用户名: 密码: 验证码:
导向器叶片冲击冷却结构设计及传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高涡轮入口温度对改善航空发动机推重比和热效率有重要意义,但也给发动机的正常运行带来一系列严重问题。目前入口燃气温度的提高速度远远高于叶片材料耐高温性能的发展速度,在继续发展耐高温材料的同时,必须采取有效的冷却技术和热防护措施来保证涡轮叶片在高温环境下安全可靠的工作。准确预测涡轮叶片的温度场是延长叶片工作寿命、提高冷却效率的关键问题,随着计算流体力学的不断发展,气热耦合方法已经成为航空发动机冷却结构设计的重要工具。本文借助气热耦合方法,重点针对小尺寸高压涡轮导向器叶片进行冲击冷却结构设计,完成气动和传热的三维耦合分析,为实际涡轮导向器叶片冷却结构设计提供参考。
     叶轮机械中边界层转捩流动普遍存在,其直接影响叶片壁面附近传热过程,本文首先研究了如何准确预测边界层转捩流动问题,选择Transition k-kl-转捩模型对平板边界层有无压力梯度的跨越转捩实验进行数值计算,并对边界层转捩前后流动状态以及影响转捩流动的边界条件进行研究,计算结果表明:Transition k-kl-转捩模型对有无压力梯度的平板跨越转捩表现良好,压力梯度对边界层转捩流动有较大影响,顺压梯度有助于稳定边界层流动,延缓转捩的发生,而逆压梯度则容易使边界层流动失稳,促使转捩提前发生。
     本文进一步对NASA-MarkII叶片传热实验进行气热耦合数值计算,研究了各湍流模型的计算特点以及它们对转捩流动的识别能力,分析了叶片表面边界层流动状态对涡轮叶片传热的影响,发现Transition k-kl-转捩模型相比其它全湍流模型,能够更准确预测附面层内的分离转捩状况。由于转捩前期采用层流动能来描述扰动的发展,避免了使用含来流湍流度的经验公式所带来的计算层流误差,引入“分裂机制”来描述层流与湍流脉动间的相互作用,并且在旁路转捩和自然转捩源项模块中加入了Tollmien-Schlichting波的影响,对强激波后的温度计算相比常用的间歇因子转捩模型与实验值更吻合。最后采用变湍流普朗特数方法对Transition k-kl-转捩模型的热涡流扩散系数项进行修正,保证湍流普朗特数从边界层到主流区光滑过渡,使得对流换热系数计算值与实验值更加接近。
     选用上述转捩模型进行数值计算,得出平板单孔冲击冷却结果,并与三维单孔冲击冷却分析解以及实验关联式进行对比,同时对模型网格无关性进行计算,验证数值结果的准确性,得到单孔冲击冷却的相应规律,对于理解冲击流动的流场和冲击冷却的机理有很大帮助。再利用已确定的数值计算方法,分析阵列射流不同的几何参数和物理参数对冲击冷却传热和流动的影响,与实验关联式进行对比,得到平板阵列射流的传热规律,为接下来导向器叶片冷却结构设计提供依据。
     实验研究不能完全仿照航空发动机的实际工作条件,利用数值计算的优势研究涡轮叶片的实际工作状态具有非常重要的工程意义,接下来本文对导向器叶片进行冲击冷却结构设计,首先计算得出未加冷却时导向器叶片的温度场分布,发现叶片最高温度存在于前缘外表面中径处,再根据具体温度分布进行导向器叶片气冷结构设计,完成气动和传热的三维耦合分析,实现在保持冷却气体流量不变的条件下提高冷却效果,降低材料的性能要求。当导流片孔数和孔径满足关系式(4n-1)D=叶高(mm)时,在导向器叶片叶高方向上能满足冷却要求。以结构简单为原则,选择导流片每列冲击孔轴向距离为X/d=5~7时,能够满足中弦区冷却要求。前缘区域要想满足要求,所设计的冷却结构前缘至少须布置两列冲击孔。冲击间距较小时,冲击间距变化对叶片的内、外表面平均温度影响不大,但随冲击间距的减小,内、外表面最高温度会降低,而最低温度则会升高。单纯从冷却效果看,采用小间距为宜。与开孔排气结构相比,尾缘劈缝排气结构可以有效改善尾缘的冷却效果,且减小了总压损失。
     本文最后应用热弹耦合方法对温度和冲击载荷作用的导向器叶片进行了应力分析,探讨了网格数量对计算结果的影响。结果发现:总变形量最大值出现在结构强度较低的叶片中弦位置,等效应力最大值出现在叶根和叶尖位置,分析认为是由于轮毂、轮缘给定固定支撑的约束条件,叶体由于热应力产生的形变,均会传递到两个端壁面上产生压缩效应。
It is important to improve aero turbine engine thermal efficiency and thrust-to-weightratio by increasing turbine inlet temperature, which also brings a series of serious problemsfor the normal operation of the engine. Now the inlet temperature increases much faster thanthe development of the temperature resistance of the blade material. The efficient coolingtechnology and the thermal protective measures must be taken into consideration to ensure theturbine blades working safely and reliably at a high temperature, in addition to continuing toimprove high temperature materials resistance. The precise heat transfer analysis of turbineblades is essential to improve the cooling efficiency and extend the operating life of the blades.With the incessant maturity of computational fluid dynamics, the conjugate heat transfermethodology has gradually become a prevailing tools in the design process of aero turbineengine. With the help of numerical simulation of conjugate heat transfer methodology, theimpingement cooling structure which is focused on the small size high pressure turbine guideblade, has been designed, and then the three-dimensional aerodynamics analysis and the heattransfer coupled analysis of this structure have been completed, which can provide referencefor the cooling structure design of the actual engine guide blades.
