2009.106(32):13427-32.
    [67]Roquemore, E.P., A. Dell, H.R. Morris, et al., Vertebrate lens alpha-crystallins are modified by O-linked N-acetylglucosamine. J Biol Chem,1992.267(1):555-63.
    [68]Vosseller, K., J.C. Trinidad, R.J. Chalkley, et al., O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics,2006.5(5):923-34.
    [69]Chalkley, R.J., A. Thalhammer, R. Schoepfer, et al., Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc Natl Acad Sci U S A,2009.106(22):8894-9.
    [70]Dong, D.L., Z.S. Xu, M.R. Chevrer, et al., Glycosylation of mammalian neurofilaments. Localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M. J Biol Chem,1993.268(22):16679-87.
    [71]Haynes, P.A. and R. Aebersold, Simultaneous detection and identification of O-GlcNAc-modified glycoproteins using liquid chromatography-tandem mass spectrometry. Anal Chem,2000.72(21):5402-10.
    [72]Chalkley, R.J. and A.L. Burlingame, Identification of GlcNAcylation sites of peptides and alpha-crystallin using Q-TOF mass spectrometry. J Am Soc Mass Spectrom,2001.12(10): 1106-13.
    [73]Khidekel, N., S.B. Ficarro, P.M. Clark, et al., Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol,2007.3(6):339-48.
    [74]Motta, M.C., N. Divecha, M. Lemieux, et al., Mammalian SIRT1 represses forkhead transcription factors. Cell,2004.116(4):551-63.
    [75]Nemoto, S., M.M. Fergusson, and T. Finkel, Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science,2004.306(5704):2105-8.
    [76]Cohen, H.Y., C. Miller, K.J. Bitterman, et al., Calorie restriction promotes mammalian cell-survival by inducing the SIRT1 deacetylase. Science,2004.305(5682):390-2.
    [77]Hamaguchi, M., J.L. Meth, C. von Klitzing, et al., DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc Natl Acad Sci U S A,2002.99(21):13647-52.
    [78]Hu, P., P. Berkowitz, V.J. Madden, et al., Stabilization of plakoglobin and enhanced keratinocyte cell-cell adhesion by intracellular O-glycosylation. J Biol Chem,2006.281(18): 12786-91.
    [79]Liu, K., A.J. Paterson, F. Zhang, et al., Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism. J Neurochem,2004.89(4):1044-55.
    [80]Liu, B.Q., X. Meng, C. Li, et al., Glucosamine induces cell death via proteasome inhibition in human ALVA41 prostate cancer cell. Exp Mol Med,2011.43(9):487-93.
    [81]Zhang, F., K. Su, X. Yang, et al., O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell,2003.115(6):715-25.
    [82]Tanno, M., J. Sakamoto, T. Miura, et al., Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem,2007.282(9):6823-32.
    [83]Chen, W.Y., D.H. Wang, R.C. Yen, et al., Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell,2005.123(3):437-48.
    [84]Daitoku, H., M. Hatta, H. Matsuzaki, et al., Silent information regulator 2 potentiates Foxol-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A, 2004.101(27):10042-7.
    [85]Lefebvre, T., M.L. Caillet-Boudin, L. Buee, et al., O-GlcNAc glycosylation and neurological disorders. Adv Exp Med Biol,2003.535:189-202.
    [86]Fujiki, R., T. Chikanishi, W. Hashiba, et al., GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature,2009.459(7245):455-9.
    [87]Zachara, N.E., Detection and analysis of (O-linked beta-N-acetylglucosamine)-modified proteins. Methods Mol Biol,2009.464:227-54.
    [88]Wang, S., X. Huang, D. Sun, et al., Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates Akt signaling. PLoS One,2012.7(5):e37427.
    [89]Love, D.C. and J.A. Hanover, The hexosamine signaling pathway:deciphering the "O-GlcNAc code". Sci STKE,2005.2005(312):rel3.
    [90]Zachara, N.E. and GW. Hart, Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta,2006.1761(5-6):599-617.
    [91]Blackwood, E.M. and R.N. Eisenman, Max:a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science,1991.251(4998):1211-7.
    [92]Luscher, B., E.A. Kuenzel, E.G Krebs, et al., Myc oncoproteins are phosphorylated by casein kinasell. EMBO J,1989.8(4):1111-9.
    [93]Seth, A., E. Alvarez, S. Gupta, et al., A phosphorylation site located in the NH2-terminal domain ofc-Myc increases transactivation of gene expression. J Biol Chem,1991.266(35): 23521-4.
