用户名: 密码: 验证码:
软土地基上新型防波堤结构的稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着港口规模的扩大,新建的防波堤工程离岸越来越远,波浪条件变得更加恶劣,地基多为软黏土。传统重力式防波堤已不适用于软土地基,半圆型防波堤、大圆筒防波堤和箱筒型基础防波堤是适用于软土地基的新型防波堤。然而,新型防波堤的设计理论远落后于工程实践,尤其是箱筒型基础防波堤,其在波浪荷载作用下的承载机理、破坏模式尚不明确,在使用期的稳定性分析方法尚无规范或标准可循。另外,考虑软基循环弱化效应时新型防波堤结构的稳定性计算方法尚需完善。为此,本文结合实际工程,对软基上新型防波堤的稳定性分析开展了一系列的研究工作,主要内容和结论如下:
     1.建立了箱筒型基础新型防波堤稳定性分析的三维弹塑性有限元模型,建议了四种结构稳定性判别标准,通过分析极限状态下结构位移场的分布,得出这种新型防波堤的失稳模式为绕基础筒底以下某点发生转动失稳。研究了箱筒型基础防波堤结构上的土压力分布性状,根据箱筒型基础防波堤的位移模式,将土压力分为主动、被动和静止3个区域,建议了不同区域土压力的简化计算方法。
     2.在大型通用有限元软件ABAQUS平台上,通过二次开发,将软黏土的循环强度与D-P屈服准则相结合,基于拟静力分析建立了波浪循环作用下考虑软土地基弱化效应的大型海岸建筑物的稳定性计算模型;在相关动三轴试验数据的基础上整理出了天津港软黏土的循环强度曲线。
     3.在有限元方法计算得出的箱筒型基础防波堤极限状态下结构运动模式的基础上,并考虑箱筒型基础防波堤的空间几何特性、受力特点、极限状态转动点的位置等因素,建立了箱筒型基础防波堤稳定性计算的极限平衡法,通过与有限元结果对比,相互验证了正确性,与有限元法相比,极限平衡法计算速度快。
     4.为便于工程设计人员应用,在有限元法和极限平衡法的基础上,建立了基于重力式结构稳定性验算模式的箱筒型基础防波堤抗倾稳定性分析简化模型。此模型不但简单,而且具有很高的精度;同时建立了抗滑稳定性简化计算模型;结合箱筒型基础防波堤的空间几何特性和受力特点,根据经典地基承载力理论建立了箱筒型基础防波堤竖向承载力的简化计算模型。
     5.采用Lanczos法对箱筒型基础防波堤结构和地基相互作用系统进行了模态分析,采用三维弹塑性显式动力有限元法对其在波浪循环荷载下的动力特性进行了分析,建立了箱筒型基础防波堤动力失稳判别方法。
With the development of ports in China, the new breakwaters are built farther and farther from shore, where soft clay constitutes the majority of the foundations. The wave load in this area is much more powerful than that in the shallow-water area. Under this condition, conventional gravity structures are not suitable for soft-clay foundation and the semicircular breakwater, the large cylindrical breakwater and the box and bucket foundations breakwater may be good choices. However, the design theories for these three new type breakwaters are far from engineering practising, especially those for the box and bucket foundations breakwater because its working mechanism and failure pattern remain unclear. There is no rule to follow for analyzing the stability of the box and bucket foundations breakwater. Moreover, the stability analysis method for new type breakwaters, in which the cyclic weakening effect of soft-clay foundation is considered, still needs improving. Therefore, in this thesis paper, a series of research work have been carried out on the stability analysis of new type breakwaters, in combination with engineering practices. The main contents and conclusions are as follows:
     1. A 3D elastic-plastic finite element model was established for stability analysis of the box and bucket foundations breakwater. Furthermore, four criterions to judge the stability of this new structure were proposed. Based on the displacement field of the structure in a critical state, the instability mode can be concluded as the box and bucket foundations breakwater rotating around a point below its foundation base. Also, earth pressure on box and bucket foundations breakwater was studied. According to the displacement mode of the box and bucket foundations breakwater, the earth pressure distribution is divided into three regions, i.e., active, passive and static regions. Simplified calculation methods of earth pressures for different regions are suggested.
