用户名: 密码: 验证码:
基于GIS的汶川地震地质灾害危险性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震引发了大量的地质灾害,对人民的生产、生活造成了巨大的危害和损失。所以对地质灾害进行危险性评价并进行地质灾害危险性区划,对于提高警惕,避开地质灾害高危区或者加强高危区的防范,减少地质灾害造成的危害与损失具有重大的现实意义。
     地质灾害的发生与地质环境条件密切相关,它们是地质灾害发生的物质基础。基于地质灾害的空间分布规律,统计分析地形地貌、地质构造等地质环境条件与地质灾害的空间相关性。利用ArcGIS的空间分析功能和图解建模方式构建地质灾害敏感性与危险性评价模型。围绕数据获取、相关性分析、评价模型建立与区划等问题,基于GIS建立地质环境条件因子提取、敏感性评价、危险性区划等流程并制定技术路线。
     地震诱发的地质灾害类型主要为崩塌与滑坡,本文以二者为研究对象,研究内容如下:
     地质环境条件因子的提取与分析。以“5.12”汶川地震重灾地区——汶川为例,收集了研究区1:50000比例尺DEM、遥感影像、地质构造、降雨等基础地理资料。根据地震地质灾害
     空间分布规律与特征,结合统计曲线特征与相关性程度,筛选出影响因子大,冗余度低的因子作为地质灾害评价因素。在地质灾害与地质环境条件的提取、量化与空间表达的基础上建立地质灾害评价空间数据库。
     地震地质灾害敏感性区划与分析。总结了国内外地质灾害评价中的的研究方法与现状,基于GIS建立地质灾害敏感性评价模型,对比分析不同模型的优势与精度。采用制图综合对地质灾害敏感性进行区划与制图,并分析成因。
     地震地质灾害诱发因素分析及危险性区划。地质灾害的发生不仅与地震有关,还与降雨、人为活动等因素相关。统计分析三者与地质灾害的空间分布,进行汶川地震地质灾害的危险性区划。
     通过对以上内容的研究,取得如下研究成果:
     基于地质灾害空间分布规律与特征,分别统计分析了每个地质环境条件因子与地质灾害的相关性。地质灾害的高发区分别为:高程1.2-2.4km之间,坡度45°-60°之间,地形起伏度在400-500m之间,千枚岩与岩浆岩中地质灾害分布广泛。
     对比分析了两种地质灾害敏感评价模型。结果表明:信息量模型操作简单,易于判断因子的影响程度,评价精度低;逻辑回归模型具有筛选变量的能力,评价精度较高,计算过程较为复杂。
     基于逻辑回归模型进行敏感性评价与综合制图,结果表明:地质灾害极高敏感区占8.9%,该区处于元古界较硬的花岗岩层、构造发育、地形切割强烈、山高坡陡、农耕、采矿、修筑公路、土地开发利用等人类工程活动强度大,地质灾害发育密度大。地质灾害高敏感区占16%,该区位于志留系茂县群千枚岩分布较多的地层,地震断层破碎带发育,修建道路切割坡脚,形成大量的有效临空面,地质灾害发育密度较大。地质灾害中敏感区占19%,低敏感区占22.2%,该区由于远离河流和道路,所以坡度变化较小,地质灾害发育密度较小。地质灾害不敏感区占33.9%,该区地质构造完整,主要为三叠系须家河组砂岩夹页岩,地势陡峻但人居分散,人口密度小,人类工程经济活动强度小,地质灾害造成的危害很小。根据以上区划结果,要加强地质灾害极高敏感区的环境保护与防护,减少地质灾害的发生
     统计了地震烈度、年降雨量与道路与地质灾害的空间分布,初步从宏观角度分析了三者对地质灾害的致灾作用。基于敏感性区划,尝试分析了汶川地震地质灾害的危险性空间区划。结果表明:地质灾害极高危险区位于岷江与二河交汇处,地质灾害危险区划与敏感性区划具有很好的对应关系。
The earthquake triggers a large number of geological disaster(landslide, rockfall and so on) which caused tremendous damage and loss in recent years. It is necessory to evaluate the geological disaster hazard to alarm the dangrous, and keep people away from the hazzrd area or take some measures, which to reduce the harm caused by geological disasters.
