用户名: 密码: 验证码:
醋糟的营养价值及其对蛋鸡氮排泄的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共包括四个部分。首先采集了山西省不同地区多个企业的醋糟样品,并对其基本营养成分进行了测定;然后通过代谢试验测定了醋糟对蛋鸡的代谢能值;在醋糟营养价值测定的基础上通过日粮中添加不同水平的醋糟进行氮平衡试验,测定了醋糟对蛋鸡氮排泄的影响;最后通过研究醋糟对蛋鸡肠道微生物区系的影响,探讨了醋糟对蛋鸡氮排泄作用的可能机制。
     试验一醋糟样品的采集与营养成分测定
     本试验分别在山西省太原市区、清徐县、榆次县和太谷县的12家酿醋企业进行醋糟样品的采集,并测定了其水分、总能、中性洗涤纤维、酸性洗涤纤维、酸性洗涤木质素、粗蛋白质、粗脂肪、粗灰分以及氨基酸、微量元素、淀粉和有机酸等营养物质的含量。试验结果表明:①鲜醋糟初水分含量的平均值为70.92%;②醋糟的纤维含量丰富,其中风干醋糟的中性洗涤纤维和酸性洗涤纤维的平均含量分别为74.98%和52.51%;③醋糟含有一定量的蛋白质和淀粉,风干醋糟中其平均值分别为12.38%和19.26%;④醋糟中含有乙酸、乳酸、苹果酸、酒石酸、α-酮戊二酸等多种有机酸,风干样品中有机酸的总含量达2273.96mg/kg;⑤醋糟营养成分差异很大,多数指标的变异系数大于10%。
     试验二醋糟的蛋鸡代谢能测定
     本试验用醋糟分别替代蛋鸡日粮中5%、10%和15%的除矿物质和维生素的其它成分(玉米、大豆油、豆粕和蛋氨酸)进行10天的代谢试验,通过建立醋糟摄入量和相关能量值的回归关系,进而得出醋糟的表观代谢能和氮校正表观代谢能。结果表明:①醋糟表观代谢能与醋糟摄入量的回归关系为:Y=650.01X-7.94,r~2=0.930,由此得到醋糟的表观代谢能为650.01kcal/kg;②醋糟氮校正代谢能与醋糟摄入量的回归关系为:Y=716.01X-8.90,r~2=0.910,由此得到醋糟的氮校正表观代谢能的值为716.01kcal/kg。
     试验三醋糟对蛋鸡氮排泄的影响
     本试验在玉米-豆粕型日粮中分别添加0%、2%、4%和6%的醋糟,并调整各组日粮使其能量、粗蛋白质及蛋氨酸和赖氨酸水平一致,进行12天的氮平衡试验,通过测定蛋鸡摄入氮、排泄氮以及尿酸氮和氨态氮的值研究添加醋糟对蛋鸡氮排泄的影响。结果表明:日粮中添加2%的醋糟对蛋鸡能量、中性洗涤纤维和酸性洗涤纤维以及粗蛋白质的消化率没有显著影响;日粮中添加4%的醋糟显著提高了蛋鸡粗蛋白质的消化率(P<0.01);日粮中添加4%的醋糟显著降低了蛋鸡粪尿中氮(P<0.05)和尿酸(P<0.01)的排泄量;日粮中添加6%的醋糟显著降低了蛋鸡尿酸的排泄量以及尿酸氮占排泄氮的比例(P<0.01)。
     试验四醋糟对蛋鸡肠道微生物区系的影响
     本试验在玉米-豆粕型日粮中分别添加0%、2%和4%的醋糟,并调整各组日粮使其能量、粗蛋白质及蛋氨酸和赖氨酸水平一致,进行27天的试验,提取回肠和盲肠食糜细菌DNA,进行细菌rDNAV3区序列PCR扩增,用DGGE法测定添加不同比例醋糟后蛋鸡肠道微生物区系的变化。结果表明:日粮中添加4%的醋糟降低了蛋鸡回肠和盲肠中细菌的多样性,4%醋糟组盲肠和回肠电泳图谱中的条带数的香浓指数均显著低于对照组(P<0.01);日粮中添加2%的醋糟对蛋鸡回肠和盲肠中DGGE电泳的条带数和香浓指数均没有显著影响。
This thesis included four parts. Firstly, waste vinegar residue (WVR) samples were collected fromvinegar factories located in different areas of the Shanxi province and prepared for evaluation of basicnutrient components. And then, apparent metabolizable energy of WVR was evaluated. Moreover,different amounts of WVR were included in a corn-soybean meal-based diet and nutrient digestibilityand nitrogen excretion were measured. At last, the influence of WVR on microbiaota profile of layinghens was evaluated to explore the underlying mechanisms for the alleviating effects of WVR onnitrogen excretion in laying hens.
     Exp.1Sample collection and nutrient components evaluation of waste vinegar residue
     Twelve representative WVR samples were collected in Taiyuan city, Qingxu county, Yuci countyand Taigu county of Shanxi province in order to evaluate moisture, gross energy, nertral detergent fiber,acid detergent fiber, acid detergent lignin, crude protein, ether extract, ash, amino acids, trace elements,starch and organic acids. The results showed that the average of original moisture content was70.92%.WVR was riched in fiber with the74.98%of neutral detergent fiber and52.51%of acid detergent fiber.Crude protein and starch content of WVR were12.38%and19.26%, respectively. Organic acids inWVR included acetic acid, lactic acid, malic acid, tartaric acid and α-ketoglutaric acid with total amountof2273.96mg/kg. There was great variation in nutrient among different WVR samples with variablecoefficient value of most traits more than10%.