     The boundary layer transition flow is widespread in turbo machinery, and it directlyaffects the heat transfer process of the turbine blade near the wall. The problem of how toaccurately predict the boundary layer transition flow was firstly studied, then the Transitionk-kl-model was selected to simulate boundary layer transition on the flat plate, and then theflow state before and after the boundary layer transition was in-depth studied. The resultsshow that: Transition k-kl-model has a good performance on the plate bypass transitionwith or without pressure gradient, and the pressure gradient has influence to the boundarylayer transition flow. The favor pressure gradient can stabilize boundary layer flow, postponethe onset location of transition. Otherwise the adverse pressure gradient can induce theboundary layer separation, and pre-act transition occurs.
     The conjugate heat transfer methodology has been employed to NASA-MarkII turbineguide vane in this dissertation. By discussing the calculation characteristics of the turbulencemodel and the ability to identifying transitional flows, the influence of the blade surfaceboundary layer flow on turbine blade heat transfer was analyzed and corrected. Compared to all the other turbulence models, the transition model can predict the separation transition stateof the boundary layer more accurately. As the transition model uses laminar kinetic energy todescribe the development of the disturbance, so this model can avoid the errors introduced bythe empirical formula, which is related with the inflow turbulence intensity. This modelintroduces the "split system" to describe the interaction between the laminar and the turbulentfluctuation, besides Tollmien-Schlichting wave is added into the bypass transition and thenatural transition source term. The result of temperature calculation behind the strong shock ismore consistent with the experimental value, compared to that of the common models withthe intermittent transition factor. Finally, the mutative turbulent Prandtl number method isadded to correct the thermal eddy diffusion coefficient term of the transition model, which canguarantee the smooth transition of the turbulent Prandtl number from the boundary layer intothe mainstream area, and furthermore, the heat transfer coefficient is closer to the actualexperiment value.
