用户名: 密码: 验证码:
几类广义系统的稳定性分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上个世纪70年代以来,广义系统理论已经逐渐发展成为当今最重要的控制理论分支之一.广义系统以其强大的应用背景,吸引了国内外众多学者的关注.关于广义系统的基本理论、稳定性等方面的研究都有了新的进展,但仍然存在一定的局限性,还有待于进一步发展和完善.
     本论文在广义系统以及广义系统控制理论的基础上,对几类广义系统的稳定性和控制问题进行了分析和研究.全文由以下几部分组成:
     第一章为绪论,介绍了本文研究工作的背景知识和研究概况.首先对广义系统理论的研究背景、结构特征及研究方法进行了阐述,介绍了广义系统发展状况和实际应用;其次,针对几类带有切换、具有Markov跳变、多自主体、不连续非线性广义系统,介绍其稳定性和控制问题发展的现状、研究的方法以及取得的成果;最后,简要地介绍了本文的工作安排.
     第二章研究的是线性切换微分代数方程(DAEs),首先针对系统中既包括稳定的子系统,又包括不稳定的子系统的情形进行讨论,证明了只要平均驻留时间足够大,并且不稳定子系统比稳定子系统的运行时间相对短,就能得到切换DAEs的渐近稳定性.基于合适的Lyapunov函数,给出了切换DAEs稳定的充分条件.主要结果给出了一个额外的协调投影算子满足的条件,继而得到系统在平均驻留时间下的渐近稳定性.其次,讨论在切换信号具有时滞的情况下,借助于协调投影算子、平均驻留时间方法和合并切换信号技巧,给出了闭环切换系统渐近稳定的充分条件.
     第三章讨论的是一类具有Markov跳变的广义系统.首先给出的是离散时间马尔科夫跳变广义系统的有界实引理,借助于已有的广义系统随机容许性的定义,得到无激励系统随机容许的一个充分必要条件,进而以严格矩阵不等式形式给出了离散时间马尔科夫跳变广义系统的有界实引理.与已有的结果相比,这里的结果在数值计算中更易处理.
     其次,考虑转移概率部分未知的马尔科夫跳变广义系统的稳定和镇定问题,分为连续时间和离散时间情形.充分利用转移概率矩阵的性质,和不确定区域的凸性,得到一个新的严格矩阵不等式形式的充分必要条件,使得系统是正则,无脉冲和随机稳定的.对于连续时间情形,进一步设计了状态反馈控制器,给出了闭环系统是随机容许的充分条件;对于离散时间情形,设计了状态反馈控制器和输出反馈控制器,给出了相应的充分条件,使得闭环系统是随机容许的,最后,针对不同情形的系统,给出算例论证了结果的有效性.
     第四章研究了一类具有切换拓扑的广义多自主体系统,将一般的线性系统推广到广义系统,讨论无领导者和有领导者跟随两个一致性问题.讨论的拓扑图是动态图,利用代数拓扑知识和广义系统理论,将广义多自主体系统进行快慢子系统分解,只需通过研究其慢子系统的性质,即设计状态反馈控制协议,得到慢子系统的一致性,就能解决广义多自主体系统相应的两个一致性问题.
     第五章针对右端不连续的非线性广义系统,将正常系统的不变原理和稳定性推广到不连续的非线性广义系统.首先,给出了这类系统的稳定性和渐近稳定性,以及不变集的定义,在此基础上,利用E-不变集和广义Lyapunov方法提出了非线性广义系统的不变原理,其次,给出了非线性广义系统稳定和渐近稳定的充分条件.最后给出了算例论证了不变原理的应用.
     第六章是全文总结.总结了本文的主要工作和贡献,并展望了进一步的研究.
Since the seventies of the20th century, singular system theory has gradually de-veloped into an most important branches of control theory. Since its strong application background, Singular system has attracted the attention of many researchers at home and abroad. There have been great development on fundamental theory and stability of singular systems, but there are still some limitations, such systems remains to be further developed.
     Based on singular systems and the control theory, this dissertation studies the prob-lems of stability and control of several classes of singular systems.
     The main contents of this dissertation include:
     Chapter1is the preface, the research background and research states of this disserta-tion are introduced. Firstly, the research background of singular systems theory, structure characteristics and research method are summarized, the development status and actual applications are introduced in detail. Then, the research states, methods and obtained results about switched, Markov jump, multi-agent and discontinuous nonlinear singular systems are presented. Finally, the main work of this dissertation is introduced.
     Chapter2studies a class of linear switched differential algebraic equations (DAEs). Case1:stable and unstable subsystems coexist. Asymptotic stability of the switched DAEs is obtained if the average dwell time is chosen sufficiently large and the total activation time of unstable subsystems is relatively small compared with that of stable ones. Sufficient conditions for stability of switched DAEs are presented based on the existence of suitable Lyapunov functions. The main result shows that asymptotic stability is preserved under switching with an average dwell time and an additional condition involving consistency projectors holds. Case2:switching signals with time delays. Based on average dwell time method and the merging switching signal technique, the switched DAEs achieve asymptotic stabllity when consistency projectors are involved.