     Exp.2Evaluation of apparent metabolizable energy of waste vinegar residue in laying hens
     The aim of this study was to evluated apparent metabolizable energy (AME) of WVR in layinghens. The AME value and the nitrogen-corrected apparent metabolizable energy (AMEn) of WVR werestudied by feeding hens with a complete corn-soybean meal basal diet and three other diets inwhich10%,15%, and20%of the energy-and amino acid-yielding ingredients (corn,soybean meal, soy oil, and DL-methionine) of the basal diet were replaced with WVR. Theregression of WVR-associated ME intake in kcal against WVR intake in kg generated the followingequation: Y=650.01X-7.94, r~2=0.930, which indicated an AME value of650.01kcal/kg for the WVR.The regression of WVR-associated AMEn intake in kcal against WVR intake in kg generated thefollowing equation: Y=716.01X–8.90, r~2=0.910, which indicated an AMEn value of716.01kcal/kgfor the WVR.
     Exp.3Effects of inclusion of waste vinegar residue in the diet on nitrogen excretion in laying hens
     0%,2%,4%, and6%of WVR were included in a corn-soybean meal-based diet with the samelevel of metabolizable energy, crude protein, methionine and lysine among different diet and nutrientdigestibility and nitrogen excretion were measured. During the12-d period, nitrogen intake, nitrogenexcretion, uric acid nitrogen and ammonium nitrogen were evaluated in laying hens. The results showedthat inclusion of2%WVR in the diet did not affect the digestibility of energy, neutral detergent fiber,acid detergent fiber and crude protein. Diet including4%of WVR increased total tract apparentdigestibility (TTADs) of nitrogen (P<0.01) of hens. Inclusion of6%of WVR in the diet resulted inlower TTADs of dry matter (P<0.01). Inclusion of4%of WVR in the diet significantly decreased thenitrogen excretion (P<0.05) and uric acid N excretion (P <0.01). Inclusion of6%of WVR in the dietsignificantly decreased uric acid excretion (P<0.01) and uric acid nitrogen (%of N excretion, P<0.01).
     Exp.4Effects of inclusion of waste vinegar residue in the diet on intestinal microflora of layinghens
     In this trial, three experimental diets, including a corn and soybean meal-based control diet andtwo other diets formulated with2%and4%of WVR were fed to laying hens for27days. All of thediets were formulated with the same level of metabolizable energy, crude protein, methionine and lysine.DNA was extracted from digesta in ileum and cecum of laying hens,16S rDNA V3region wasamplified by PCR and denaturing gradient gel electrophoresis (DGGE) was performed. The resultsshowed that inclusion4%of WVR reduced the number of DGGE bands and Shannon index for ileumand cecum (P <0.01). Inclusion of2%WVR had no significant effect on the number of DGGE bandsand Shannon index for ileum and cecum.
引文
1.白志明,杜月娴,张玉峰,等.醋糟料平菇蛋白质营养价值定量分析与评价[J].山西农业大学学报,1995(3):304-306.
    2.曹国文,马宁,杨松金,等.柠檬酸对肠道菌群影响的研究[J].四川畜牧兽医,1992(1):9-11.
    3.曹志华,欧阳晶旭,王俊,等.有机复合酸化剂对艾维茵(AVIAA)肉鸡生长性能、营养成分消化率及腺胃pH的影响[J].长江大学学报(自科版),2006(11):164-166.
    4.崔保维,郑晓忠.醋糟育肥肉牛的效果[J].饲料研究,1993(5):28-29.
    5.丁宏标,黄水生,丁晓菲,等.玉米—豆粕型肉鸡日粮中添加重组植酸酶效果研究[J].动物营养学报,2002(2):19-22.
    6.窦晓利,张琪,王杰,等.复合酸化剂对夏季产蛋鸡血清pH值、钙、无机磷和生产性能的影响[J].粮食与饲料工业,2006(11):34-36.
    7.呙于明.家禽营养[M].中国农业大学出版社,2004.
    8.韩映梅.饲喂醋糟对肥育猪的效果[J].中国草食动物,1999(2):9.
    9.侯国亮,赵守贤,程灵芝,等.醋糟栽培白灵菇的示范与推广[J].中国食用菌,2011(6):65-66.
    10.花卫华,单昊书,徐志伟,等.醋糟对湖羊羔羊育肥效果的研究[J].安徽农业科学,2008(32):.14105,14112.
    11.黄伊颖.日粮中添加干醋糟对肉用鸡的饲喂试验[J].当代畜禽养殖业,2009(7):39-40.
    12.黄仲华,殷小平.食醋生产问答[M].北京:中国轻工业出版社,2000.
    13.景小兰,田洪岭.醋糟与稻草栽培双孢菇比较研究[J].山西农业科学,2008,36(9):90-92.
    14.李萍萍,胡永光,赵玉国,等.利用醋糟开发植物栽培基质的发酵技术[J].城市环境与城市生态,2003(4):79-80.
    15.李永洙.鸡生长发育中盲肠微生物菌群结构的PCR-DGGE分析[J].中国农业大学学报,2011(4).
    16.刘超杰,郭世荣,束胜,等.醋糟基质粉碎程度对辣椒幼苗生长和光合能力的影响[J].农业工程学报,2010(1):330-334.
    17.刘靖,张石蕊.蛋白质饲料资源的合理利用及开发对策[J].饲料工业,2009(5):43-46.
    18.刘学剑.有机酸及其复合酸在动物生产中的应用概况[J].江西饲料,2002(003):1-5.