     Environment conditions are relative to geological disaster, which are the material basis of geological disaster. Based on the geological disaster distribution character, this paper use frequency analysis method to analyse the spatial relationship between them. Using spatial analysis and graphical modeling function of ArcGIS software to evaluate the geological disaster susceptibility and hazard assessment. Basee on GIS make a workflow about data acquisition, correlation analysis, evaluation model and zoning issues.
     The types of geological disaster caused by earthquake including landsldie and rockfall mainly, this paper take them as geological disaster to study the geological disaster hazard. It conatins the following part:
     conditioning factors extraction and analysis. Take wenchuan district which attacked heavily during the "5.12" Wenchuan earthquake as study area. Based on the geological disaster investigation, built the geological disaster inventory,1:50000 DEM, remote sensing images, lithological map, and other basic geographic information data. According to the spatial distribution of geological disaster character, this paper combine with statistical correlation curve and select the conditioning factors with strong power and low redundancy as the geological disaster hazard assessment factors. After spatializing them, build up a spatial database for geological hazard assessment finally.
     Goelogical disaster susceptibility analysis. First review the geological disaster assessment methods and recent development both domestic and abroad. then. set up two models based on GIS. assess the susceptibility of the two methods, and make the susceptibility map.
     Earthquake induced geological hazard assessment and analysis. geological disaster not only associate with earthquakes, but also related with rainfall, human activities. With statistical method to analyse those triggering factors'relationship with geological disasters, then establish the weighd based on information theory. Give the zoning of geological disaster hazard and mapping the area.
     On the above contents, this study get achieved the following result:
     It based on spatial distribution of geological hazards and characteristics, statistical analysis of geological environmental conditions of each factor and the correlation of geological disasters. The main geological environment between high incidence of geological disasters factors as:elevation between 1.2~2.4km, slope between 45°~60°, relief amplitude between 0.4~0.5km, Phyllite and magmatic rocks have more geological disasters.
     Compare between the susceptibility model, finding that:the information model is simple and easy to evaluate the weight of those factors, while the logistic regression model has the ability to select factorsis with complicated process. However, the later model has higher accuracy.
     The susceptibility result indicates that:the most susceptibility class covered 8.9%, this area contains hard proterozoic granite lithology, structural development, terrain cutting strongly, high mountains and steep slopes, and frequent human engineering activities, which caused high geological disasters density. The median class covered 16%, this group filled with Silurian Maoxian phyllite, due to the slope by the road development caused a large number of effective free surface. The normal class covered 19% and low with 22.2%, whoes groups are far away from rivers, roads and low topographic relief. The extremely low class covered 33.9%, whose group including Wolong Nature Reserve, with Complete the geologic structure, mainly Triassic sandstone Xujiahe shale, steep terrain but little human settlement, and low-intensity of the population density, economic activities and human engineering. So we have to strengthen the environment protection and safety of highset susceptibility area.
     Select the seismic intensity, rainfall and human activity as the Disastrous factors for Hazard assessment. Statistics of the three factors'spatial distribution with disasters, and their impact from macro perspective. Based on the susceptibility division, trying to analyze the earthquake hazard distribution. The results showed that:the most dangerous area located at junction of Minjiang river and Second river, thehazard area has good correspondence with the susceptibility division.
引文
[1]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报.2008,27(012):2585-2592.
    [2]刘凤民,张立海,刘海青等.中国地震次生地质灾害危险性评价[J].地质力学学报.2006,12(002):127-131.
    [3]唐川,朱静.GIS支持下的地震诱发滑坡危险区预测研究[J].地震研究.2001,24(001):73-81.
    [4]陈晓利,叶洪,程菊红.GIS技术在区域地震滑坡危险性预测中的应用—以龙陵地震滑坡为例[J].工程地质学报.2006,14(3):333-338.
    [5]秦续文,杨金中,张志等.汶川地震灾区航天遥感应急调查[M].北京:科学出版社,2009.
    [6]国务院新闻办和国家抗震救灾总指挥部.5.12汶川地震答记者问[Z].2008:2008.
    [7]李忠生.国内外地震滑坡灾害研究综述[J].灾害学.2003,18(004):64-70.
    [8]刘凤民,张立海,刘海青等.中国地震次生地质灾害危险性评价[J].地质力学学报.2006,12(002):127-131.
    [9]李光,姚大全,张有林等.汶川8.0级地震崩塌,滑坡的发育特点[J].防灾科技学院学报.2008,10(003):131-134.