     2. A quasi-static finite element method for stability analysis of the large coastal structure considering the cyclic weakening effect of soft-clay foundation under wave load was developed by combining the concept of cyclic shear strength with D-P yield criterion. Then the proposed method was numerically implemented in the framework of the general-purpose FEM software ABAQUS. The cyclic shear strength curve for soft clay of Tianjin port was concluded from results of related dynamic triaxial tests.
     3. On the basis of motion mode of the box and bucket foundations breakwater in critical state calculated by finite element method, a critical equilibrium method was established in consideration of the structure’s geometry, force characteristics and rotation point position. Compared with finite element method, the critical equilibrium method was consistent in calculation results. But the critical equilibrium method has faster calculation speed.
     4. For the purpose of engineering application, a simplified calculation method with high accuracy for anti-overturning analysis is presented here. This method is based on the gravity structure stability checking mode, finite element method and the critical equilibrium method. Moreover, a simplified calculation method for anti-sliding analysis was established. Considering the stucture’s geometry and force characteristics, a simplified method for vertical bearing capacity calculation, based on classical bearing capacity theories, was established.
     5. Modal analysis on the interaction between the box and bucket foundations breakwater and the foundation was performed by applying the Lanczos method. Dynamic characteristics of the box and bucket foundations breakwater were analyzed by using a 3D dynamic explicit elastic-plastic finite element method. Then, criterions to judge the dynamic stability were suggested.
引文
[1]范期锦,李乃扬,长江口二期工程北导堤局部破坏的原因及对策,中国港湾建设,2004,(2):1~8
    [2] Yan SW, Liu R, Fan QJ, et al, Stability of the guiding dike in Yangtze estuary under the wave load, China Ocean Engineering, 2005, 19(4): 659~670
    [3]中交第四航务工程勘察设计院,长江口深水航道治理工程大圆筒结构试验段工程“威马逊”台风后失稳调查分析报告,2002
    [4]彭增亮,箱筒型基础结构气浮拖航的稳性计算,中国港湾建设,2007,(1):15~19
    [5]吴凤亮,李伟,箱筒型基础防波堤结构的沉降量分析,国防交通工程与技术,2006,(4):39~42
    [6]天津港(集团)有限公司,插入式箱筒型基础防波堤结构研究及应用,2004
    [7]刘欣,软土地基上的新型防波堤结构研究,工程硕士学位论文,天津大学,2006
    [8]王元战,龚薇,及春宁等,基于粘性流模型的筒型基础防波堤波浪力数值分析,海洋工程,2008,26(3):38~43,77
    [9]中华人民共和国交通部,JTJ213-98《海港水文规范》,中华人民共和国行业标准,北京:人民交通出版社,1998
    [10]刘建起,陈宝珠,沉入式圆筒结构内力实验研究,港工技术,2001,(3)
    [11]陈福全,龚晓南,竺存宏,大直径圆筒码头结构土压力性状模型试验,岩土工程学报,2002,24(1):72~75
    [12]秦崇仁等,砂质底床上沉入式大直径圆筒结构施工期稳定性的实验研究,中国港湾建设,2001,(3):7~12