    19.马学曾.鲜醋渣循环重复利用大有可为[J].中国酿造,2005(4):48-49.
    20.马学曾.鲜醋渣循环利用的研究[J].江苏调味副食品,2005(2):32-34.
    21.倪学勤, Gong Joshua, Yu Hai,等.采用PCR-DGGE技术分析蛋鸡肠道细菌种群结构及多样性[J].畜牧兽医学报,2008(7):955-961.
    22.聂大娃.不同地区玉米肉仔鸡代谢能研究[D].[博士学位论文].中国农业科学院动物营养与饲料科学,2008.23彭春明.饲料因素对动物体内微生物区系的影响[J].饲料工业,1994(9):15-19.
    24.钱笑天,郭世荣,田婧,等.醋糟复配基质对西瓜幼苗生长及光合作用的影响[J].江苏农业科学,2009(5):155-158.
    25.任根明,李敏,张青海.试述食醋生产中淀粉利用率低的原因[J].中国调味品,1993(4):21-22.
    26.邵莲花,王锦平,李建英.发酵醋糟喂猪试验[J].山西农业科学,2004(4):80-82.
    27.施安辉,秦立东,于大连,等.醋糟代替棉籽壳栽培平菇的研究[J].中国食用菌,1998(3):14-15.
    28.宋代军,王康宁,周安国,等.用纤维等饲料成分预测鸭饲料TME的研究[J].四川农业大学学报,2000(1).
    29.孙笑非,钟米珈,孙冬岩,等.鸡肠道微生物区系及影响其稳定性的因素[J].饲料研究,2012(1):43-45.
    30.谢欣梅,张海龙.酸化剂对肉仔鸡肠道微生物区系的影响[J].黑龙江畜牧兽医,2005(12):32-33.
    31.熊本海,张宏福.国内外畜禽饲养标准与饲料成分表[M].中国农业科学技术出版社,2010.
    32.徐清萍.食醋生产技术[M].北京:化学工业出版社,2008.
    33.徐清萍,钟桂芳.食醋醋渣的综合利用[J].中国调味品,2009(7):34-37.
    34.杨玉芳.醋糟在花卉栽培中的应用研究[J].北方园艺,2009(10):213-215.
    35.杨致玲,李建英,张拴林.微生物发酵可提高醋糟营养价值[J].中国饲料,1999(6):24.
    36.禹兰景,郭伟珍,王彦芝,等.城市污泥与树皮、秸秆、醋糠混合堆肥研究[J].河北林果研究,2008(3).
    37.袁建敏,万振环.家禽排泄物中氨减排的饲料配制技术进展[J].家畜生态学报,2009,29(4):1-5.
    38.张福元,阎永亮,吴海花.猴头菌醋糟高产配方筛选及营养利用规律研究[J].食用菌学报,2002(1):28-35.
    39.张建新,岳文斌,丛日晨.醋糟发酵菌种的筛选及其发酵条件研究[J].水土保持研究,2000(4):85-88.
    40.张丽英.饲料分析及饲料质量检测技术[M].北京:中国农业大学出版社,2003.
    41.张日俊.消化道微生物与宿主营养素的吸收和代谢研究[J].中国饲料,2003(2):11-14.
    42.张子仪,吴克谦,吴同礼,等.应用回归分析评定鸡饲料表观代谢能值的研究[J].畜牧兽医学报,1981(4):7-14.
    43.章双杰,郭军,汤青萍,等.鹅对11种非常规饲料代谢能和纤维利用率的研究[J].动物营养学报,2011(11):1925-1931.
    44.赵峰.用酶法评定鸭饲料代谢能的方法学研究[D].[博士学位论文].中国农业科学院动物营养与饲料科学,2006.
    45.赵良启,李丽.我国食醋生产技术的历史、现状与发展趋势(上)[J].中国调味品,2005(1):3-6.
    46.赵青松,李萍萍,王纪章,等.不同配比醋糟基质应用于黄瓜穴盘育苗的效果[J].长江蔬菜,2009(14):61-63.
    47.赵莹,娄玉杰.日粮纤维对单胃动物胃肠道微生物区系的影响[J].饲料工业,2006(19):12-15.
    48.郑奕敬.山西食醋淀粉利用率的初探[J].中国酿造,1982(4):40-42.
    49.周瑞得,范增英,田满意.醋糟饲喂家兔试验[J].饲料研究,1989(5):20-21.
    50.庄桂.糖化醋渣制取酵母单细胞蛋白物料酿造酱油的研究[J].中国酿造,(2).
    51. Adams C. Poultry and dietary acids [J]. Animal Feed.1999,20:14-19.
    52. Adeola O, Ilelejil K E. Comparison of two diet types in the determination of metabolizable energycontent of corn distillers dried grains with solubles for broiler chickens by the regression method[J]. Poultry science.2009,88(3):579-585.
    53. Adeola O, Ragland D, King D. Feeding and excreta collection techniques in metabolizable energyassays for ducks [J]. Poultry science.1997,76(5):728-732.
    54. Amerah A M, Ravindaran V, Lentle R G. Influence of insoluble fibre and whole wheat inclusionon the performance, digestive tract development and ileal microbiota profile of broiler chickens [J].British poultry science.2009,50(3):366-375.
    55. Angus A J, Hodge I D, Mcnally S, et al. The setting of standards for agricultural nitrogenemissions: a case study of the Delphi technique [J]. Journal of Environmental Management.2003,69(4):323-337.