    [10]李娜.地质灾害危险性评估技术与防治规划编制及防治工程质量控制要点实用手册[M].银川:宁夏大地音像出版社,2005.
    [11]石菊松.基于遥感和地理信息系统的滑坡风险评估关键技术研究[D].中国地质科学院,2008.
    [12]孔纪名,崔云,田述军等.地震碎裂滑动型滑坡发育特点及典型实例分析[J].四川大学学报:工程科学版.2009(003):119-124.
    [13]熊德清,四川省理县5.12汶川地震诱发地质灾害应急排查与危险性评价[D].成都理工大学,2009.
    [14]于廷新.四川地震灾区陈家山坪崩塌稳定性评价及治理研究[D].长春:吉林大学,2010.
    [15]胡厚田.崩塌与落石[M].北京:中国铁道出版社,1989.
    [16]百度百科.灾害[Z].2010:2010.
    [17]国土资源部.地质灾害防治管理办法[S].1999.
    [18]Lee C T, Huang C C, Lee J F, et al. Statistical approach to earthquake-induced landslide susceptibility[J]. Engineering Geology.2008,100(1-2):43-58.
    [19]李媛.区域降雨型滑坡预报预警方法研究[D].北京:中国地质大学(北京),2005.
    [20]Ko Ko C, Flentje P, Chowdhury R. Landslides qualitative hazard and risk assessment method and its reliability[J]. Bulletin of Engineering Geology and the Environment.2004,63(2):149-165.
    [21]Ags. Landslide risk management concepts and guidelines[J]. Australian Geomechanics Society(AGS), Sub-committee on landslide risk management.2000.
    [22]倪万魁.铜川南滑坡危险性综合评价[J].西安地质学院学报.1996,18(3):63-68.
    [23]张梁,张业成,罗元华.地质灾害灾情评估理论与实践[J].北京:地质出版社.1998.
    [24]楚敬龙,杜加强,滕彦国等.基于GIS的重庆市万州区滑坡灾害危险性评价[J].地质通报.2008,27(011):1875-1881.
    [25]Castellanos Abella E A. Multi-scale landslide risk assessment in Cuba[D]. Amsterdam:International Institute for Geo-information Science and Earth Observation, Enschede, The Netherlands(ITC),2008.
    [26]Cross M. Landslide susceptibility mapping using the Matrix Assessment Approach:a Derbyshire case study[J]. Mapping in engineering geology.2002,15:247-261.
    [27]Michael-Leiba M, Scott G, Baynes F, et al. Quantitative landslide risk assessment of Cairns, Australia[J]. Geotechnical Engineering-Mee.2001:149-154.
    [28]马志江,陈汉林,杨树锋等.应用简单变量统计模型预测庆元地区滑坡危险性[J].山地学报.2004,22(001):104-109.
    [29]张春山,张业成,张立海.中国崩塌,滑坡,泥石流灾害危险性评价[J].地质力学学报.2004,10(001):27-32.
    [30]石菊松,张永双,董诚等.基于GIS技术的巴东新城区滑坡灾害危险性区划[J].地球学报.2005,26(003):275-282.
    [31]朱良峰,吴信才,殷坤龙等.基于信息量模型的中国滑坡灾害风险区划研究[J].地球科学与环境学报.2004,26(003):52-56.
    [32]杨军.广西梧州市万秀区区域降雨型滑坡危险性区划及降雨临界值研究[D].桂林:桂林工学院,2007.
    [33]姜琪文,许强,何政伟.基于SVM多类分类的滑坡区域危险性评价方法研究[J].地质灾害与环境保护.2005,16(003):328-330.
    [34]傅文杰.GIS支持下基于支持向量机的滑坡危险性评价[J].地理科学.2008,28(006):838-841.
    [35]尹紫红.地震作用下的滑坡稳定性分析[D].成都:西南交通大学,2006.
    [36]Chowdhury R N. Special Lecture:Analysis methods for assessing landslide risk-recent developments[C].1988.
    [37]汪华斌,吴树仁.长江三峡库区滑坡灾害危险性评价[J].长江流域资源与环境.1998,7(002):186-192.
    [38]Gupta R P, Joshi B C. Landslide hazard zoning using the GIS approach--A case study from the Ramganga catchment, Himalayas[J]. Engineering Geology.1990,28(1-2):119-131.