     Chapter3discussed a class of singular systems with Makov jump. Firstly, a new nec-essary and sufficient condition is proposed in terms of strict linear matrix inequality, which guarantees the stochastic admissibility of the unforced Markovian jump singular systems. A bounded real lemma for discrete-time Markovian jump singular systems is derived and can be described by a strict matrix inequality. The results are more tractable and reliable in numerical computations than existing conditions.
     Then, the problem of the stability and stabilization of Markovian jump singular sys-tems with partly known transition probabilities is concerned, including two cases(continuous time and discrete time). By fully unitized the properties of the the transition rate ma-trix(TRM), and the convexity of the uncertain domains, a new sufficient and necessary condition in terms of strict linear matrix inequalities (LMIs) for the MJSS to be regu-lar, impulsive and stochastically stable is obtained. In continuous time case, based on the proposed stability criterion, a state feedback controller is designed, and a sufficient condition which guarantees the stochastic admissibility of the closed loop systems is given; In the discrete time case, not only a state feedback controller but also an output feedback controller is designed, and a sufficient condition such that the closed loop systems is stochastically admissible is also given.
     Finally, according to the different cases of the systems, several examples are given to demonstrate the effectiveness of the obtained results.
     Chapter4studies a class of multi-agent singular systems under switching topol-ogy. We extend the general linear systems to the singular systems, and discuss both the leaderless consensus problem and the leader-following consensus problem under switching network topology. Using the algebraic topology and singular systems theory, the multi-agent singular system can be decomposed into fast-slow subsystems, and we just need to consider the property of the slow subsystem, that is to design a state feedback control protocol, and get the consensusability of the slow subsystem. Then, the two consensus problems of the multi-agent singular systems are also solvable.
     Chapter5extends the LaSalle invariance principle and stability of conventional systems to discontinuous nonlinear singular systems. Firstly, the definitions of stabil-ity, asymptotical stability, and invariant set for such systems are proposed. Then, the LaSalle invariance principle is presented by citing the notion of E-invariant set and the generalized Lyapunov method, and sufficient conditions about the stability and asymp-totic stability of the discontinuous nonlinear singular systems are given. Furthermore, the application of the invariance principle is demonstrated by the given example.
     Chapter6summarizes the main results of this dissertation and point out the further research.
引文
[1]Rosenbrock H H. Structural properties of linear dynamical systems [J]. International Journal of Control,1974,20(2):191~202.
    [2]Dai L. Singular control systems, Berlin:Spring-Verlag,1989.
    [3]Ishhara J Y, Terra M H. On the Lyapunov theorem for singular systems [J]. IEEE Transactions on Automatic Control.2002,47(11):1926~1930.
    [4]Masubuchi I, Kamitane Y, Ohara A, et al. H∞ control control for descriptor systems: a matrix inequalities approach [J]. Automatica.1997,33(4):669~673.
    [5]Xu S, Lam J. Robust Control and Filtering of Singular Systems [M]. Berlin: Springer.2006.
    [6]Yang D M, Zhang Q L, Yao B, Singular Systems. Beijing, China:Science Press, 2004.
    [7]Ishii H, Francis B A. Stabilizing a linear systems by switching control with dwell time[C]. Proceedings of the American Control Conference,2001,1876~1881.
    [8]Hespanha J P, Morse A S. Stability of switehed systems with average dwell-time[C]. Proceedings of the 38th IEEE Conference on Decision and Control,1999, 2655~2660.
    [9]Zhai G S, Hu B, Yasuda K, et al. Disturbance attenuation properties of time-controlled switched systems [J]. Journal of the Franklin Institute,2001,338(7): 765~779.
    [10]Liberzon D, Morse A S. Basie Problems in stability and design of switched sys-tems[J]. IEEE Control Systems Magazine,1999,19(5):59~70.
    [11]Narendra K S, Koditschek D E. A common Lyapunov function for stable LTI sys-tems with commuting A-Matrices[J]. IEEE Transactions on Automatic Control, 1994,39(12):2469~2471.
    [12]Shorten R N, Narendra K S. On the existence of a common Lyapunov function for linear stable switching systems [C]. Proceeding of the 10th Yale Workshop on Adaptive and Learing Systems,1998,130~140.
    [13]Liberzon D. Switching in systems and control[M]. Birkhauser, Boston,2003.
    [14]Shorten R, Narendra K S, Mason O. A result on common quadratic Lyapunov functions[J]. IEEE Transactions on Automatic Control,2003,48(1):110~113.
    [15]Sun Z D, Ge S S. Switched linear systems-control and design[M]. Springer-Verlag, 2004.
    [16]Yin G, Zhang J F. Hybrid singular systems of differential equation[J]. Science in China(Series F),2002,45(4):241~258.
    [17]Canto B, Coll C, Sanchez E. Positive N-periodic descriptor control systems[J]. Sys-tems & Control Letters,2004,53(5):407~414.