    [94]Chou, T.Y., C.V. Dang, and GW. Hart, Glycosylation of the c-Myc transactivation domain. Proc Natl Acad Sci U S A,1995.92(10):4417-21.
    [95]Gu, W., K. Bhatia, I.T. Magrath, et al., Binding and suppression of the Myc transcriptional activation domain by p101. Science,1994.264(5156):251-4.
    [96]Chou, T.Y., G.W. Hart, and C.V. Dang, c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem,1995.270(32): 18961-5.
    [97]Donadio, A.C., C. Lobo, M. Tosina, et al., Antisense glutaminase inhibition modifies the O-GlcNAc pattern and flux through the hexosamine pathway in breast cancer cells. J Cell Biochem,2008.103(3):800-11.
    [98]Lim, K. and H.I. Chang, Elevated O-linked N-acetylglucosamine correlated with reduced Spl cooperative DNA binding with its collaborating factors in vivo. Biosci Biotechnol Biochem, 2010.74(8):1668-72.
    [99]Lim, K. and H.I. Chang, O-GlcNAc inhibits interaction between Spl and Elf-1 transcription factors. Biochem Biophys Res Commun,2009.380(3):569-74.
    [100]Sakabe, K., Z. Wang, and G.W. Hart, Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A,2010.107(46):19915-20.
    [101]Strahl, B.D. and C.D. Allis, The language of covalent histone modifications. Nature,2000. 403(6765):41-5.
    [102]Zhang, Y. and D. Reinberg, Transcription regulation by histone methylation:interplay between different covalent modifications of the core histone tails. Genes Dev,2001.15(18): 2343-60.
    [103]Liu, F., K. Iqbal, I. Grundke-Iqbal, et al., O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc Natl Acad Sci U S A,2004.101(29): 10804-9.
    [104]Tallent, M.K., N. Varghis, Y. Skorobogatko, et al., In vivo modulation of O-GlcNAc levels regulates hippocampal synaptic plasticity through interplay with phosphorylation. J Biol Chem,2009.284(1):174-81.
    [105]Wang, Z., M. Gucek, and G.W. Hart, Cross-talk between GlcNAcylation and phosphorylation:site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci U S A,2008.105(37):13793-8.
    [106]Wang, Z., A. Pandey, and GW. Hart, Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol Cell Proteomics,2007.6(8):1365-79.
    [107]Cheng, X., R.N. Cole, J. Zaia, et al., Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. Biochemistry,2000.39(38):11609-20.
    [108]Manning, G, D.B. Whyte, R. Martinez, et al., The protein kinase complement of the human genome. Science,2002.298(5600):1912-34.
    [109]Hanover, J.A., M.W. Krause, and D.C. Love, The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim Biophys Acta,2010.1800(2):80-95.
    [110]Hanover, J.A., Glycan-dependent signaling:O-linked N-acetylglucosamine. FASEB J,2001. 15(11):1865-76.
    [111]Jiang, M.S. and G.W. Hart, A subpopulation of estrogen receptors are modified by O-linked N-acetylglucosamine. J Biol Chem,1997.272(4):2421-8.
    [112]Zou, L., S. Yang, V. Champattanachai, et al., Glucosamine improves cardiac function following trauma-hemorrhage by increased protein O-GlcNAcylation and attenuation of NF-{kappa}B signaling. Am J Physiol Heart Circ Physiol,2009.296(2):H515-23.
    [113]Ozcan, S., S.S. Andrali, and J.E. Cantrell, Modulation of transcription factor function by O-GlcNAc modification. Biochim Biophys Acta,2010.1799(5-6):353-64.
    [114]Kawauchi, K., K. Araki, K. Tobiume, et al., Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification. Proc Natl Acad Sci U S A,2009.106(9):3431-6.
    [115]Ju, Y., J. Hua, K. Sakamoto, et al., Modulation of TNF-alpha-induced endothelial cell activation by glucosamine, a naturally occurring amino monosaccharide. Int J Mol Med, 2008.22(6):809-15.
    [116]Xing, D., K. Gong, W. Feng, et al., O-GlcNAc modification of NFkappaB p65 inhibits TNF-alpha-induced inflammatory mediator expression in rat aortic smooth muscle cells. PLoS One,2011.6(8):e24021.