     The above-mentioned transition model was selected to carry out the numericalsimulation of the single-hole cooling. By comparing the analytical solution ofthree-dimensional impingement cooling with the theoretical and experimental solutions, thegrid independence was calculated to verify the accuracy of the numerical results. Thecorresponding law of the single-hole impingement cooling has a great help in understandingthe impact of the flow structure and the cooling mechanism. The identified numericalmethods were used to analyze the influence of the different geometrical and physicalparameters on the array jet impingement cooling heat transfer and flow. Compared with theexperimental correlations, the laws of the plat array jet heat transfer was determined toprovide the basis for the design of the next deflector impingement cooling holes.
     With aid of the numerical simulation technology, the detail investigation of the enginerealistic operating conditions has a great significance in aero turbine engine design process.Lab environment can not totally realize the realistic operating conditions of the aero turbineengine. Then the guide blade impingement cooling structure was designed. Firstly the leaftemperature distribution with no-cooling is calculated, and it is found that the maximumtemperature of the leaves exists at the central surface of the leading edge. The air-cooledstructure was designed to complete the analysis of the three-dimensional aerodynamic andheat transfer coupled, to achieve a goal of enhancing the cooling effect and reducing the performance requirements of the material under a condition of the fixed cooling gas flow rate.When the number of holes and diameter along blade height satisfy the relationship(4n-1)D=h,the temperature can meet the cooling requirements. When each column of the jet hole X/d=5~7in the axial direction to the principle of simple structure, it can meet the coolingrequirements of the leaves chord region. In order to meet the cooling requirements of theleading edge, there shall be arranged in two cooling holes at least. In the small impact spacing,the impact spacing has little effect on the variation of the average temperature of the inner andouter surfaces, the maximum temperature will lower and the minimum temperature will riserwith smaller spacing. Just from the view of the cooling effect, the use of small spacing isappropriate. Compared with the cutout exhaust structure, the split seam structure of thetrailing edge can improve the cooling effect of the trailing edge and reduce the total pressureloss effectively.
     Finally, the thermal stress was analyzed with temperature load and impact forceconditions on the blade by applying the thermoplastic coupling, and the influence of gridnumber was discussed. The results show that: the total maximum deformation exists in theblade central location with lower structural strength. The maximum thermal stress exists inthe blade root and the tip position, and it is due to the end wall which is given the constraintsof a fixed support. The deformation will be delivered to the two end walls producingcompression effect due to thermal stress generated in the guide blade.
引文
[1]韩介勤,桑地普·杜达,斯瑞纳斯·艾卡德.燃气轮机传热与冷却技术[M].西安:西安交通大学出版社,2005:171页
    [2]曹玉璋等.航空发动机传热学[M].北京:北京航空航天大学出版社,2005:5页
    [3]方昌德.借鉴国外经验发展我国的航空发动机[J].国际航空,2006,4:74-77页
    [4]陈光.航空发动机发展综述[J].航空制造技术,2000,6:21-23页
    [5]刘大响,程荣辉.世界航空动力技术的现状及发展动向[J].北京航空航天大学学报,2002,28(5):490-496页
    [6]张效伟,朱惠人.大型燃气涡轮叶片冷却技术[J].热能动力工程,2008,23(1):1-6页
    [7] Favorskii,Kopelov S.Z. Air Cooling of Gas Turbine Blades[J].Thermal Engineering,Aug,1981,435-438P
    [8] R.A.Rudey,R.W.Graham. A review of NASA combustor and turbine heattransferresearch[R].ASME84-GT-113
    [9] Metzger D.E. Heat transfer characteristics for inline and staggered arrays of circularjets with crossflow of spent air[R]. Calculation of Turbulent Expansion Process, NASA,TM-1085
    [10] Metzger D.E. and Korstad R.J. Effects of cross flow on impingement heat Transfer[R].ASME, J. of TRANS for power,1994,526-531P
    [11] Metzger D.E. Impingement cooling of concave surfaces with lines of circular airjets[R]. Trans. ASME, Series A,1991,3:49-158P
    [12] Bradbury L.J.S. The structure of a Self-Preserving Turbulent Plane Jet[J].Journal ofFluid Mechanics,23:1-61P
    [13] Gadek,Frederiok F. Fundamental Investigation of Jet Impingement Heat Transfer [D].University of Cincinnati,1968
    [14] Tabakoff W,Clevenger W. Gas Turbine Blade Heat Transfer Augmentation byImpingement of Air Flowing Various Configuration[R].ASME,71-GT-9,1971
    [15] Clevenger W, Tabakoff W. Investigation of Heat Transfer Characteristics of2-Dimension Jet Impinging on a Semi-Cylinder[R]. AD-697165.