    [18]Xiong W J, Ho D W C, Cao J D. Synehronization analysis of singular hybrid coupled networks[J]. Physics Letters A,2008,372(44):633~663.
    [19]Clotet J, Ferrer J, Magret M D. Switched singular linear systems[C].17th Mediter-ranean Conference on Control and Automation Makedonia Palace, Thessaloniki, Greece,2009,1343~1347.
    [20]Hamann P, Mehrmann V. Numerical solution of hybrid systems of differential-algebraic equation [J]. Computer Method in Applied Mechanics and Engineering, 2008,197(8):693~705.
    [21]Liu W Q, Yan W Y, Teo K L. On initial instantaneous jumps of singular systems[J]. IEEE Transactions on Automatic Control,1995,40(9):1650~1655.
    [22]Meng B, Zhang J F. Output feedback based admissible control of switched linear singular systems[J]. Acta Automatica Sinica,2005,32(2):179~185.
    [23]孟斌,张纪峰.切换线性奇异系统能达的必要条件[J].航空学报,2005,26(2):224-228.
    [24]Koenig D, Marx B, Jacquet D. Unknown input observers for switched nonlinear discrete time descriptor systems[J]. IEEE Transactions on Automatic Control,2005, 53(1):373~379.
    [25]Mehrmann V, Wunderlich L. Hybrid systems of differential-algebraic equations anal-ysis and numerical solution[J]. Journal of Process Control,2009,19(8):1218~1228.
    [26]Alwan M, Liu X Z, Ingalls B. Exponential stability of singularly perturbed switched systems with time delay[J]. Nonlinear Analysis:Hybrid Systems,2008,2(3): 919~921.
    [27]Ma S P, Zhang C H, Wu Z. Delay-dependent stability and control for uncertain discrete switched singular systems with time-delay [J]. Applied Mathematics and Computation,2008,206(1):413~424.
    [28]Koenig D, Marx B. H∞-filtering and state feedback control for discrete-time switched descriptor systems[J]. IET Control Theory and Applications,2009,3(6): 661~670.
    [29]Zhang X H, Zhang H Y, Wang B S. Guaranteed costcontrol for uncertain switehed singular systems[C]. Chinese Control and Decision Conferenee,2009,4569~4573.
    [30]付主木,费树眠.一类不确定切换奇异系统的动态输出反馈鲁棒H∞控制[J].自动化学报,2008,34(4):482-457.
    [31]付主木,费树眠.一类切换线性奇异系统的H∞控制[J].控制理论与应用,2008,25(4):693-698.
    [32]Meng B, Zhang J F. Reachability conditions for switched singular systems[J]. IEEE Transactions on Automatic Control,2006,51(3):482~488.
    [33]Liu Y Z. The impulsive property of switched singular systems and its stability [C]. Proceedings of the 7th World Congress on intelligent Control and Automation,2008, 6369~6372.
    [34]Yan Z B. Consistent-inconsistent decomposition to initial value problem of descrip-tor linear systems[J]. Zeitschvift fur Angewandte Mathematic and Mechanik,2008, 7(8):552~555.
    [35]Liberzon D, Stephan Trenn. On stability of linear switched differential algebraic equations[C]. IEEE Conference on Decision and Control,2009,2156~2161.
    [36]Mu X W, Wei J M, Ma R. Stability of linear switched diffrential algebraic equations with stable and unstable subsystems [J]. International Journal of Systems Science, 2012, available on line DOI:10.1080/00207721.20xx.CATSid.
    [37]Raouf J, Boukas E K. Stabilization of discontinuous singular systems with Marko-vian switching and saturating inputs [C]. Proceedings of the 2007 American Control Conference,2007,2442~2447.
    [38]Fu Y, and Duan G. Robust guaranteed cost observer design for uncertain descriptor systems with state delays and markovian jumping parameters [J]. IMA Jounal of Mathematical Control and Information,2005,1~10.
    [39]Manfrim A L P, Terra M H, Costa E F, Ishihara J Y. Stochastic stability for discrete-time singular systems with Markov jump parameters[C]. American Con-trol Conference Westin Seattle Hotel, Seattle, Washington, USA June 11-13,2008, 1650~1655.
    [40]Chan H, Ozguner U. Optimal control of systems over a communication network with queues via a jump system approach[C]. Proc.4th IEEE Conf. Control Applications, 1995,1148~1153.
    [41]Seiler P, Sengupta R. Analysis of communication losses in vehicle control prob-lems[J]. Proc. Amer. Control Conf.,2001,1491~496.
    [42]Xiao L, Hassibi A, How J. Control with random communication delays via a discrete-time jump system approach[C]. Proc. Amer. Control Conf.,2000,2199~2204.
    [43]Zhang W, Branicky M, Phillips S. Stability of networked control systems [J]. IEEE Control Syst. Mag.,2001,21:84~99.