    [117]van Putten, J.P. and H.M. Krans, Glucose as a regulator of insulin-sensitive hexose uptake in 3T3 adipocytes. J Biol Chem,1985.260(13):7996-8001.
    [118]Nawano, M., A. Oku, K. Ueta, et al., Hyperglycemia contributes insulin resistance in hepatic and adipose tissue but not skeletal muscle of ZDF rats. Am J Physiol Endocrinol Metab,2000.278(3):E535-43.
    [119]Kim, J.K., A. Zisman, J.J. Fillmore, et al., Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Gin Invest,2001.108(1):153-60.
    [120]Nelson, B.A., K.A. Robinson, and M.G Buse, Defective Akt activation is associated with glucose-but not glucosamine-induced insulin resistance. Am J Physiol Endocrinol Metab, 2002.282(3):E497-506.
    [121]Erol, A., Insulin resistance is an evolutionarily conserved physiological mechanism at the cellular level for protection against increased oxidative stress. Bioessays,2007.29(8): 811-8.
    [122]Hoehn, K.L., A.B. Salmon, C. Hohnen-Behrens, et al., Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci U S A,2009.-106(42):17787-92.
    [123]Porte, D., Jr. and M.W. Schwartz, Diabetes complications:why is glucose potentially toxic? Science,1996.272(5262):699-700.
    [124]Walgren, J.L., T.S. Vincent, K.L. Schey, et al., High glucose and insulin promote O-GlcNAc modification of proteins, including alpha-tubulin. Am J Physiol Endocrinol Metab,2003.-284(2):E424-34.
    [125]Yki-Jarvinen, H., A. Virkamaki, M.C. Daniels, et al., Insulin and glucosamine infusions increase O-linked N-acetyl-glucosamine in skeletal muscle proteins in vivo. Metabolism, 1998.47(4):449-55.
    [126]Hazel, M., R.C. Cooksey, D. Jones, et al., Activation of the hexosamine signaling pathway in adipose tissue results in decreased serum adiponectin and skeletal muscle insulin resistance. Endocrinology,2004.145(5):2118-28.
    [127]Crook, E.D., M.C. Daniels, T.M. Smith, et al., Regulation of insulin-stimulated glycogen synthase activity by overexpression of glutamine:fructose-6-phosphate amidotransferase in rat-1 fibroblasts. Diabetes,1993.42(9):1289-96.
    [128]Akimoto, Y., G.W. Hart, L. Wells, et al., Elevation of the post-translational modification of proteins by O-linked N-acetylglucosamine leads to deterioration of the glucose-stimulated insulin secretion in the pancreas of diabetic Goto-Kakizaki rats. Glycobiology,2007.17(2): 127-40.
    [129]Federici, M., R. Menghini, A. Mauriello, et al., Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation,2002.106(4):466-72.
    [130]Baron, A.D., J.S. Zhu, J.H. Zhu, et al., Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle. Implications for glucose toxicity. J Clin Invest,1995.96(6):2792-801.
    [131]Schenk, S., M. Saberi, and J.M. Olefsky, Insulin sensitivity:modulation by nutrients and inflammation. J Clin Invest,2008.118(9):2992-3002.
    [132]Wang, X. and C.G. Proud, Nutrient control of TORCI, a cell-cycle regulator. Trends Cell Biol,2009.19(6):260-7.
    [133]Towler, M.C. and D.G. Hardie, AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res,2007.100(3):328-41.
    [134]Liu, Y., R. Den tin, D. Chen, et al., A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature,2008.456(7219):269-73.
    [135]Vosseller, K., L. Wells, M.D. Lane, et al., Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-LI adipocytes. Proc Natl Acad Sci U S A,2002.99(8):5313-8.
    [136]Arias, E.B., J. Kim, and G.D. Cartee, Prolonged incubation in PUGNAc results in increased protein O-Linked glycosylation and insulin resistance in rat skeletal muscle. Diabetes,2004. 53(4):921-30.
    [137]Park, S.Y., J. Ryu, and W. Lee, O-GlcNAc modification on IRS-1 and Akt2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in rat primary adipocytes. Exp Mol Med,2005.37(3):220-9.
    [138]McClain, D.A., W.A. Lubas, R.C. Cooksey, et al., Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc Natl Acad Sci U S A,2002.99(16): 10695-9.
    [139]Dentin, R., S. Hedrick, J. Xie, et al., Hepatic glucose sensing via the CREB coactivator CRTC2. Science,2008.319(5868):1402-5.