    56. Apajalahti J H A, S rkilahti L K, M ki B R E, et al. Effective recovery of bacterial DNA andpercent-guanine-plus-cytosine-based analysis of community structure in the gastrointestinal tract ofbroiler chickens[J]. Applied and Environmental Microbiology.1998,64(10):4084-4088.
    57. Baldini J T. The effect of dietary deficiency on the energy metabolism of the chick [J]. PoultryScience.1961,40(5):1177-1183.
    58. Barnes E M. The intestinal microflora of poultry and game birds during life and after storage [J].Journal of Applied Microbiology.1979,46(3):407-419.
    59. Beyer R S, Moritz J S, Wilson K J, et al. Feed processing, feed form affects animal performance[J]. Feedstuffs.2001,73(6):5-9.
    60. Brickett K E, Dahiya J P, Classen H L, et al. Influence of dietary nutrient density, feed form, andlighting on growth and meat yield of broiler chickens [J]. Poultry science.2007,86(10):2172-2181.
    61. Burkholder K M, Thompson K L, Einstenin M E, et al. Influence of stressors on normal intestinalmicrobiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization inbroilers [J]. Poultry science.2008,87(9):1734-1741.
    62. Burnett W, Dondero N. Microbiological and chemical changes in poultry manure associated withdecomposition and odour generation: Proceedings of Cornell University Conference of AgricultureWaste Management [Z]. Syracuse, NY: Cornell University,1969271-274.
    63. Canh T T, Sutton A L, Aarnink A J, et al. Dietary carbohydrates alter the fecal composition and pHand the ammonia emission from slurry of growing pigs[J]. Journal of Animal Science.1998,76(7):1887-1895.
    64. Canh T T, Verstegen M W, Aarnink A J, et al. Influence of dietary factors on nitrogen partitioningand composition of urine and feces of fattening pigs [J]. Journal of Animal Science.1997,75(3):700-706.
    65. Carre B, Prevotel B, Leclercu B. Cell wall content as a predictor of metabolisable energy value ofpoultry feedingstuffs [J]. British Poultry Science.1984,25(4):561-572.66Charalambous K, Daghir N J. Factors affecting the metabolizable energy values of four differentpoultry feedstuffs [J]. Poultry Science.1976,55(5):1657-1662.67Chavez C, Coufal C D, Lacey R E, et al. The impact of methionine source on poultry fecal matterodor volatiles [J]. Poultry science.2004,83(3):359-364.
    68. Clunies M, Leeson S, Summers J D. In vitro estimation of apparent metabolizable energy [J].Poultry Science.1984,63(5):1033-1039.
    69. Correa-Matos N J, Donovan S M, Isaacson R E, et al. Fermentable fiber reduces recovery time andimproves intestinal function in piglets following Salmonella typhimurium infection [J]. TheJournal of nutrition.2003,133(6):1845-1852.
    70. Creswell D, Swick R A. Formulating with digestible amino acids [J]. Asian Poultry Magazine.200,1(1):20.
    71. Davis R H, Hassan O, Sykes A H. The adaptation of energy utilization in the laying hen to warmand cool ambient temperatures [J]. The Journal of Agricultural Science.1972,79(02):363-369.
    72. Deaton J W, Reecef N, Lott B D. Effect of atmospheric ammonia on pullets at point of lay [J].Poultry Science.1984,63(2):384-385.
    73. der Meulen J, Panneman H, Jansman A. Effect of pea, pea hulls, faba beans and faba bean hulls onthe ileal microbial composition in weaned piglets [J]. Livestock Science.2010,133(1):135-137.
    74. Dilger R N, Sands J S, Ragland D, et al. Digestibility of nitrogen and amino acids in soybean mealwith added soyhulls [J]. Journal of animal science.2004,82(3):715-724.
    75. Dolz S, De Blas C. Metabolizable energy of meat and bone meal from Spanish rendering plants asinfluenced by level of substitution and method of determination [J]. Poultry science.1992,71(2):316-322.
    76. Dunkley K D, Dunkley C S, Njongmeta N L, et al. Comparison of in vitro fermentation andmolecular microbial profiles of high-fiber feed substrates incubated with chicken cecal inocula [J].Poultry science.2007,86(5):801-810.
    77. Farrell D J. Rapid determination of metabolisable energy of foods using cockerels [J]. BritishPoultry Science.1978,19(3):303-308.
    78. Ferguson N S, Gates R S, Taraba J L, et al. The effect of dietary protein and phosphorus onammonia concentration and litter composition in broilers [J]. Poultry Science.1998,77(8):1085-1093.
    79. Ferket P R, Van Heugten E, Van Kempen T, et al. Nutritional strategies to reduce environmentalemissions from nonruminants [J]. Journal of Animal Science.2002,80(E-Suppl2):E168-E182.
    80. Firman J D, Boling S D. Lysine: Ideal protein in turkeys [J]. Poultry science.1998,77(1):105-110.
    81. Fuente J M, De Ayala P P, Flores A, et al. Effect of storage time and dietary enzyme on themetabolizable energy and digesta viscosity of barley-based diets for poultry [J]. Poultry science.1998,77(1):90-97.
    82. Furuya S, Sakamoto K, Takahashi S. A new in vitro method for the estimation of digestibilityusing the intestinal fluid of the pig [J]. Br. J. Nutr.1979,41:511-520.
    83. Galassi G, Malaguttli L, Crovetto G M. Growth and slaughter performance, nitrogen balance andammonia emission from slurry in pigs fed high fibre diets [J]. Italian Journal of Animal Science.2009,6(3):227-240.