    [39]Evans N C. Natural terrain landslide study:Preliminary assessment of the influence of rainfall on natural terrain landslide initiation[J]. Geotechnical Engineering Office, Hong Kong, Discussion Note DN. 1997,1:97.
    [40]何淑军.陕西宝鸡市渭滨区地质灾害风险评估研究[D].北京:中国地质科学院,2009.
    [41]姜云,王兰生.地理信息系统在山区城市地面岩体稳定性管理与控制中的应用[J].地质灾害与环境保护.1994,5(001):32-38.
    [42]金晓媚,刘金韬.重庆市崩塌和滑坡的危险性评价[J].灾害学.1999,14(001):76-79.
    [43]白世彪,王建,闾国年等.基于GIS和双变量分析模型的三峡库区滑坡灾害易发性制图[J].山地学报.2007,25(001):85-92.
    [44]许冲,戴福初,姚鑫等.基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J].工程地质学报.2010,18(1):15-26.
    [45]四川省广汉地质工程勘察院.四川省阿坝藏族羌族自治州汶川县地质灾害调查与区划报告[R].,2005.
    [46]程思,易加强.四川省汶川县地质灾害的成因及防治对策[J].地质灾害与环境保护.2007,18(004):1-6.
    [47]四川省广汉地质工程勘察院.四川省5.12特大地震后汶川县城规划区地质灾害危险性评估报告[R].2008.
    [48]胡国超.遥感技术在“5.12”地震重灾区汶川县地质灾害调查中的应用[D].成都理工大学,2009.
    [49]陶舒.汶川地震滑坡遥感信息提取及灾害危险性评价研究[D].北京:首都师范大学,2009.
    [50]刘应辉.汶川地震区都汶公路沿线崩塌滑坡灾害特征与评价[D].兰州大学,2009.
    [51]刘惠军,陈倩,魏昌利等.“5.12”大地震前后汶川县地质灾害发育研究[J].地质灾害与环境保护.2009(002):112-115.
    (52]杜军,杨青华,严嘉等.基于GIS与信息量模型的汶川次生地质灾害危险性评价[J].地球科学:中国地质大学学报.2010(002):324-330.
    [53]周建伟.汶川县城地质灾害危险性评价研究[D].成都:成都理工大学,2010.
    [54]唐辉明,李德威,胡新丽.龙山门断裂带活动特征与工程区域地壳稳定性评价理论[J].工程地质学报.2009,17(002):145-152.
    [55]李勇,黄润秋,周荣军等.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报.2009,17(001):3-18.
    (56]邓起东.关于四川汶川8.0级地震的思考[J].地震地质.2008,30(004):811-827.
    [57]李勇,孙爱珍.龙门山造山带构造地层学研究[J].地层学杂志.2000,24(003):201-206.
    [58]乔彦肖.汶川地震地质灾害发育特点及动因机制分析[J].地震地质.2008,36(3):736-741.
    [59]韩金良,吴树仁,何淑军等.5.12汶川8级地震次生地质灾害的基本特征及其形成机制浅析[J].地学前缘.2009,16(003):306-326.
    [60]四川省地理研究所.1976年5月29日龙陵地震滑坡调查报告[R].,1976.
    [61]Clerici A, Perego S, Tellini C, et al. A procedure for landslide susceptibility zonation by the conditional analysis method*1[J].Geomorphology.2002,48(4):349-364.
    [62]黄润秋,李为乐.汶川地震触发崩塌滑坡数量及其密度特征分析[J].地质灾害与环境保护.2009,20(3):1-7.
    [63]王亚强,王兰民,张小曳.GIS支持下的黄土高原地震滑坡区划研究[J].地理科学.2004,24(002):170-176.
    [64]张帅.水电工程地质灾害风险评价技术研究[D].成都:成都理工大学,2010.
    [65]李晓慧.宝成铁路凤线段地质灾害危险性评价[D].北京:中国地质大学(北京),2010.
    [66]王利肖.基于MapGIS的哀牢山区域滑坡风险评价研究[D].北京:中国地质大学(北京),2010.
    [67]郭芳芳,杨农,孟晖等.地形起伏度和坡度分析在区域滑坡灾害评价中的应用[J].中国地质.2008,324(01):131-143.
    [68]张建强,范建容,严冬等.地震诱发崩塌滑坡敏感性评价——以北川县为例[J].四川大学学报(工程科学版).2009,41(3):140-145.