    [16] Metzger D E. ASME[J].J.of Eng. for Power,1969,91(3)
    [17] Korger M,Krizek F. Verfahrenstechnik[J],1972,6:223P
    [18] Sparrow E.M. and Wong T.C. Impingement Transfer Coefficients Due to InitiallyLaminar Slot Jets[R]. Internationl Journal of Heat and Mass Transfer,1975,1:597-605P
    [19] Goldstein R.J.and Behbahani A.I. Impingement of a Circular Jet withand without CrossFlow[R]. International Journal of Heat and Mass Transfer,1982,5:1377-1382P
    [20] Goldstein R.J.,Sobolik K.A. and Seol W. S. Effect of Entrainment on the Heat Transferto a Heated Circular Air Jet Impinging on a Flat Surface[R]. ASME Journal of HeatTransfer,1990,112:608-611P
    [21] Goldstein R.J. and Seol WS. Heat Transfer to a Row of ImpingingCircular Air JetIncluding the Effect of Entrainment[R]. International Journal ofHeat and Mass Transfer,1991,34:2133-2147P
    [22] Hollworth B R and Berry R D. Heat Transfer from Arrays of Impinging Jets with LargeJet to Jet Spacing[R].ASME Journal of Heat Transfer,1987,100:352-357P
    [23] Osama, M. A. Al-aqal. Heat Transfer Distributions on the Walls of a NarrowChannelwith Jet Impingement and Cross Flow [D]. University of Pittsburgh,1999
    [24] Florschuetz L.W., Berry R.A.and Metzger D. E. Periodic Streamwise Variations ofHeat Trensfer CoefficientS for inline and StaggeredArrays of Circular Jets withCossflow of Spent Air[R]. ASME Journal of Heat Transfer,1980,102:37-342P
    [25] Koopman R.N. and Sparrow E. M. Local and average Transfer Coefficients due to animpinging row of jets[R]. International Journal of Heatand Mass Transfe,1976,10:673-683P
    [26] Florschuetz and Su.C C. Effects of Cross flow temperature on Heat Transfer within anArray of impinging jets[J] ASME Journal of Heat Transfer.1987,109:74-82P
    [27] Huang Y.,Ekkad S.V. and Han J.C. Detail Heat Transfer Coefficient Distributionsunder all Array of inclined Impinging Jets Using a Transient Liquid Crystal Technique[J].9thInternational Symposium on Transport Phenomena in Thermal FluidsEngineering(ISPT),1996,June,25-28P
    [28] Huang Y.,Ekkad S.V. and Han J.C. Detailed Heat Transfer Distribution Under an Arrayof Orthogonal Impinging Jets [J]. AIAA Journal of Thermophysics and Heat Transfer,1998,12(1):73-79P
    [29] Ekkad. S. V.,Huang Y. and Ban J. C.Impingement Heat Transfer on a Target Plate withFilm Hole [J].AIAA Journal of Thermophysics and Heat Transfer,1999,Sep–Oct,13