    [13]天津大学建工学院,大直径薄壁圆筒结构的力学机理研究及工程应用—专题研究报告之三:大直径薄壁圆筒结构物模试验与成果分析,2004
    [14]王广德,李颖,张凤珍等,沉入粘土中的大圆筒筒内外土压力分布规律及计算方法,水道港口,2002,23(1):16~22
    [15]顾培英,王五平,大圆筒码头抗震试验研究,地震工程与工程振动,2003,23(2):118~122
    [16]叶国良等,大直径钢筋混凝土圆筒振沉试验结果分析,港工技术,2003,(1):46~48
    [17] Kascachek GD, Wanzakov OM, Interaction between regular wave and circular breakwaters, ASCE, 1971
    [18] Bai ZG, Zhou XR, Sun KL, et al, Numerical model of wave forces on continuous cylinder structures, Transactions of Tianjin University, 2001, (2): 71~75
    [19]李世森,张伟,秦崇仁,大直径圆筒结构上波浪力的数值模拟与实验研究,中国港湾建设,2003,(2):1~16
    [20]刘海笑,王仲捷,结构—波浪—海床耦合系统中大圆筒结构的波压力响应,水利学报,2003,(4):67~73
    [21]刘建起,陈宝珠,浅沉式大直径圆筒结构稳定性计算,天津大学学报,1994,27(4):460~467
    [22]周锡礽,钱荣,孙克俐,波浪荷载作用下深插式大直径圆柱壳结构的解析方法及实验,天津大学学报,2004,37(4):283~257
    [23]王元战,迟丽华,考虑土体竖向剪切刚度的大直径圆筒结构变位计算方法,水运工程,1996,(12):1~5
    [24]王元战,王海龙,付瑞清,沉入式大直径圆筒码头稳定性计算方法研究,岩土工程学报,2002,24(4):417~420
    [25]王元战,董少伟,王玉红,沉入式大圆筒结构入土深度计算方法研究,水利学报,2004,(4):96~100
    [26]王元战,华蕾娜,祝振宇,软土地基条件下大型圆筒海岸结构稳定性计算方法,岩土力学,2005,26(1):41~45
    [27]邱驹,港工建筑物,天津:天津大学出版社,2002
    [28] American Petroleum Institute, Recommended practice for planning I, Designing and Constructing Fixed Offshore Platforms, API Publishing Services: Washington, D. C., 2000
    [29] Luan MT, Fan QL, Numerical analyses of bearing capacity of deep-embedded large-diameter cylindrical structure on soft ground against lateral loads, China Ocean Engineering, 2006, 20(4): 623~634
    [30]范庆来,栾茂田,杨庆,软基上沉入式大圆筒结构的水平承载力分析,岩土力学,2004,25(2):191~195
    [31]王乐芹,周锡礽,张伟,软粘土中插入式大直径薄壁圆筒结构的一种极限状态分析模型,海洋技术,2005,24(1):95~100
    [32]段旭东,弹性结构体系的多子域边界单元法及其与有限单元法的耦合分析,硕士学位论文,天津大学,1991
    [33]黄燕,大直径圆柱薄壳结构系统的BEM-FEM耦合分析与程序设计,硕士学位论文,天津大学,1994
    [34]王晖,圆柱形薄壳与多介质体耦合效应的等效有效单元法分析,硕士学位论文,天津大学,1994
    [35]孙克俐,插入式圆柱壳墩式结构与土体间的耦合分析,博士学位论文,天津大学,1999
    [36]潘厚志,天然软土与深埋结构相互作用的数值模拟方法,博士学位论文,天津大学,2000
    [37]张建辉,插入式大直径圆筒结构模型试验研究与数值模拟,博士后出站报告,天津大学,2002
    [38] Wang YZ, Zhu ZY, Zhou ZR, Dynamic reponse analysis for embedded large-cylinder breakwaters under wave excitation, China Ocean Engineering, 2004, 18(4): 585~594
    [39]祝振宇,大直径圆筒防波堤在冲击荷载下的动力响应,硕士学位论文,天津大学,2003
    [40]孟庆文,王元战,大直径圆筒结构与土相互作用的接触面单元—弹性非线性单元耦合分析,中国港湾建设,1999,(2):1~5
    [41]孟庆文,大直径圆筒结构与土相互作用的接触面单元—弹性非线性单元耦合分析,硕士学位论文,天津大学,1997
    [42]陈福全,龚晓南,大直径圆筒码头结构的有限元分析,水利水运工程学报,2001,(4):37~40
    [43]王刚,陈杨,张建民,大圆筒结构倾覆稳定分析的有限元法,岩土力学,2006, 27(2):238~241
    [44]范庆来,软土地基上深埋式大圆筒结构稳定性研究,博士学位论文,大连理工大学,2007
    [45]范庆来,栾茂田,杨庆等,考虑循环软化效应的软基上深埋大圆筒结构承载力分析,大连理工大学学报,2006,46(5):702~706
    [46]王世水,唐云,刘海笑,波浪作用下沉入式大圆筒结构与海床土耦合系统的动力分析,港工技术,2004,(3):10~12