    [44]Costa O L V, Fragoso M, Marques R P. Discrete-time Markov jump linear sys-tems:Probability and its applications [M]. Spriger, Published in association with the Applied Probability Trust,2005.
    [45]Boukas E K. Stochastic switching systems analysis and design[M]. Birkhauser, Boston,2005.
    [46]Seiler P, Sengupta R. A bounded real lemma for jump systems[J]. IEEE Transactions on Automatic Control,2003,48:1651~1654.
    [47]Wu L, Shi P, Gao H. State estimation and slide-mode control of Markovian jump sin-gular systems[J]. IEEE Transactions on Automatic Control,2010,55:1213~1219.
    [48]Xia Y, Li L, Mahmoud M S, et al. H∞ filtering for nonlinear singular Markovian jumping systems with interval time-varying delays[J]. International Journal of Sys-tems Science,2012,43(2):272~284.
    [49]Zhang L, Boukas E K. Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities[J]. Automatica,2009,45(2):463~468.
    [50]Zhang L, Boukas E K. H∞ control for discrete-time Markovian jumping linear sys-tems with partly unknown transition probabilities[J]. International Journal of Ro-bust and Nonlinear Control,2009,19(8):868~883.
    [51]Zhang L, Boukas E K, Lam J. Analysis and synthesis of Markov jump linear sys-tems with time-varying delays and partially known transition probabilities[J]. IEEE Transaction on Automatic Control,2008,53(10):2458~2464.
    [52]Zhang Y, He Y, Wu M, Zhang J. Stabilization of Markovian jump systems with partial information on transition probability based on free-connection weighting matrices[J]. Automatica,2011,47(1):79~84.
    [53]Zhang L X, James Lam. Necessary and Sufficient Conditions for Analysis and Syn-thesis of Markov Jump Linear Systems With Incomplete Transition Descriptions[J]. IEEE Transactions on Automatic Control,2010,55(7):1695~1701.
    [54]Ma S P, Boukas E K, Chinniah Y. Stability and stabilization of discrete-time singular Markov jump systems with time-varying delay [J]. International Journal of Robust and Nonlinear Control,2010,20:531~543.
    [55]Wu Z G, Su H Y, Chu J. Output feedback stabilization for discrete singular systems with random abrupt changes [J]. International Journal of Robust and Nonlinear Control,2010,20:1945~1957.
    [56]Xia Y Q, Boukas E K, Shi P, et al. Stability and stabilization of continuous-time singular hybrid systems[J]. Automatica,2009,45(6):1504~1509.
    [57]Xia Y Q, Zhang J H, Boukas E K. Control for discrete singular hybrid systems[J]. Automatica,2008,44,2635~2641.
    [58]Pakshin P V, Mitrofanov I N. Robust stabilization of jump polytopic systems via output feedback[C].44th IEEE Conference on Decision and Control, Sevil-Ile, Spain,2005,2616~2620.
    [59]Lian Z, Deshmukh A. Performance prediction of an unmanned airborn vehicle multi-agent system[J]. European Journal of Operational Research,2006,172(2):680~695.
    [60]Lin Z, Francis B, Maggiore M. Necessary and sufficient graphical conditions for formation control of unicycles[J]. IEEE Transactions on Automatic Con-trol,2005,50(1):121~127.
    [61]Lin J, Morse A S, Anderson B D O. The multi-agent rendezvous problem[C]. Pro-ceedings of 42nd IEEE Conference on Decision and Control,2003,2(9):1508~1513.
    [62]Olfati-Saber R. Flocking for multi-agent dynamic systems:Algorithms and the-ory[J]. IEEE Transactions on Automatic Control,2006,51(3):401~420.
    [63]Olfati-Saber R, Shamma J S. Consensus filters for sensor networks and distributed sensor fusion [C]. Procceedings of 44th IEEE Conference on Decision and Con-trol, and the European Control Conference,2005,6698~6703.
    [64]Reynolds C W. Flocks, herds, and schools:A distributed behavioral model[C]. Proc. Comp. Graphics ACM SIGGRAPH'87 Conf.,1987,25~34.
    [65]Vicsek T, Czirok A, Ben-Jacob E, et al. Novel type of phase-transition in a system of self-driven particles [J]. Phys. Rev. Lett.,1995,75(6):1226~1229.
    [66]Xiao L, Boyd S. Fast linear iterations for distributed averaging[J]. Systems & Con-trol Letters,2004,53:65~78.
    [67]Lin P, Jia Y. Robust consensus analysis of a class of secondorder multi-agent systems with uncertainty[J]. IEE Proc. Control Theory Appl.,2010,4(3):487~498.
    [68]Li T, Zhang J. Consensus conditions of multi-agent system with time-varying topolo-gies and stochastic communication noises [J], IEEE Transactions on Automatic Con-trol,2010,55(9):2043~2057.
    [69]Lin P, Jia Y. Further results on decentralized coordination in networks of agents with second-order dynamics [J]. IEE Proc. Control Theory Appl.,2009,3(7):957~970.