    [30]郑际睿,王宝官.模拟透平叶片冲击冷却的实验研究[J].工程热物理学报,1980,1(2):165-175页
    [31]王宝官,郑际睿.多排圆孔射流的冲击冷却实验研究[J].工程热物理学报,1982,3(3):235-241页
    [32]任苓华,郑际睿.冲击冷却局部换热特性的实验研究[J].航空动力学报,1987,2(1):13-17页
    [33]李立国,江军,常海萍,张东来.涡轮叶片弦中区冲击冷却的模拟实验研究[J].航空动力学报,1989,4(4):381-386页
    [34]李朝晖,李立国.叶片前缘有气膜孔的冲击冷却研究[J].南京航空航天大学学报,1993,25(1):457-462页
    [35]张大林,常海萍,韩东.有初始横向流的冲击壁面强化的换热特性实验研究[J].航空动力学报,1996,11(3):269-272页
    [36]王宝官,褚孝荣,陈志杰,李永康.多排均布圆孔垂直冲击平板的换热实验研究[J].燃气涡轮实验与研究,1996,11(3):14-19页
    [37]张净玉,常海萍.冲击粗糙壁面复合冷却实验研究[J].航空动力学报,2001,16(4):386-392页
    [38]谭蕾,张靖周,谭晓茗.有初始横向流冲击冷却的数值研究[C].中国工程热物理学会2004年传热传质学学术会议论文集(下册),2004
    [39]谢浩,张靖周.阵列射流冲击冷却换热系数的数值研究[J].能源研究与利用.2005,233(1)
    [40]刘军,吉洪湖.涡轮导叶内部孔阵冲击冷却的数值模拟[C].中国工程热物理学会第十一届年会论文集,2005
    [41]孔满昭,刘海涌,沈天荣.壁冷叶片冲击冷却孔的流动特性实验研究[J].流体机械.2005,33(10):4-7页
    [42]刘海涌,孔满昭,刘松龄,沈天荣.错排射流冲击受限短通道内流场的实验研究[J].西北工业大学学报,2006,24(3):286-289页
    [43]阎畅,刘海涌,朱惠人,许都纯.带横向流及旋流射流冲击换热的数值与实验研究[J].计算机仿真,2008,25(3):44-47页
    [44]解建恒,张净玉.狭小空间内冲击射流冷却的数值研究[C].中国航空学会2009年学术年会—第十五届燃烧与传热传质学术研讨会,2009
    [45]刘钊,宋立明,丰镇平.冷却孔直径对透平叶片前缘内部流动和换热的影响[C].中国工程热物理学会热机气动热力学2009年学术会议论文集,2009
    [46]徐国强,谢毅,丁水汀等.“冲击-气膜”复合式结构冷却效果数值研究[J].热科学与技术,2009,8(1):1-7页
    [47]韩宇萌,王新军等.阵列射流冲击冷却换热特性的数值研究[J].汽轮机技术,2010,52(3):161-164页
    [48]杨卫华,王梅娟等.冲击+同向对流+气膜冷却效果的实验[J].航空动力学报,2010,25(4):729-734页
    [49] PerelmanT.L. Conjugated Problems of Heat Transfer [J]. Int J Heat MassTransfer.1961,3:293-303P
    [50] Steinthorsson E,Ameri A A,Rigby D L. TRAF3D.MB-A Multi-Block Flow Solver forTurbomachinery Flows[R],AIAA Paper No.97-996,1997
    [51] Heidmann J D,Kassab A J. Conjugate heat transfer effects on a realistic film cooledturbine vane[R].ASME paper GT-2003-38553
    [52] M.G.Dunn,W.J.Rae,J.L.Holt. Measurement and Analysis of Heat Flux in a TurbineStage:Part2-Diseussion of Results and Comparison With Predietion[J],ASME,1984,106:234-240P
    [53] D.B.Taulbee,L.T.Tran,M.G.Dunn. Stagnation Point and Surface Heat Transfer for aTurbine Stage: Predietion and Comparison with Data[R]. ASME Paper88-GT-30
    [54] Bohn D,Kusterer K,Sugimoto T,Tanaka R. Conjugate analysis of a test configurationfor a film-cooled blade under off-design conditions[R].ISABE-2003-1176
    [55] Kusterer K,Bohn D,Sugimoto T,and Tanaka R. Conjugate heat transfer analysis ofa test configuration for a film-cooled blade[R].IGTC2003Tokyo TS-083
    [56] Kusterer K,Bohn D,Sugimoto T,and Tanaka R. Conjugate calculations for afilm-cooled blade under different operating conditions[R].GT2004-53719