    84. Gheisari A A, Pourabadeh A H, Knudsen K, et al. Evaluation of three bioassay methods andapparent metabolizable energy of5Iranian barley cultivars in broiler chicks.[Z].2005,614-616.
    85. Gong J., Si W., Forster R. J., et al.16S rRNA gene-based analysis of mucosa-associated bacterialcommunity and phylogeny in the chicken gastrointestinal tracts: from crops to ceca[J]. FEMSmicrobiology ecology,2006,59(1):147-157.
    86. Guinotte F, Gautron J, Nys Y, et al. Calcium solubilization and retention in the gastrointestinaltract in chicks (Gallus domesticus) as a function of gastric acid secretion inhibition and of calciumcarbonate particle size [J]. British journal of Nutrition.1995,73(01):125-139.
    87. Hallsworth E G, Coates J I. The growth of the alimentary tract of the fowl and the goose [J]. J.Agric. Sci.1962,58:153-163.
    88. Han D S, Niimmi Y, Takashima T. Effect of using brown rice vinegar and brown rice vinegar leescomposts during raising seedling on growth of seedlings and field plants in cucumber [Cucumissativus][J]. Bulletin of the Faculty of Agriculture-Niigata University[J].2007,60.
    89. Harrow S A, Ravindran V, Butler R C, et al. The influence of farming practices on ilealLactobacillus salivarius populations of broiler chickens measured by real-time quantitative PCR [J].Applied and Environmental Microbiology.2007,73:7123-7127.
    90. Hartung J, Phillips V R. Control of gaseous emissions from livestock buildings and manurestores[J]. Journal of Agricultural Engineering Research.1994,57(3):173-189.
    91. Hetland H, Svihus B. Inclusion of dust bathing materials affects nutrient digestion and gutphysiology of layers[J]. The Journal of Applied Poultry Research.2007,16(1):22-26.
    92. Hetland H, Svihus B, CHOCT M. Role of insoluble fiber on gizzard activity in layers [J]. TheJournal of Applied Poultry Research.2005,14(1):38-46.
    93. Hetland H, Svihus B, Krogdahl. Effects of oat hulls and wood shavings on digestion in broilersand layers fed diets based on whole or ground wheat [J]. British poultry science.2003,44(2):275-282.
    94. Hill F W, Anderson D L. Comparison of metabolizable energy and productive energydeterminations with growing chicks [J]. The Journal of Nutrition.1958,64(4):587-603.
    95. H gberg A, Lindberg J E. Influence of cereal non-starch polysaccharides and enzymesupplementation on digestion site and gut environment in weaned piglets [J]. Animal Feed Scienceand Technology.2004,116(1):113-128.
    96. Hume M E, Kubena L F, Edrington T S, et al. Poultry digestive microflora biodiversity asindicated by denaturing gradient gel electrophoresis [J]. Poultry science.2003,82(7):1100-1107.
    97. Jalahtii J, Kettunen A, Graham H. Characteristics of the gastrointestinal microbial communities,with special reference to the chicken [J]. World's Poultry Science Journal.2004,60(2):223-232.
    98. Jaroni D, Scheideler S E, Beck M M, et al. The effect of dietary wheat middlings and enzymesupplementation II: Apparent nutrient digestibility, digestive tract size, gut viscosity, and gutmorphology in two strains of leghorn hens [J]. Poultry Science.1999,78(12):1664-1674.
    99.Jaroni D, Scheideler S E, Beck M, et al. The effect of dietary wheat middlings and enzymesupplementation. Ⅰ. Late egg production efficiency, egg yields, and egg composition in twostrains of leghorn hens [J]. Poultry science.1999,78(6):841-847.
    100.Jiménez Moreno E, Romero C, Berrocoso J D, et al. Effects of the inclusion of oat hulls or sugarbeet pulp in the diet on gizzard characteristics, apparent ileal digestibility of nutrients, andmicrobial count in the ceca in36day old broilers reared on floor[J]. Poultry science.2011,90(E-Suppl1):153.
    101.Jiménez-Moreno E, Chamorro S, Frikha M, et al. Effects of increasing levels of pea hulls in the dieton productive performance, development of the gastrointestinal tract, and nutrient retention ofbroilers from one to eighteen days of age [J]. Animal Feed Science and Technology.2011,168(27):100-112.
    102.Jiménez-Moreno E, González-Alvarado J M, Lázaro R, et al. Effects of type of cereal, heatprocessing of the cereal, and fiber inclusion in the diet on gizzard pH and nutrient utilization inbroilers at different ages [J]. Poultry science.2009,88(9):1925-1933.
    103.J rgensen H, Zhao X Q, Knudsen K E B, et al. The influence of dietary fibre source and level onthe development of the gastrointestinal tract, digestibility and energy metabolism in broilerchickens [J]. British Journal of Nutrition.1996,75(03):379-395.
    104.Kadim I T, Al-Marzooqi W, Mahgoub O, et al. Effect of acetic acid supplementation on egg qualitycharacteristics of commercial laying hens during hot season [J]. International Journal of PoultryScience.2008,7(10):1015-1021.
    105.Kalmendal R, Elwinger K, Holm L, et al. High-fibre sunflower cake affects small intestinaldigestion and health in broiler chickens [J]. British Poultry Science.2011,52(1):86-96.
    106.Keshavarz K. Effects of continuous feeding of low-phosphorus diets with and without phytaseduring the growing and laying periods on performance of two strains of Leghorns[J]. Poultryscience.2003,82(9):1444-1456.