    [47] Tanimoto K, Takahashi S, Japanese experiences on composite breakwaters, Workshop on Wave Barriers in Deepwaters, Yokosuka, Japan, 1994, 1~22
    [48] Xie SL, Wave force on submerged semi-circular breakwater and similar structures, China Ocean Engineering, 1999, 13(1): 63~72
    [49]谢世楞,淹没情况下半圆型导堤上的波浪力,港工技术,1998,2:1~5
    [50]袁德奎,陶建华,半圆型防波堤波浪力的计算方法,中国港湾建设,2002,2:11~15
    [51]郭科,李梅英,半圆型防波堤试验研究,中国港湾建设,2000,6:27~30
    [52]佟德胜,郭科,曲淑媛,长江口半圆型沉箱导堤试验研究,中国港湾建设,2006,2:40~46
    [53] Yauhara K, Postcyclic undrained strength for cohesive soils, Journal of Geotechnical Engineering, ASCE, 1994, 120(11): 1961~1979
    [54] Andersen KH, Pool JH, Brown SF, et al, Cyclic and static laboratory tests on drammen clay, Journal of the Geotechnical Engineering Division, ASCE, 1980, 106(5): 499~529
    [55] Andersen KH, Kleven A, Heien D, Bearing capacity for foundation with cyclic loads, Journal of the Geotechnical Engineering Division, ASCE, 1988, 114(5): 540~555
    [56] Matsui T, Cyclic stress-strain history and shear characteristics of clays, Journal of Geotechnical Engineering, ASCE, 1980, 106(10):1101~1120
    [57] Matsui T, Bahr MA, Abe N, Estimation of shear characteristics degradation and stress-strain relationship of saturated days after cyclic loading, Soils and Foundations, 1992, 32(1): 161~172
    [58] Hyodo M, Hyde A, Yamamoto Y, et al, Cyclic shear strength of undisturbed and remoulded marine clays, Soils and Foundations, JGS, 1999, 39(2): 45~58
    [59]周建,龚晓南,循环荷载作用下饱和软黏土应变软化研究,土木工程学报,2000,33(5):75~78
    [60]王淑云,楼志刚,海洋粉质黏土在波浪荷载作用后的不排水抗剪强度衰化特性,海洋工程,2000,18(1):38~43
    [61]廖红建,宋丽,杨政等,往返荷载下粘性土的强度及取值标准试验研究,岩土力学,2001,22(1):16~20
    [62]闫澍旺,邱长林,孙宝仓等,波浪作用下海底软黏土力学性状的离心机模型试验研究,水利学报,1998,9:66~70
    [63]闫澍旺,杨昌民,范期锦等,波浪荷载作用下防波堤地基软化特性的试验研究,港工技术,2006,2:44~47
    [64]黄英等,昆明某地软土静动力特性分析研究,昆明理工大学学报,2003,28(1):45~48
    [65]刘胜群等,饱和软粘土动力特性试验研究,铁道建筑,2006,(10),68~70
    [66]栾茂田,齐剑锋,聂影,循环应力下饱和黏土剪切变形特性试验研究,海洋工程,2007,25(1):43~49
    [67]王建华,刘振纹,刘远峰,动静耦合效应对软土地基循环承载力的影响,水力学报,2000,(6):1~5
    [68] Wang JH, LI C, Moran K. Cyclic undrained behavior of soft clays and cyclic bearing capacity of a single bucket foundation, Proceeding of 15th International Offshore and Polar Engineering Conference, Seoul, Korea, 2005, 2: 377~383
    [69]刘振纹,饱和软粘土动力特性的研究与应用,博士学位论文,天津大学,2002
    [70]李驰,软土地基桶形基础循环承载力研究,博士学位论文,天津大学,2006
    [71]王建华,要明伦,软粘土不排水循环特性的弹塑性模拟,岩土工程学报,1996,18(3):11~18
    [72]钟辉虹,黄茂松,吴世明等,循环荷载作用下软黏土变形特性研究,岩土工程学报,2002,24(5):629~632
    [73] MONISMITH CL, OGAWA N, FREEME CR, Permanent deformation characteristics of subgrade soils due to repeated loading, Transport Research Record, 1975, 537: 1~17