    [70]Qu Z, Wang J, Hull R. Cooperative control of dynamical systems with application to autonomous vehicles[J]. IEEE Transactions on Automatic Control,2008,53(4): 894~911.
    [71]Xiao F, Wang L. Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays [J]. IEEE Transactions on Auto-matic Control,2008,53(8):1804~1816.
    [72]Li Z K, Duan Z S, Chen G R. Consensus of multiagent systems and synchronization of complex networks:A unified viewpoint[J]. IEEE Trans. Circuits Syst. I, Reg. Papers,2010,57(1):213~224.
    [73]Yang X R, Liu G P. Consensus conditions of linear descriptor multi-agent systems[C]. Proc.2nd Int, Conf. Intelligent Control and Information Process-ing,2011,769~774.
    [74]Hong Y, Hu J, Gao L. Tracking control for multiagent consensus with an active leader and variable topology[J]. Automatica,2006,42(7):1177~1182.
    [75]Hong Y, Chen G, Bushnell L. Distributed observers design for leader-following con-trol of multi-agent networks[J]. Automatica,2008,44(3):846~850.
    [76]Hu J, Hong Y. Leader-following coordination of multi-agent systems with coupling time delays[J]. Physica A:Stat. Mech. Appl.,2007,374(2):853~863.
    [77]Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile agents using nearest neighbor rules[J]. IEEE Trans, Automat. Control,2003,48(6):988~1001.
    [78]Jiang H. Hybrid adaptive and impulsive synchronisation of uncertain complex dy-namical networks by the generalised Barbalat's lemma[J]. IET Control Theory Appl.,2009,3(10):1330~1340.
    [79]Lin Z. Coupled Dynamic Systems:From Structure Towards Stability and Stabiliz-ability[M]. Ph.D. dissertation, University of Toronto, Toronto, Canada,2005.
    [80]Ma C, Zhang J. Necessary and sufficient conditions for consensusability of lin-ear multi-agent systems[J]. IEEE Transactions on Automatic Control,2010,55(5): 1263~1268.
    [81]Ni W, Cheng D. Leader-following consensus of multi-agent systems under fixed and switching topologies [J]. Systems & Control Letters,2010,59(3):209~217.
    [82]Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays [J]. IEEE Transactions on Automatic Con-trol,2004,49(9):1520~1533.
    [83]Ren W, Beard R W. Consensus seeking in multiagent systems under dynami-cally changing interaction topologies[J]. IEEE Transactions on Automatic Con-trol,2005,50(5):655~661.
    [84]Ren W, Beard R W. Distributed Consensus in Multi-vehicle Cooperative Con-trol[M]. ser. Communications and Control Engineering Series. London, U.K.: Springer-Verlag,2008.
    [85]Ren W. Synchronization of coupled harmonic oscillators with local interaction [J]. Automatica,2008,44(12):3195~3200.
    [86]Scardovi L, Sepulchre R. Synchronization in networks of identical linear systems [J]. Automatica,2008,45(11):2557-2562.
    [87]Su Y, Huang J. Two consensus problems for discrete-time multiagent systems with switching network[J], Automatica,2012,48:1988~1997.
    Tuna S E. LQR-Based Coupling Gain for Synchronization of Linear Systems [On-line]. Available:http://arxiv.org/abs/0801.3390.
    [89]Tuna S E. Conditions for synchronizability in arrays of coupled linear systems [J]. IEEE Transactions on Automatic Control,2009,54(10):2240~2416.
    [90]Wang J, Cheng D, Hu X. Consensus of multi-agent linear dynamic systems[J]. Asian J. Control,2008,10(2):144~155.
    [91]Hong Y, Gao L, Cheng D, et al. Lyapunov-based approach to multiagent systems with switching jointly connected inter connection [J]. IEEE Transactions on Auto-matic Control,2007,52(5):943~948.
    [92]Ji Z, Wang Z, Lin H. Wang Z. Interconnection topologies for multiagent coordination under leader-follower framework[J]. Automatica,2009,45(12):2857~2863.
    [93]Nedic A, Olshevsky A, Ozdaglar A, et al. On distributed averaging algorithms and quantization effects[J]. IEEE Transactions on Automatic Control,2009,54(11): 2506~2616.
    [94]Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems[C]. Proceedings of the IEEE,2007,95(1):215~233.
    [95]Qin J, Gao H, Zheng W. Second-order consensus for multi-agent systems with switching topology and communication delay [J]. Systems & Control Let-ters,2011,60(6):390~397.
    [96]Qin J, Zheng W, Gao H. Consensus of multiple second-order vehicles with a time-varying reference signal under directed topology[J]. Automatica,2011,47(9): 1983~1991.
    [97]Qu Z. Cooperative control of dynamical systems:applications to autonomous vehi-cles[M]. London:Springer Verlag,2009.
    [98]Ren W. On consensus algorithms for double-integrator dynamics [J]. IEEE Transac-tions on Automatic Control,2008,53(6):1503~1509.