    107.Kilburn J, Edwards JR H M. The effect of particle size of commercial soybean meal onperformance and nutrient utilization of broiler chicks [J]. Poultry science.2004,83(3):428-432.
    108.Kilburn J, Edwards JR H M. The response of broilers to the feeding of mash or pelleted dietscontaining maize of varying particle sizes [J]. British poultry science.2001,42(4):484-492.
    109.King D, Ragland D, Adeola O. Apparent and true metabolizable energy values of feedstuffs forducks [J]. Poultry science.1997,76(10):1418-1423.
    110.Kirchgessner M, Kreuzer M, Machmüller A, et al. Evidence for a high efficiency of bacterialprotein synthesis in the digestive tract of adult sows fed supplements of fibrous feedstuffs [J].Animal feed science and technology.1994,46(3):293-306.
    111.Kling H F, Quarles C L. Effect of atmospheric ammonia and the stress of infectious bronchitisvaccination on leghorn males [J]. Poultry science.1974,53(3):1161-1167.
    112.Knarreborg A, Simon M A, EngberG R M, et al. Effects of dietary fat source and subtherapeuticlevels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages [J].Applied and Environmental Microbiology.2002,68(12):5918-5924.
    113.Kocher A, Choct M, Porter M D, et al. Effects of feed enzymes on nutritive value of soyabean mealfed to broilers[J]. British poultry science.2002,43(1):54-63.
    114.Koreleski J, wiatkiewicz S, Arczewska A. The effect of dietary potassium and sodium onperformance, carcass traits, and nitrogen balance and excreta moisture in broiler chicken [J].Journal of Animal and Feed Sciences.2010,19(2):244-256.
    115.Koreleski J, wiatkiewicz S, Lasek O, et al. Laying performance and nitrogen balance in hens fedorganic diets with different energy and methionine levels [J]. Journal of Animal and Feed Sciences.2009,18(2):305-312.
    116.Kristensen H H, Wathes C M. Ammonia and poultry welfare: a review[J]. World's Poultry ScienceJournal.2000,56(3):235-246.
    117.Kuipers A, Mandersloot F, Zom R L G. An approach to nutrient management on dairy farms [J].Journal of animal science.1999,77(E-Suppl2):84-89.
    118.Kumm K I. Ways to reduce nitrogen pollution from Swedish pork production [J]. Nutrient Cyclingin Agroecosystems.2003,66(3):285-293.
    119.Kussaibati R, Guillaume J, Leclercq B. The effects of age, dietary fat and bile salts, and feedingrate on apparent and true metabolisable energy values in chickens [J]. British Poultry Science.1982,23(5):393-403.
    120.Latshaw J D, Zhao L. Dietary protein effects on hen performance and nitrogen excretion [J].Poultry Science.2011,90(1):99-106.
    121.Leek A B G, Hayes E T, Curran T P, et al. The influence of manure composition on emissions ofodour and ammonia from finishing pigs fed different concentrations of dietary crude protein [J].Bioresource technology.2007,98(18):3431-3439.
    122. Leeson S, Summers J D. Scott’s nutrition of the chickens[M]. Ontario, Canada: Univesity BooksGuelph,2001.
    123.Leslie M A, Moran JR E T, Bedford M R. The effect of phytase and glucanase on the ilealdigestible energy of corn and soybean meal fed to broilers [J]. Poultry science.2007,86(11):2350-2357.
    124.Leterme P, Froidmont E, Rossif, et al. The high water-holding capacity of pea inner fibers affectsthe ileal flow of endogenous amino acids in pigs [J]. Journal of Agricultural and food chemistry.1998,46(5):1927-1934.
    125.Li M., Gong J., Cotrill M., et al. Evaluation of QIAamp DNA Mini Stoll Kit for microbialecological studies [J]. J. Microbiol. Methods,2003,54:13-20.
    126.Liu J, Yang J. Cellulase production by Trichoderma koningii AS3.4262in solid-state fermentationusing lignocellulosic waste from the vinegar industry [J]. Food Technology and Biotechnology.2007,45(4):420.
    127.Liu J, Yang J. Fermentation characteristics of vinegar residue and some natural materials[J].Forestry Studies in China.2006,8(3):22-25.
    128.Lynch M B, Sweeney T, Callan J J, et al. The effect of dietary crude protein concentration andinulin supplementation on nitrogen excretion and intestinal microflora from finisher pigs [J].Livestock Science.2007,109(1):204-207.
    129.Mackie R I, Stroot P G, Varel V H. Biochemical identification and biological origin of key odorcomponents in livestock waste [J]. Journal of Animal Science.1998,76(5):1331-1342.
    130.Mallin M. A., Cahoon L. B. Industrialized animal production-a major source of nutrient andmicrobial pollution to aquatic ecosystems [J]. Population&Environment,2003,24(5):369-385.
    131.March B E, Biely J. Factors affecting the response of chicks to diets of different protein value:breed and age[J]. Poultry Science[J].1971,50(4):1036-1040.
    132.Mateos G G, JIiménez-Moreno E, Serrano M P, et al. Poultry response to high levels of dietaryfiber sources varying in physical and chemical characteristics1[J]. The Journal of Applied PoultryResearch.2012,21(1):156-174.
    133.Mccracken V J, Simpson J M, Mackie R I, et al. Molecular ecological analysis of dietary andantibiotic-induced alterations of the mouse intestinal microbiota [J]. The Journal of nutrition.2001,131(6):1862-1870.
    134.Mccrory D F, Hobbs P J. Additives to reduce ammonia and odor emissions from livestock wastes[J]. Journal of Environmental Quality.2001,30(2):345-355.