    [140]Yang, X., P.P. Ongusaha, P.D. Miles, et al., Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature,2008.451(7181):964-9.
    [141]Zachara, N.E., N. O'Donnell, W.D. Cheung, et al., Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem,2004.279(29):30133-42.
    [142]Taylor, R.P., G.J. Parker, M.W. Hazel, et al., Glucose deprivation stimulates O-GlcNAc modification of proteins through up-regulation of O-linked N-acetylglucosaminyltransferase. J Biol Chem,2008.283(10):6050-7.
    [143]Cheung, W.D. and G.W. Hart, AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J Biol Chem,2008. 283(19):13009-20.
    [144]Zou, L., S. Yang, S. Hu, et al., The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels. Shock,2007.27(4): 402-8.
    [145]Champattanachai, V., R.B. Marchase, and J.C. Chatham, Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc. Am J Physiol Cell Physiol,2007.292(1):C178-87.
    [146]Xing, D., W. Feng, L.G. Not, et al., Increased protein O-GlcNAc modification inhibits inflammatory and neointimal responses to acute endoluminal arterial injury. Am J Physiol Heart Circ Physiol,2008.295(1):H335-42.
    [147]Ngoh, G.A., L.J. Watson, H.T. Facundo, et al., Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J Mol Cell Cardiol,2008.45(2):313-25.
    [148]Garvey, W.T., J.M. Olefsky, J. Griffin, et al., The effect of insulin treatment on insulin secretion and insulin action in type Ⅱ diabetes mellitus. Diabetes,1985.34(3):222-34.
    [149]McClain, D.A., Hexosamines as mediators of nutrient sensing and regulation in diabetes. J Diabetes Complications,2002.16(1):72-80.
    [150]Issad, T., M. Combettes, and P. Ferre, Isoproterenol inhibits insulin-stimulated tyrosine phosphorylation of the insulin receptor without increasing its serine/threonine phosphorylation. Eur J Biochem,1995.234(1):108-15.
    [151]Combettes-Souverain, M. and T. Issad, Molecular basis of insulin action. Diabetes Metab, 1998.24(6):477-89.
    [152]Lefebvre, T., V. Dehennaut, C. Guinez, et al., Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer's disease. Biochim Biophys Acta,2010.1800(2):67-79.
    [153]Issad, T. and M. Kuo, O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol Metab,2008.19(10):380-9.
    [154]Kuo, M., V. Zilberfarb, N. Gangneux, et al., O-GlcNAc modification of FoxO1 increases its transcriptional activity:a role in the glucotoxicity phenomenon? Biochimie,2008.90(5): 679-85.
    [155]Skovronsky, D.M., V.M. Lee, and J.Q. Trojanowski, Neurodegenerative diseases:new concepts of pathogenesis and their therapeutic implications. Annu Rev Pathol,2006.1: 151-70.
    [156]Yuzwa, S.A., M.S. Macauley, J.E. Heinonen, et al., A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol,2008. 4(8):483-90.
    [157]Liu, F., J. Shi, H. Tanimukai, et al., Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. Brain,2009.132(Pt 7):1820-32.
    [158]Yuzwa, S.A., X. Shan, M.S. Macauley, et al., Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol,2012.8(4): 393-9.
    [159]Alfaro, J.F., C.X. Gong, M.E. Monroe, et al., Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. ProcNatl Acad Sci U S A,2012.109(19):7280-5.
    [160]Wang, P., B.D. Lazarus, M.E. Forsythe, et al., O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. Proc Natl Acad Sci U S A,2012.109(43):17669-74.
    [161]Macauley, M.S., X. Shan, S.A. Yuzwa, et al., Elevation of Global O-GlcNAc in rodents using a selective O-GlcNAcase inhibitor does not cause insulin resistance or perturb glucohomeostasis. Chem Biol,2010.17(9):949-58.
    [162]Laczy, B., B.G. Hill, K. Wang, et al., Protein O-GlcNAcylation:a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol,2009.296(1):H13-28.
    [163]Chatham, J.C., L.G. Not, N. Fulop, et al., Hexosamine biosynthesis and protein O-glycosylation:the first line of defense against stress, ischemia, and trauma. Shock,2008. 29(4):431-40.
    [164]Ngoh, G A., H.T. Facundo, A. Zafir, et al., O-GlcNAc signaling in the cardiovascular system. Circ Res,2010.107(2):171-85.