    [74] Li D, SELIG ET, Cumulative plastic deformation for fine-grained subgrade soils, Journal of Geotechnical Engineering, 1996, 122(12):1006~1013
    [75] Chai JC, Miura N, Traffic-load-induced permanent deformation of road on soft subsoil, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(11): 907~916
    [76] SAKAI A, SAMANG L, MIURA N. Partially-drained cyclic behavior and its application to the settlement of a low embankment road on silty-clay, Soils and Foundations, 2003, 43(l): 33~46
    [77] HYODO M, YASUHARA K, HIRAO K, Prediction of clay behaviour in undrained and partially drained cyclic tests, Soils and Foundations, 1992, 32(4): 117~127
    [78]蒋军,陈龙珠,长期循环荷载作用下粘土的一维沉降,岩土工程学报,2001, 23(3):366~369
    [79]黄茂松,李进军,李兴照,饱和软粘土的不排水循环累积变形特性,岩土工程学报,2006,28(7):891~895
    [80] Li X, Finite element analysis of slope stability using a nonlinear failure criterion, Computers and Geotechnics, 2007, 34(3): 127~136
    [81] Zheng H, Tham LG, Liu DF, On two definitions of the factor of safety commonly used in the finite element slope stability analysis, Computers and Geotechnics, 2006, 33(3): 188~195
    [82] Sukumaran B, McCarron WO, Jeanjean P, et al. Efficient finite element techniques for limit analysis of suction caissons under lateral loads, Computers and Geotechnics, 1999, 24(2): 89~107
    [83] Zhang SH Zheng QN, Liu XN, Finite element analysis of suction penetration seepage field of bucket foundation platform with application to offshore oilfield development, Ocean Engineering, 2004, 31(11): 1591~1599
    [84]赵杰,邵龙潭,有限元稳定分析法在确定土体结构极限承载力中的应用,水利学报,2006,37(6): 668~673
    [85]孔位学,郑颖人,赵尚毅等,地基承载力的有限元计算及其在桥基中的应用,土木工程学报,2005,38(4):97~102
    [86] Dokainish MA, Subbaraj K, A survey of direct time-integration methods in computational structural dynamics, I. Explicit methods, Computers & Structures, 1989, 32(6): 1371~1386
    [87] Tamma KK, Zhou X, Valasutean R, Computational algorithms for transient analysis: the burden of weight and consequences towards formalizing discrete numerically assigned [DNA] algorithmic markets: Wp-family, Computer Methods in Applied Mechanics and Engineering, 1997, 149: 153~188
    [88]王进廷,杜修力,有阻尼体系动力分析的一种显式差分法,工程力学,2002,l9(3):109~112
    [89]侯晋芳,软粘土土坡稳定性研究,博士学位论文,天津大学,2007
    [90] Oden JT, Martins JAC, Models and computational methods for dynamic frictionphenomena, Computer Methods in Applied Mechanics and Engineering, 1985, 52(1-3): 527~634
    [91] Hibbitt, Karison & Sorensen, Inc, ABAQUS Manuals-version 6.5[M], USA: HKS Company, 2005
    [92]中交天津港湾工程研究院有限公司,交通部西部交通建设科技项目离岸深水港波浪—防波堤—地基相互作用问题研究的分报告:箱筒型基础结构测试技术研究报告,2008
    [93] Sun KL, Zhou XR, Qian R, The working mechanism and an analytic method of the deep embedded large cylinder structure, China Ocean Engineering, 18(2): 221~228