    [99]Ren W, Beard R W. Communications and control engineering series, Distributed consensus in multi-vehicle cooperative control[M]. London:Springer-Verlag,2008.
    [100]Shen B, Wang Z, Hung Y S. Distributed consensus H-infinity filtering in sensor networks with multiple missing measurements:the finite-horizon case[J]. Automat-ica,2010,46(10):1682~1688.
    [101]Su Y, Huang J. Stability of a class of linear switching systems with applications to two consensus problems[J]. IEEE Transactions on Automatic Control,2012,57(6): 1420~1430.
    [102]Tuna S E. Synchronizing linear systems via partial-state coupling[J]. Automat-ica,2008,44(8):2179~2184.
    [103]Xu J, Li T, Xie L, et al. Dynamic consensus and formation:fixed and switching topologies[C]. In Proceedings of 18th IFAC world congress, Mi-lan, Italy,2011,9188~9193.
    [104]You K, Xie L. Coordination of discrete-time multi-agent systems via relative out-put feedback[J]. Internal Journal of Robust and Nonlinear Control,2011,21(13): 1587~1605.
    [105]You K, Xie L. Network topology and communication data rate for consensusabil-ity of discrete-time multi-agent systems[J]. IEEE Transactions on Automatic Con-trol,2011,56(10):2262~2275.
    [106]Hill D J, Maareels I M Y. Stability theory for differential/algebraic systems with ap-plication to power systems[J]. IEEE Trans. Circuits Syst.,1990,37(11):1416~1423.
    [107]Luenberger D G, Arbel A. Singular dynamic Leontief systems[J]. Economet-rica,1977,45(4):991~995.
    [108]Sastry S S, Desoer C A. Jump behavior of circuits and systems[J]. IEEE Trans. Circuits Syst.,1981,28(12):1109~1124.
    [109]Duan G R. Analysis and Design of Descriptor Linear Systems[M]. New York: Springer,2010.
    [110]Smith R J. Circuits, Devices and System[M]. New York:Wiley,1966.
    [111]Craig J J. Introduction to Robotics:Mechanices and Control[M]. New York: Addison-Wesley,1986.
    [112]Xu J X, Jia Q W, Lee T H. Adaptive robust control schemes for a class of nonlin-ear uncertain descriptor systems[J]. IEEE Trans. Circuits Syst. Ⅰ, Fundam. Theory Appl.,2000,47(6):957~962.
    [113]Lee L, Chen J L. Strictly positive real lemma and absolute stability for discrete-time descriptor systems[J]. IEEE Trans. Circuits Syst. Ⅰ, Fundam. Theory Appl.,2003,50(6):788~794.
    [114]Xu S Y, Lam J. New positive realness conditions for uncertain discrete descrip-tor systems:Analysis and synthesis[J]. IEEE Trans. Circuits Syst. Ⅰ:2004,51(9): 1897~1905.
    [115]Yang C Y, Zhang Q L, Lin Y P, et al. Positive realness and absolute stability problem of descriptor systems[J]. IEEE Trans. Circuits Syst. Ⅰ:2007,54(5):1142~1149.
    [116]Wong N, Chu C K. A fast passivity test for stable descriptor systems via Skew-Hamiltonian matrix pencil transformations [J]. IEEE Trans. Circuits Syst. Ⅰ: 2008,55(2):635~643.
    [117]Yang X R, Zhang X. Constrained regulation of linear continuous-time de-scriptor systems[C]. Proc.4th Int. Conf. Optimizaiton Control With Applica-tions,2009,561~571.
    [118]Zhang R Z, Yang X R, Zhang X. Fault-tolerant control for discrete de-scriptor linear systems with time delay[C]. Proc.21st Chinese Conf. Decision Contr.,2009,3788~3793.
    [119]Yang X R, Zhang R Z, Zhang X. Regulation of rectangular descriptor sys-tems with constrained states and controls[C]. Proc.22nd Chinese Conf. Decision Contr.,2010,1005-1010.
    [120]Zhang X, Yang X R, Liu Y. Reliable control of uncertain delayed discrete-time systems with SQC[C]. Proc.29th Chinese Control Conf.,2010,2029~2033.
    [121]Zhang L X, Cui N G, Liu M, et al. Asynchronous filtering of discrete-time switched linear systems with average dwell time[J]. IEEE Trans. Circuits Syst. I:2011,58(5): 1109~1118.
    [122]Liu M, Shi P, Zhang L X, et al. Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique [J]. IEEE Trans. Circuits Syst. I:2011,58(11):2755~2764.
    [123]Skelon R E, Iwasaki T, Grigoriadis K. A United Algebra Approach to Linear Control Design[M]. Bristol, PA:Taylor and Francis,1998.
    [124]Lin Z Y, Francis B, Maggiore M. Necessary and sufficient graphical conditions for formation control of unicycles[J]. IEEE Transactions on Automatic Con-trol,2005,50(1):121~127.
    [125]Yang X R, Liu G P. Necessary and Sufficient Consensus Conditions of Descriptor Multi-agent Systems[J]. IEEE Transactions on Circuits and Systems-I:2012,59(11): 2669~2677.