    [57] Kusterer K,Hagedorn T,Bohn D. Improvement of a film-cooled blade by applicationof the conjugate calculation technique[R].GT2005-68555
    [58] Bohn D,Kusterer K. Blowing ratio influence on jet mixing flow phenomena at leadingedge[R].AIAA-99-0670
    [59] Bohn D,Heuer T. Conjugate flow and heat transfer calculation of a high pressureturbine nozzle guide vane[R].AIAA-2001-3304
    [60] Bohn D, Heuer T, Kortmann J. Numerical conjugate flow and heat transferinvestigation of a transonic convection-cooled turbine guide vane with stress-adaptedthicknesses of different thermal barrier coating[R].AIAA2000-1034
    [61] S.Mori,T.Shinke,M.Sakakibara. Steady Heat Transfer to Laminar Flow betweenParallel Plates with Conduction in Wall.Heat Transfer Japanese Research[R].1976,5(4):17-25P
    [62] E.J.Davis,W.N.Gill. The Effects of Axial Conduction in the Wall on Heat Transfer withLaminar Flow.International Journal of Heat and Mass Transfer[J].1970,13(3):459-470P
    [63] O.C.Zienkiewicz,D.W.Kelly,P.Bettes. The Coupling of Finite Element and BoundarySolution Procedures[J].Int J Numer Meth Engng1977,11:355-375P
    [64] S.V.Patankar. A Numerical Method for Conduction in Composite Materials:Flow inIrregular Geometries and Conjugate Heat Transfer.Proceedings Sixth International HeatTransfer Conference[R].1978,3:297-302P
    [65] Han Z X, Dennis B H. Simultaneous Prediction of External Flow-Field andTemperature in Internally Cooled3-D Turbinc Blade Material[R]. ASME,2000,2000-GT-253
    [66] Nonymous.State-of-the-art in BEM/FEM Coupling.Bound Elem AbstrNewslett[J].1993,4(3):94-103P
    [67] Facchini B,Magi A,Greco A S D. Conjugate heat transfer simulation of a radiallycooled gas turbine vane[R].ASME Paper GT2004-54213
    [68] York.W D,Leylek J H. Three dimensional conjugate heat transfer simulation of aninternally cooled gas turbine vane[R].ASME Paper,GT2003-28551
    [69] Mazur Z,Hernandez-Rossette A. Analysis of conjugate heat transfer of a gas turbinefirst stage nozzle[R].ASME Paper,GT2005-68004
    [70] Takahashi T,Watanabe K,Sakai T. Conjugate heat transfer analysis of a rotor bladewith rib-roughened internal cooling passages[R].ASME Paper,GT2005-68227
    [71]董平.航空发动机气冷涡轮叶片的气热耦合数值模拟研究[D].哈尔滨工业大学博士论文,2009
    [72]陈凯,黄洪雁,韩万金,冯国泰.应用单向法的气冷涡轮气热弹耦合数值研究[J].科学技术与工程.2010,10(3):726-732页
    [73]王强.提高气冷涡轮气热耦合计算精度方法的研究[D].哈尔滨工业大学博士论文,2009
    [74]苏生,胡捷,刘建军等.复杂空冷叶片换热特性研究[J].燃气涡轮实验与研究.2008,21(3):26-31页