    135.Mchan F, Shotts E B. Effect of short-chain fatty acids on the growth of Salmonella typhimurium inan in vitro system [J]. Avian diseases.1993:396-398.
    136.Mcnab J M, Blair J C. Modified assay for true and apparent metabolisable energy based on tubefeeding[J]. British poultry science.1988,29(4):697-707.
    137.Meluzzi A, Sirri F, Tallarico N, et al. Nitrogen retention and performance of brown laying hens ondiets with different protein content and constant concentration of amino acids and energy [J].British Poultry Science.2001,42(2):213-217.
    138.Mlies D M, Branton S L, Lott B D. Atmospheric ammonia is detrimental to the performance ofmodern commercial broilers [J]. Poultry science.2004,83(10):1650-1654.
    139.Mohamed K, Leclercq B, Anwar A, et al. A comparative study of metabolisable energy inducklings and domestic chicks [J]. Animal Feed Science and Technology.1984,11(3):199-209.
    140.Moharrery A. Effect of Malic Acid on Growth Performance, Carcass Characteristics, and FeedEfficiency in the Broiler Chickens [J]. International Journal of Poultry Science.2005,4(10):781-786.
    141.MuyzerR G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genescoding for16S rRNA.[J]. Applied and environmental microbiology.1993,59(3):695-700.
    142.Nagaraja K V, Emery D A, Jordan K A, et al. Scanning electron microscopic studies of adverseeffects of ammonia on tracheal tissues of turkeys [J]. American journal of veterinary research.1983,44(8):1530.
    143.Nahm K H. Feed formulations to reduce N excretion and ammonia emission from poultry manure[J]. Bioresource technology.2007,98(12):2282-2300.
    144.Noy Y, Sklan D. Digestion and absorption in the young chick [J]. Poultry Science.1995,74(2):366-373.
    145.Owings W J, Reynolds D L, Hasiak R J, et al. Influence of dietary supplementation withStreptococcus faecium M-74on broiler body weight, feed conversion, carcass characteristics, andintestinal microbial colonization [J]. Poultry Science.1990,69(8):1257-1264.
    146.Parks C W, Ferket P R, Thomas L N, et al. Carcass yield and N balance of turkey toms fed high andlow crude protein diets supplemented with menefee humate [J]. Poult. Sci.1996,75(Suppl1):116.
    147.Patten J D, Waldroup P W. Use of organic acids in broiler diets [J]. Poultry Science.1988,67(8):1178-1182.
    148.Pishnamazi A, Pourreza J, Edriss M A, et al. Influence of broiler breeder and laying hen breed onthe apparent metabolizable energy of selected feed ingredients [J]. Int J Poultry Sci.2005,4:163-166.
    149.Pope T, Emmert J L. Impact of phase-feeding on the growth performance of broilers subjected tohigh environmental temperatures [J]. Poultry science.2002,81(4):504-511.
    150.Powers W, Angel R. A review of the capacity for nutritional strategies to address environmentalchallenges in poultry production [J]. Poultry science.2008,87(10):1929-1938.
    151.Proudman J A, Mellen W J, Anderson D L. Utilization of feed in fast-and slow-growing lines ofchickens[J]. Poultry Science.1970,49(4):961-972.
    152.Puchal F, Mascarell J. Role of feed enzymes in poultry nutrition examined[J]. Feedstuffs.1999,71(45):12-14.
    153.Ragland D, King D, Adeola O. Determination of metabolizable energy contents of feed ingredientsfor ducks [J]. Poultry science.1997,76(9):1287-1291.
    154.Ravindran V, Cowieson A J, Selle P H. Influence of dietary electrolyte balance and microbialphytase on growth performance, nutrient utilization, and excreta quality of broiler chickens [J].Poultry Science.2008,87(4):677-688.
    155.Ravindran V., Tilman Z. V., Morel PCH, et al. Influence of β-glucanase supplementation on themetabolisable energy and ileal nutrient digestibility of normal starch and waxy barleys for broilerchickens [J]. Animal feed science and technology,2007,134(1):45-55.
    156.Reece F N, Lott B D, Deaton J W. Ammonia in the atmosphere during brooding affectsperformance of broiler chickens[J]. Poultry Science.1980,59(3):486-488.
    157.Renard J. J., Calidonna S. E., Henley M. V. Fate of ammonia in the atmosphere-a review forapplicability to hazardous releases [J]. Journal of hazardous materials,2004,108(1):29-60.
    158.Ritz C W, Fairchild B D, Lacy M P. Implications of ammonia production and emissions fromcommercial poultry facilities: A review [J]. The Journal of Applied Poultry Research.2004,13(4):684-692.
    159.Roberts S A, Xin H, Kerr B J, et al. Effects of dietary fiber and reduced crude protein on ammoniaemission from laying-hen manure [J]. Poultry science.2007,86(8):1625-1632.
    160.Roberts S A, Xin H, Kerr B J, et al. Effects of dietary fiber and reduced crude protein on nitrogenbalance and egg production in laying hens [J]. Poultry science.2007,86(8):1716-1725.
    161.Rogel A M, Annison E F, Bryden W L, et al. The digestion of wheat starch in broiler chickens [J].Australian Journal of Agricultural Research.1987,38(639):49.
    162.Rotz C A. Management to reduce nitrogen losses in animal production [J]. Journal of AnimalScience.2004,82(13suppl):E119-E137.