    [126]Godsil C, Royle G. Algebraic Graph Theory[M]. Berlin, Germany:Springer-Verlag,2001.
    [127]LaSalle J P. Some extensions of Lyapunov's second method[J]. IRE Trans. Circuit Theorem 7,1960,520~527.
    [128]Hale J K. Dynamical systems and stability [J]. J.Math. Anal. Appl.,1969,26:39~59.
    [129]Deriviere S, Aziz-Zlaoui M A, Estimation of Attractors and Synchronization of Generatized Lorenz systems[J]. Applications and Algorithms,2003,10(6):833~852.
    [130]Filippov A F, Differential equations with discontinuous right-hand side[J]. Amer. Math. Soc. Translations,1964,42(2):191-231.
    [131]Clarke F H, Ledyaev Y S, Stern R J, et al. Nonsmooth Analysis and Control The-ory [M]. Springer, NewYork,1998.
    [132]Shevitz D, paden B. Lyapunov Stability Theory of Nonsmooth systems[J]. IEEE Transactions on Automatic Control,1994,39(9):1910~1914.
    [133]Bacciotti A, ceragioli F. Stability and Stabilization of Discontinuous systems and Nonsmooth Lyapunov Functions. Esaim-COCV 4,1999,361~376.
    [134]Deriviere S, Aziz-Zlaoui M A. Estimation of Attractors and Synchronization of Generatized Lorenz systems[J]. Applications and Algorithms,2003,10(6):833~852.
    [135]Bacciotti A, ceragioli F. Nonsmooth Optimal Regulation and Discontinuous Stabi-lization[J]. Abstract and Applied Analysis,2003,20:1159~1195.
    [136]Bacciotti A, ceragioli F. Nonsmooth Lyapunov functions and Discontinuous Caratheodory Systems[J]. IFAC-NOLCOS, Stuttgart,2004,3:1115~1120.
    [137]Jorge Cortes. Discontinuous Dynamical Systems [J]. Control Sys-tems, Magzine, IEEE.2008,28(3):36~73.
    [138]Zhang Q L. Lyapunov Criteria for structural stability in descriptor systems [J]. Jour-nal of systems science and Mathematical Science,1994,14(2):117~120.
    [139]Takaba K, Morihira N, Katayama T. Systems & Control Letters,1995,24(1): 49~51.
    [140]Wu H S, Koichi Mizukami. Lyapunov stability theorem and robust control of uncer-tain descriptor systems[J]. International Journal of System Science,1995,26(10): 1981~1991.
    [141]Liang J R. Asymptotically stability and harmonic oscillation for singular nonlin-ear systems[J]. Journal of Mathematical Research and Exposition,2002,22(1): 141~146.
    [142]Qi Y W, Zhang X, Song G D. Analysis of uncertain singular bilinear systems based on passivity theorem[C]. Proceedings of the 27th Chinese Control Conference July 16-18,2008,134~137.
    [143]Feng Z S, Feng C Y. The invariance principle of singular nonlinear systems and its applications [C]. World Congress on Computer Science and Information Engineer-ing,2009,102~106.
    [144]Wei J M, Mu X W, Ma R. Stability of Discontinuous Nonlinear Singular Sys-tems [Online]. Journal of Systems Science and Complexity,2013,26:1~7.
    [145]Kunkel P, Mehrmann V. Differential-Algebraic Equations, Analysis and Numerical solution[M]. Zurich, Swizerland:EMS Publishing House,2006.
    [146]Brenan K E, Campbell S L, Petzold L. Numerical solution of initial-value problems in differential-algebraic equations [M]. North-Holland, New York (1989).
    [147]Rabier P, Rheinboldt W. Theoretical and Numerical Analysis of Differential-Alge-braic Equations[J]. Handbool of Numerical Analysis,2002, vol. VIII, edited by P. G. Ciarlet and J. L. Lions, Elsevier Science B.V.
    [148]Dayawansa W P, Martin C F. A Converse Lyapunov Theorem for a Class of Dy-namical Systems Which Undergo Switching[J]. IEEE Transactions on Automatic Control,1999,44(4):751~760.
    [149]Wicks M A, Peleties P, DeCarlo R A. Switched Controller Synthesis for the Quadratic Stabilization of a Pair of Unstable Linear Systems [J]. European Jour-nal of Control,1998,4:140~147.
    [150]Branicky M S. Multiple lyapunov functions and other analysis tools for switched and hybrid systems[J]. IEEE Transactions on Automatic Control,1998,43(4):475~482.
    [151]Zhao J, Spong M W. Hybrid control for global stabilization of the cart-pendulum system[J]. Automatica,2001,37:1941~1951.
    [152]Hespanha J P, Liberzon D, Angeli D, et al. Nonlinear norm-observability no-tions and stability of switched systems [J]. IEEE Transactions on Automatic Con-trol,2005,50(2):154~168.