    [75]沈煜欣,刘建军.热传导对微型涡轮动叶性能影响的数值模拟[J].工程热物理学报,2008,29(11):1831-1834页
    [76]宋迎东,张福军等.一类冷却导向叶片的多学科设计优化[J].航空动力学报,2008,23(11):1982-1987页
    [77] K.H.Yu, Z.F.Yue, J.Wang.Parametric Modeling and Multidisciplinary DesignOptimization of3-D Internally Cooled Turbine Blades[R]. AIAA,2007-7719
    [78]王振峰.边界元法在气热耦合计算及冷却结构优化中的应用研究[D].哈尔滨工业大学博士论文,2010
    [79]尚仁操.涡轮叶片气-热耦合计算和设计优化数值研究[D].西北工业大学硕士论文,2007
    [80]陈凯.燃气涡轮冷却结构设计与气热弹多场耦合的数值研究[D].哈尔滨工业大学博士论文,2010
    [81]武新华,马晓峰.叶片热弹耦合场分析[J].汽轮机技术,2001,45(1):14-16页
    [82] Al-huniti N S,Al-nimr M A.Naji M.Dynamic response of a rod due to a moving heatsource under the hyperbolic heat conduction model[J]. J Sound Vib,2001,242(4):629-640P
    [83] Elhagary M A.A two-dimensional problem for two media in the generalized theory ofthermoelasticity [J]. J Therm Stresses,2010,33:993-1007P
    [84] Quintanilla R.Existence in thermoelasticity without energy dissipation[J].J ThermStresses,2002,25:195-202P
    [85] Chirita S,Ciarletta M.Reciprocal and variational principies in linear thermoelasticitywithout energy dissipation[J].Mech Res Commun,2010,37:271-275P
    [86] Youssef H M. Theory of two-temperature thermoelasticity without energydissipation[J].J Therm Stresses,2011,34:138-146P
    [87]何天虎,曹丽,周又和.受移动热源作用的两端固定杆的广义热弹耦合问题[J].工程力学,2008,25(5):22-26页
    [88]树学峰,张晓晴,张晋香.周边固支圆板非线性热弹耦合振动分析[J].应用数学和力学,2000,21(6):647-654页
    [89]李志刚,树学峰.一类变厚度圆板非线性热弹耦合的振动分析[J].太原理工大学学报,2004,35(1):9-12页
    [90]兰姣霞,张晓晴,树学峰.轴对称圆柱壳非线性热弹耦合振动基本方程[J].华北工学院学报,2000,21(6):36-38页
    [91]于文芳,兰姣霞,树学峰.热弹耦合温度场中短圆柱壳动力响应分析[J].太原理工大学学报,2003,34(2):119-121页
    [92] Walters D K, Davor Cokljat. A three-equation eddy-viscosity model forReynolds-averaged Navier–Stokes simulations of transitional Flow[J].Journal of FluidEngineering,2008,130:1-14P
    [93] Walters D K,Leylek J H. A new model for boundary layer transition using asingle-point RANS approach[R].ASME,Turbomach,2004,126:193–202P
    [94] Walters D K, Leylek J H. A CFD study of wake-induced transition on acompressor-like flat plate[R].ASME J.Turbomach.2005,127:52–63P
    [95]符松,王亮.湍流转捩模式研究进展[J].力学进展,2007,37(3):409-416页
    [96] Shih,Liou,and Shabbir et al. A new k-ε eddy viscosity model for high ReynoldsNumber turbulent flows[J].Comput Fluids,1995(24):227-238P
    [97] Saric W S,Reed H L,and Arnal D. Stability and transition of three-dimensionalboundary layer[J].Annu Rev Fluid Mech,2003(35):413-440P