    163.Roush W B, Boykin D, Branton S L. Optimization of phase feeding of starter, grower, and finisherdiets for male broilers by mixture experimental design: forty-eight-day production period [J].Poultry science.2004,83(8):1264-1275.
    164.Sakamoto K, Asano T, Furuya S, et al. Estimation of in vivo digestibility with the laying hen by anin vitro method using the intestinal fluid of the pig [J]. British Journal of Nutrition.1980,43(02):389-391.
    165.Shakouri M D, Kermanshahi H, Mohsenzadeh M. Effect of different non starch polysaccharides insemi purified diets on performance and intestinal microflora of young broiler chickens [J].International Journal of Poultry Science.2006,5(6):557-561.
    166.Shriver J A, Carter S D, Sutton A L, et al. Effects of adding fiber sources to reduced-crude protein,amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits offinishing pigs[J]. Journal of Animal Science.2003,81(2):492-502.
    167.Sibbald I R. The effect of cold pelleting on the true metabolizable energy values of cereal grains fedto adult roosters and a comparison of observed with predicted metabolizable energy values [J].Poultry Science.1976,55(3):970-974.
    168.Sibbald I R. The true metabolizable energy values of some feedingstuffs [J]. Poultry Science.1977,56(1):380-382.
    169. Sibbald I R. The effect of level of feed input on true metabolizable energy values [J]. PoultryScience.1977,56(5):1662-1663.
    170. Sibbald I R, Price K. Variation in the metabolizable energy values of diets and dietary componentsfed to adult roosters [J]. Poultry Science.1975,54(2):448-456.
    171. Sibbald I R, Price K. True metabolizable energy values for poultry of Canadian barleys measuredby bioassay and predicted from physical and chemical data [J]. Canadian Journal of AnimalScience.1976,56(4):775-782.
    172. Sibbald I R, Slinger S J. The effects of breed, sex, an arsenical and nutrient density on theutilization of dietary energy [J]. Poultry Science.1963,42(6):1325-1332.
    173. Sibbald I R, Summers J D, Slinger S J. Factors affecting the metabolizable energy content ofpoultry feeds [J]. Poultry Science.1960,39(3):544-556.
    174.Simon G L, Gorbach S L. Intestinal microflora [J]. The Medical clinics of North America.1982,66(3):557.
    175.Simpson J M, Mccracken V J, Gaskins H R, et al. Denaturing gradient gel electrophoresis analysisof16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaningpigs after introduction of Lactobacillus reuteri strain MM53[J]. Applied and EnvironmentalMicrobiology.2000,66(11):4705-4714.
    176.Siregar A P, Farrell D J. A comparison of the energy and nitrogen metabolism of fed ducklings andchickens [J]. British Poultry Science.1980,21(3):213-227.
    177.Skinner J T, Izat A M Y L, Waldroup P W. Research note: fumaric acid enhances performance ofbroiler chickens [J]. Poultry Science.1991,70(6):1444-1447.
    178.Soltan M A. Effect of dietary organic acid supplementation on egg production, egg quality andsome blood serum parameters in laying hens [J]. International Journal of Poultry Science.2008,7(6):613-621.
    179. Summers J D. Reducing nitrogen excretion of the laying hen by feeding lower crude protein diets[J]. Poultry science.1993,72(8):1473-1478.
    180.Svihus B. The gizzard: function, influence of diet structure and effects on nutrient availability[J].World's Poultry Science Journal.2011,67(02):207-224.
    181.Swain S, Farrell D J. Effects of different temperature regimens on body composition and carry-overeffects on energy metabolism of growing chickens[J]. Poultry Science.1975,54(2):513-520.
    182.Tamaki M, Shimabukuro H, Okano S, et al. Usability of millet spirit mash vinegar lees as dairycattle diet [J]. West Japan Journal of Animal Science.2005,48:65-67.
    183.Tannock G W. Molecular methods for exploring the intestinal ecosystem [J]. British Journal ofNutrition.2002,87(S2):S199-S201.
    184.Tetens I, Livesey G, Eggum B O. Effects of the type and level of dietary fibre supplements onnitrogen retention and excretion patterns [J]. British Journal of Nutrition.1996,75(03):461-469.
    185.Valdes E V, Leeson S. Measurement of metabolizable energy in poultry feeds by an in vitro system[J]. Poultry science.1992,71(9):1493-1503.
    186.Vanschoubroek F, Coucke L, Van Spaendonck R. The quantitative effect of pelleting feed on theperformance of piglets and fattening pigs.: Nutrition abstracts and reviews[Z].1971:41,1.
    187.Villamide M J, San Juan L D. Effect of chemical composition of sunflower seed meal on its truemetabolizable energy and amino acid digestibility [J]. Poultry science.1998,77(12):1884-1892.
    188.Wang Z, Dong X, Tong J, et al. Vinegar production residue as substrates for phytase production byAspergillus ficuum[J]. Waste Management&Research.2010,28(2):165-168.
    189.Wielen P, Keuzenkamp D A, Lipman L, et al. Spatial and temporal variation of the intestinalbacterial community in commercially raised broiler chickens during growth [J]. Microbial ecology.2002,44(3):286-293.
    190.Zhang W J, Campbell L D, Stothers S C. An investigation of the feasibility of predictingnitrogen-corrected true metabolizable energy (TMEn) content in barley from chemical compositionand physical characteristics [J]. Canadian Journal of Animal Science.1994,74(2):355-360.
    191.Zhu X Y, Zhong T, Pandya Y, et al.16S rRNA-based analysis of microbiota from the cecum ofbroiler chickens [J]. Applied and Environmental Microbiology.2002,68(1):124-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700