    [69]熊德清.四川省理县5.12汶川地震诱发地质灾害应急排查与危险性评价[D].成都理工大学,2009.
    [70]李军,周成虎.基于栅格GIS滑坡风险评价方法中格网大小选取分析[J].遥感学报.2003,7(2):86-92.
    [71]赵纪生,魏景芝.汶川8.0级地震滑坡,崩塌机制[J].2008,3(4):379-383.
    [72]周启鸣,刘学军.数字地形分析[M].北京:科学出版社,2006.
    [73]童立强,祁生文,刘春玲.喜马拉雅山东南地区地质灾害发育规律初步研究[J].工程地质学报.2007,6(6):721-729.
    [74]魏从玲.基于GIS的巫山县滑坡地质灾害危险性评价[D].西南大学:,2008.
    [75]Deffontaines B,Lee J C,Angelier J,et al.New geomorphic data on the active Taiwan orogen:A multisource approach[J].Journal of Geophysical Research.1994,99(B10):202-243.
    [76]Burbank D W.Characteristic size of relief[J].Nature.1992,359(6395):483-484.
    [77]Fielding E,Isacks B,Barazangi M,et al.How flat is Tibet?[J].Geology.1994,22(2):163.
    [78]Kuhni A,Pfiffner O A.The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure:topographic analysis from a 250-m DEM[J].Geomorphology.2001,41(4):285-307.
    [79]张会平,刘少峰,孙亚平等.基丁SRTM-DEM区域地形起伏的获取及应用[J].国土资源遥感.2006(001):31-35.
    [80]刘新华,杨勤科,汤国安.中国地形起伏度的提取及在水士流失定量评价中的应用[J].水土保持通报.2001(01):57-59.
    [81]涂汉明,刘振东.中国地势起伏度研究[J].测绘学报.1991(04):311-319.
    [82]郎玲玲,程维明,朱启疆等.多尺度DEM提取地势起伏度的对比分析——以福建低山丘陵区为例[J].地球信息科学.2007,9(006):1-6.
    [83]工岩,刘少峰.基于DEM的青海贵德地区地形起伏度的研究[J].地质通报.2008,v.27;No.163(12):2117-2121.
    [84]刘岁海,刘爱平.四川省康定县滑坡灾害发育特征与形成条件[J].中国地质灾害与防治学报.2006,17(003):27-31.
    [85]张艳玲.汶川地震区地质灾害易发性快速区划与制图[D].中国地质大学(北京),2009.
    [86]傅卫东.地质灾害易发性区划研究与防治对策——以南靖县为例[D].北京:中国地质大学,2005.
    [87]沈芳.山区流域地质环境评价与地质灾害预测的GIS系[D].成都:成都理工大学,2000.
    [88]郭亚军,易平涛.线性无量纲化方法的性质分析[J].统计研究.2008,25(002):93-100.
    [89]叶宗裕.关于多指标综合评价中指标正向化和无量纲化方法的选择[J].浙江统计.2003,4(4):24-25.
    [90]乔建平.低山区滑坡危险度区划与预测研究:以三峡库区开县为示范[M].四川大学出版社,2009.
    [91]百度百科.地震[Z].2010:2010-10-28.
    [92]邓霞,董晓华,薄会娟.基于SRTM DEM的月降雨量空间插值研究[J].
    [93]朱求安,张万昌,赵登忠.基于PRISM和泰森多边形的地形要素日降水量空间插值研究[J].地理科学.2005,25(002):233-238.
    [94]汤懋苍.祁连山区降水的地理分布特征[J].地理学报.1985,40(4):323-332.
    [95]宋丽琼,田原,邬伦等.日降水量的空间插值方法与应用对比分析——以深圳市为例[J].地球信息科学.2008,10(005):566-572.
    [96]汤国安,杨听.ArcGIS地理信息系统空间分析实验教程[M].科学出版社,2006.
    [97]张仁铎.空间变异理论及应用[M].科学出版社,2005.
    [98]Parajka J. Mapping long-term mean annual precipitation in Slovakia using geostatistical procedures[C].1999.
    [99]Huang Y, Wong P, Gedeon T. Spatial interpolation using fuzzy reasoning and genetic algorithms[J]. Journal of Geographic Information and Decision Analysis.1998,2(2):204-214.
    [100]石朋,芮孝芳.降雨空间插值方法的比较与改进[J].河海大学学报:自然科学版.2005,33(004):361-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700