    [98] Jacobs R G,Durbin P A.Simulations of bypass transition[J].J Fluid Mech,2001,433:185-212P
    [99] http:∥cfd.me.umist.ac.uk/ercoftac/classif.html
    [100]曹玉璋.航空发动机传热学[M].北京:北京航空航天大学出版社,2005
    [101]章梓雄,董曾南.粘型流体力学[M].北京:清华大学出版社,1998:129页
    [102]董平,黄洪雁,冯国泰.零压力梯度平板边界层转捩的数值模拟[J].热能动力工程,2007,22(6):586-590页
    [103]陈懋章.粘性流体力学基础[M].高等教育出版社,2001:270页
    [104] Hylton LD,Milhec M S,and Turner E R et al. Analytical and experimental evaluationof the heat transfer distribution over the surface of turbine vanes[R].NASA-CR-168015,1983
    [105]董平,黄鸿雁,冯国泰.高压燃气涡轮径向内冷叶片气热耦合的数值分析[J].航空动力学报,2008,23(2):201-207页
    [106]陶文铨.传热学[M].西安:西北工业大学出版社,2006:219页
    [107] N.Grzegorz,W.Wlodzimierz,C.Tadeusz.Optimizatioin of Cooling Passages with in aTurbine Vane[R].ASME Paper,GT2005-68552,2005
    [108] M E Crawford,W M Kays. STAN5-A program for Numerical computation oftwo-dimensional interal and external boundary layer flows[R].NASA CR-2742,1976
    [109]周海兵,崔桂香,张兆顺. Pr数对湍流被动标量输运的影响[J].力学学报,2002,34(6):847-854页
    [110]周海兵,崔桂香,许春晓,张兆顺.充分发展湍流场中Pr数对被动标量输运的影响[J].力学学报,2004,36(1):84-87页
    [111] Goldstein R.J.Behbahani A.I.and Heppelmann,K.K. Streamwise Distribution of theRecovery Factor and the local heat transfer coefficient to an impinging circular AirJet[J].International Journal of Heat and Mass Transfer,1986,29:1227-1235P
    [112] Martin H. Heat and Mass Transfer between Impinging Gas Jets and Solidsurfaces[J].Advances in Heat Transfer,1977,13
    [113] Hrycak,Peter,et al. Experimental Flow Characteristic of a single Turbulent JetImpinging on a Flate Plate[R].NASA TND-5690,1970
    [114]过增元,黄素逸.场协同理论与强化传热新技术[M]北京:中国电力出版社,2004
    [115]孟继安,陈泽敬,李志信,过增元.管内对流换热的场协同分析及换热强化[J].工程热物理学报,2003,24(4):652-654页
    [116]张净玉.冲击粗糙表面复合冷却参数优化研究[D].南京航空航天大学硕士学位论文,1998
    [117]邱绪光,康滢,胡志清.封闭空间冲击流动及换热实验研究[R].中国航空科技文献HJB830089
    [118]朱谷君,邱绪光,陈忠军.半圆腔壁表面二维冲击流动和换热的模拟计算[J].航空动力学报,1990,5(1):11-14页
    [119] Sieverding CH. The influence of trailing edge ejection on the base pressure in transonicturbine cascades [R].ASME82-GT-50
    [120]曾军,乔渭阳.带尾缘劈缝冷气喷射的涡轮叶栅性能实验及计算[J].推进技术,2008,29(6):710-715页
    [121]张玲.涡轮静叶复合角度气膜冷却流动的数值实验研究[D].华北电力大学博士论文,2010,87-88页
    [122]袁锋.带前缘气冷的旋转涡轮流场实验与数值研究[D].上海交通大学博士论文,2007,75-76页
    [123]柳海龙.复杂边界约束条件下发动机叶片的固有振动特性研究[D].南京航空航天大学硕士论文,2007,20-21页
    [124]虞跨海.航空发动机涡轮冷却叶片多学科设计优化技术研究[D].西北工业大学硕士论文,2006,73-75页
    [125]岳珠峰等.航空发动机涡轮冷却叶片多学科设计优化[M].北京:科学出版出版社,2007,55页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700