    [153]Kim S, Campbell S A, Liu X Z. Stability of a class of linear switching systems with time delay[J]. IEEE Trans. Circuits and Syst.,2006,53:384~393.
    [154]Zhai G S, Lin H. Controller failure time analysis for symmetric H∞ control[J]. International Journal of Control,2004,77(6):598~605.
    [155]Lin H, Zhai G S, Antsaklis P J. Robust stability and disturbance attenuation anal-ysis of a class of networked control systems [C]. IEEE Conference on Decision and Control,2003,1182~1187.
    [156]Zhang L X, Shi P. H∞ filtering for a class of switched linear parameter varying systems [J]. International Journal of Systems Science,2011,42(5),781~788.
    [157]Geert Jan Olsder. On the existence of periodic behaviour of switched linear systems [J]. International Journal of Systems Science,2011,42(6):1035~1045.
    [158]Owens D H, Debeljkovic D L. Consistency and Lyapunov stability of linear de-scriptor systems:A geometric analysis[J]. IMA J. Math. Control & Informa-tion,1985,139~151.
    [159]Stephan Trenn. Distributional differential algebraic equations[M]. Ph. D. disser-tation, Institut fur Mathematik, Technische Universitat Ilmenau, Ilmenau, Ger-many,2009.
    [160]Liberzon D, Hespanha J P, Morse A S. Stability of switched systems:a Lie-algebraic condition[J]. Systems & Control Letters,1999,37:117~122.
    [161]Sun X, Dimirovski G M, Zhao J, Wang W. Exponential stability for switched delay systems based on average dwell time technique and Lyapunov function method[C]. Proc. of the 2006 American Control Conf.,2006.
    [162]Sun X, Wang D, Wang W, Yang G. Stability analysis and L2-gain of switched delay systems with stable and unstable subsystems[C]. Proc. of the 22nd IEEE Int. Symp. on Intelligent Control,2007.
    [163]Xie G, Wang L. Stabilization of switched linear systems with time-delay in detection of switching signal[J]. J. Math. Anal. Appl.,2005,305:277~290.
    [164]Berger T, Ilchmann A, Trenn S. The quasi-Weierstrass form for regular matrix pencils. Linear Algebra and its Applications,2012,436(10):4052-4069.
    [165]Linh Vu, Kristi A. Morgansen, Stability of time-delay feedback switched linear sys-tems[J]. IEEE Transactions on Automatic Control,2010,55(10):2385~2390.
    [166]Cai C, Mijanovic S. LMI-based stability analysis of linear hybrid systems with application to switched control of a refrigeration process [J]. Asian Journal of Con-trol,2012,14(1):12~22.
    [167]Zhang G, Xia Y, Shi P. New bounded real lemma for discrete-time singular sys-tems[J]. Automatica,2008,44:886~890.
    [168]Boukas E K. State output feedback control for stochastic hybrid systems:LMI approach[J]. Automatica,2006,42:183~188.
    [169]Xia Y, Jia Y.H∞ output feedback control of singular systems with time delay [J]. Control Theory and Applications,2003,20:323~328.
    [170]Yang R, Wang Y. Stability analysis and H∞ control design for a class of nonlinear time-delay systems[J]. Asian Journal of Control,2012,14(1):153~162.
    [171]Wang H S, Yung C F, Chang F R. Bounded real lemma and H∞ control for de-scriptor systems[C]. IEE Proceedings control Theory and Applications,1998,145: 316~322.
    [172]Xu S, Yang C. H∞ state feedback control for discrete singular systems [J]. IEEE Transactions on Automatic Control,2000,45:1405~1409.
    [173]Shi P, Boukas, E K, Agarwal K. Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay [J]. IEEE Transactions on Au-tomatic Control,1999,44(11):2139~2144.
    [174]Boukas E K, Liu Z K. Robust H∞ control of discrete-time Markovian jump lin-ear systems with mode-dependent time-delays [J]. IEEE Transactions on Automatic Control,2001,46(12):1918~1924.
    [175]Cao Y, Lam J. Robust H∞ control of uncertain Markovian jump systems with time-delay [J]. IEEE Transactions on Automatic Control,2000,45:77~83.
    [176]Kang Y, Zhang J F, Ge S S. Robust output feedback H∞ control of uncertain Markovian jump systems with mode-dependent time-delays [J]. International Jour-nal of Control,2008,81(1):43~61.
    [177]Xiong J, Lam J, Gao H, et al. On robust stabilization of Markovian jump systems with uncertain switching probabilities [J]. Automatica,2005,41:897~903.
    [178]Karan M, Shi P, Kaya CY. Transition probability bounds for the stochastic stabil-ity robustness of continuous-and discrete-time Markovian jump linear systems[J]. Automatica,2006,42:2159~2168.
    [179]Boukas E K, Shi P. Stochastic stability and guaranteed cost control of discrete-time uncertain systems with Markovian jumping parameters [J]. International Journal of Robust and Nonlinear Control,1998,8(13):1155~1167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700