    [165]Yang, S., L.Y. Zou, P. Bounelis, et al., Glucosamine administration during resuscitation improves organ Junction after trauma hemorrhage. Shock,2006.25(6):600-7.
    [166]Zachara, N.E. and GW. Hart, O-GlcNAc a sensor of cellular state:the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta,2004.1673(1-2):13-28.
    [167]Ngoh, GA., H.T. Facundo, T. Hamid, et al., Unique hexosaminidase reduces metabolic survival signal and sensitizes cardiac myocytes to hypoxia/reoxygenation injury. Circ Res, 2009.104(1):41-9.
    [168]Ngoh, GA., L.J. Watson, H.T. Facundo, et al., Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes. Amino Acids,2011.40(3): 895-911.
    [169]Marsh, S.A., L.J. Dell'Italia, and J.C. Chatham, Activation of the hexosamine biosynthesis pathway and protein O-GlcNAcylation modulate hypertrophic and cell signaling pathways in cardiomyocytes from diabetic mice. Amino Acids,2011.40(3):819-28.
    [170]Fulop, N., M.M. Mason, K. Dutta, et al., Impact of Type 2 diabetes and aging on cardiomyocyte function and O-linked N-acetylglucosamine levels in the heart. Am J Physiol Cell Physiol,2007.292(4):C1370-8.
    [171]Du, X.L., D. Edelstein, S. Dimmeler, et al., Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest,2001.108(9): 1341-8.
    [172]Musicki, B., M.F. Kramer, R.E. Becker, et al., Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc Natl Acad Sci U S A,2005.102(33):11870-5.
    [173]Lima, V.V., F.R. Giachini, H. Choi, et al., Impaired vasodilator activity in deoxycorticosterone acetate-salt hypertension is associated with increased protein O-GlcNAcylation. Hypertension,2009.53(2):166-74.
    [174]Slawson, C., J. Pidala, and R. Potter, Increased N-acetyl-beta-glucosaminidase activity in primary breast carcinomas corresponds to a decrease in N-acetylglucosamine containing proteins. Biochim Biophys Acta,2001.1537(2):147-57.
    [175]Krzeslak, A., L. Pomorski, and A. Lipinska, Elevation of nucleocytoplasmic beta-N-acetylglucosaminidase (O-GlcNAcase) activity in thyroid cancers. Int J Mol Med, 2010.25(4):643-8.
    [176]Gu, Y., W. Mi, Y. Ge, et al., GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res,2010.70(15):6344-51.
    [177]Mi, W., Y. Gu, C. Han, et al., O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta,2011.1812(4):514-9.
    [178]Brady, C.A. and L.D. Attardi,p53 at a glance. J Cell Sci,2010.123(Pt 15):2527-32.
    [179]Jones, S.N., A.E. Roe, L.A. Donehower, et al., Rescue of embryonic lethality in Mdm2-deficient mice by absence ofp53. Nature,1995.378(6553):206-8.
    [180]Jones, N.C., M.L. Lynn, K. Gaudenz, et al., Prevention of the neurocristopathy Treacher Collins syndrome through inhibition ofp53 function. Nat Med,2008.14(2):125-33.
    [181]Bech-Otschir, D., R. Kraft, X. Huang, et al., COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J,2001.20(7):1630-9.
    [182]Yang, W.H., J.E. Kim, H.W. Nam, et al., Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol,2006.8(10): 1074-83.
    [183]Shafi, R., S.P. Iyer, L.G. Ellies, et al., The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci U S A,2000.97(11):5735-9.
    [184]Lubas, W.A., D.W. Frank, M. Krause, et al., O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem,1997.272(14): 9316-24.
    [185]Gambetta, M.C., K. Oktaba, and J. Muller, Essential role of the glycosyltransferase sxc/Ogt inpolycomb repression. Science,2009.325(5936):93-6.
    [186]Hartweck, L.M., C.L. Scott, and N.E. Olszewski, Two O-linked N-acetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh. have overlapping functions necessary for gamete and seed development. Genetics,2002.161(3):1279-91.
    [187]Hanover, J.A., M.E. Forsythe, P.T. Hennessey, et al., A Caenorhabditis elegans model of insulin resistance:altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc Natl Acad Sci U S A.2005.102(32):11266-71.
    [188]Kreppel, L.K., M.A. Blomberg, and GW. Hart, Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem,1997.272(14):9308-15.
    [189]Hanover, J.A., S. Yu, W.B. Lubas, et al., Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys, 2003.409(2):287-97.