    [94] Fang, Y. S. and Ishibashi, I. Static earth pressures with various wall movements. Journal of Geotechnical Engineering, ASCE, 1986, 112(3): 317~333
    [95] Fang YS, Chen TJ, Wu BF, Passive earth pressure with various wall movements, Journal of Geotechnical Engineering, ASCE, 1994, 120(8): 1307~1323
    [96]周应英,刚性挡土墙主动土压力的试验研究,岩土工程学报,1990,12(2):19~26
    [97]岳祖润,压实粘性土填土挡土墙土压力离心摸型试验,岩土工程学报,1992,14(6):90~96
    [98]陈页开,挡土墙上土压力的试验研究与数值分析,杭州:浙江大学博士学位论文,2001
    [99] Bang S, Active earth pressure behind retaining walls, Journal of Geotechnical Engineering, ASCE, 1985, 11(3): 407~412
    [100] Wang YZ, Distribution of earth pressure on a retaining wall, Geotechnique, 2000, 50(1): 83~88
    [101]徐日庆,考虑位移和时间的土压力计算方法,浙江大学学报(工学版),2000,34(4): 370~375
    [102]梅国雄,宰金珉,考虑位移的土压力近似计算方法,岩土力学,2001,22(1):83~85
    [103]王元战,李蔚,黄长虹,墙体绕基础转动情况下挡土墙主动土压力分布,岩土工程学报,2003,25(2):208~211
    [104]卢国胜,考虑位移的土压力计算方法,岩土力学,2004,25(4):586~589
    [105] Clough GW, Duncan JM, Finite element analysis of retaining wall behavior, Journal of the Soil Mechanics and Foundation, ASCE, 1971, 97 (SM12): 1657~1673
    [106] Matsuzawa H, Hazarika H, Analysis of active earth pressure against rigid retaining wall subjected to different modes of movement, Soils and Foundations, 1996, 36(3): 51~65
    [107]王多垠,吴友仁,周世良,高大扶壁式挡土墙墙后土压力特性有限元分析,中国港湾建设,2006,(2):14~17
    [108]王广德,李颖,张凤珍等,沉入黏土中的大圆筒筒内外土压力分布规律及计算方法,水道港口,2002,23(1):16~21
    [109]克列因ГК,散粒体结构力学[M],陈万佳译,北京:中国铁道出版社,1983
    [110]栾茂田,武科,范庆来等,复合加载下桶形基础循环承载性能数值分析,海洋工程,2007,25(3):88~94
    [111] Andersen KH, Dyvik R, Schroder K, et al, Field tests of anchors in clayⅡ: predictions and interpretation, Journal of Geotechnical Engineering, ASCE, 1993, 119(10):1532~1549
    [112]中交第一航务工程勘察设计院有限公司,天津大学岩土工程研究所,交通部西部交通建设科技项目离岸深水港波浪—防波堤—地基相互作用问题研究的分报告之二:土壤的动、静三轴试验及成果分析,2009
    [113] Tan FS, Centrifuge and theoretical modeling of conical footings on sand, London: Cambridge University, 1990
    [114] Bransby MF, Randolph MF, The effect of embedment depth on the undrained response of skirted foundations to combined loading, Soils and Foundations, 1999, 39(4): 19~33
    [115] Taiebat H, Carter JP, Numerical studies of the bearing capacity of shallow footings on cohesive soil subjected to combined loading, Geotechnique, 2000, (50)4: 409~418
    [116] Gourvenec S, Randolph M, Effect of strength non-homogeneity on the shape of failure envelopes combined loading of strip and circular foundations on clay, Geotechnique, 2003, 53(6): 575~586
    [117]钱家欢,殷宗泽主编,土工原理与计算,北京:中国水利水电出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700