    [190]Lazarus, B.D., D.C. Love, and J.A. Hanover, Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates. Glycobiology,2006.16(5):415-21.
    [191]Blatch, GL. and M. Lassle, The tetratricopeptide repeat:a structural motif mediating protein-protein interactions. Bioessays,1999.21(11):932-9.
    [192]Jinek, M., J. Rehwinkel, B.D. Lazarus, et al., The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol,2004.11(10):1001-7.
    [193]Scheufler, C., A. Brinker, G. Bourenkov, et al., Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell,2000. 101(2):199-210.
    [194]Passmore, L.A., C.R. Booth, C. Venien-Bryan, et al., Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation. Mol Cell,2005.20(6):855-66.
    [195]Lubas, W.A. and J.A. Hanover, Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem,2000.275(15):10983-8.
    [196]Iyer, S.P. and GW. Hart, Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J Biol Chem,2003.278(27): 24608-16.
    [197]Clarke, A.J., R. Hurtado-Guerrero, S. Pathak, et al., Structural insights into mechanism and specificity of O-GlcNAc transferase. EMBO J,2008.27(20):2780-8.
    '[198] Kreppel, L.K. and G.W. Hart, Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem,1999.274(45):32015-22.
    [199]Slawson, C., T. Lakshmanan, S. Knapp, et al., A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol Biol Cell,2008.19(10):4130-40.
    [200]Roos, M.D. and J.A. Hanover, Structure of O-linked GlcNAc transferase:mediator of glycan-dependent signaling. Biochem Biophys Res Commun,2000.271(2):275-80.
    [201]Martinez-Fleites, C., M.S. Macauley, Y. He, et al., Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nat Struct Mol Biol,2008.15(7): 764-5.
    [202]Haltiwanger, R.S., G.D. Holt, and G.W. Hart, Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase. J Biol Chem,1990.265(5):2563-8.
    [203]Imberty, A., V. Piller, F. Piller, et al., Fold recognition and molecular modeling of a lectin-like domain in UDP-GalNac:polypeptide N-acetylgalactosaminyltransferases. Protein Eng,1997.10(12):1353-6.
    [204]Whelan, S.A., M.D. Lane, and G.W. Hart, Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling. J Biol Chem,2008.283(31): 21411-7.
    [205]Schimpl, M., X. Zheng, V.S. Borodkin, et al., O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis. Nat Chem Biol,2012.8(12):969-74.
    [206]Lazarus, M.B., J. Jiang, T.M. Gloster, et al., Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nat Chem Biol,2012.8(12):966-8.
    [207]Riu, I.H., I.S. Shin, and S.I. Do, Spl modulates ncOGT activity to alter target recognition and enhanced thermotolerance in E. coli. Biochem Biophys Res Commun,2008.372(1): 203-9.
    [208]Kang, J.G., S.Y. Park, S. Ji, et al., O-GlcNAc protein modification in cancer cells increases in response to glucose deprivation through glycogen degradation. J Biol Chem,2009. 284(50):34777-84.
    [209]Cai, L., W. Guan, M. Kitaoka, et al., A chemoenzymatic route to N-acetylglucosamine-1-phosphate analogues:substrate specificity investigations of N-acetylhexosamine 1-kinase. Chem Commun (Camb),2009(20):2944-6.
    [210]Chen, Y., V. Thon, Y. Li, et al., One-pot three-enzyme synthesis of UDP-GlcNAc derivatives. Chem Commun (Camb),2011.47(38):10815-7.
    [211]Muthana, M.M., J. Qu, Y. Li, et al., Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem Commun (Camb),2012.48(21):2728-30.
    [212]Wrabl, J.O. and N.V. Grishin, Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. J Mol Biol,2001.314(3):365-74.
    [213]Mayer, A., T.M. Gloster, W.K. Chou, et al.,6"-Azido-6"-deoxy-UDP-N-acetylglucosamine as a glycosyltransferase substrate. Bioorg Med Chem Lett,2011.21(4):1199-201.
    [214]Gurcel, C., A.S. Vercoutter-Edouart, C. Fonbonne, et al., Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging. Anal Bioanal Chem,2008.390(8): 2089-97.
    [215]Boyce, M., I.S. Carrico, A.S. Ganguli, et al., Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc Natl Acad Sci U S A,2011.108(8):3141-6.
    [216]Wang, Z., N.D. Udeshi, C. Slawson, et al., Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal,2010.3(104):ra2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700