用户名: 密码: 验证码:
基于LM-PCR预扩增法的建立及其在水产品致病菌检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于核酸扩增技术的基因检测方法具有高灵敏度与高特异性的优点,但在对实际样品的检测中,核酸扩增检测技术往往受到样品中目标DNA含量极少、破坏程度高、提取得到的模板含有大量背景核酸等因素制约,导致检测效率下降,影响了其在相关领域的应用。如DNA芯片技术可短时间内实现高通量分析但对样品要求较高,此时样品数量及质量往往成为制约检测的首要因素。针对上述问题,对样品DNA进行预扩增(pre-amplification)是有效的解决途径,如全基因组扩增技术(whole genome amplification, WGA)已在单核苷酸多态性分析(SNPs)、基因型(genotyping)和基因组测序(genome sequencing)等大规模分析中发挥了巨大作用。
     在现有全基因组扩增方法中,连接介导PCR(ligation-mediated PCR, LM-PCR)具有受样品质量影响小、扩增效率高的优点,但其存在模板片段间可能发生自连的弊端,对此本研究应用mLM-PCR法(modified LM-PCR)解决这一问题,采用IIS型限制性内切酶(BbvI和Alw26I)对模板DNA进行酶切产生具有随机碱基粘性末端的片段以减少片段间自连的概率,并使用一组含有随机碱基的接头混合物与模板片段进行连接,最终使用通用引物实现基因组的全扩增。通过对副溶血弧菌基因组的全扩增结果显示,本方法可实现高灵敏度、均衡的全基因组扩增。通过使用特异性PCR以及荧光定量PCR对全扩增效果进行评价结果显示,与目前广泛应用的MDA法(multiple displacement amplification)相比,本方法具有更高的扩增效率与扩增均衡性,显示出极高的全扩增效率。
     WGA法对模板DNA的纯度要求较高,无法应用于大量核酸背景中极微量目标DNA的预扩增,为此本研究建立了基于mLM-PCR法的选择性预扩增方法,可实现大量背景核酸中极微量目标DNA的预扩增:
     (1)通过对大量金枪鱼基因组中极微量副溶血弧菌、霍乱弧菌、沙门氏菌、腐败希瓦氏菌的预扩增结果显示,通过本方法与普通PCR法结合使用可检测至数十拷贝目标致病菌(目标致病菌与背景核酸比例约为10-7),与普通PCR方法相比可将检测灵敏度提高2-3个数量级以上;
     (2)本方法实现了同时对多个目标的多重预扩增,针对上述四种目标致病菌的四重预扩增结果显示使用多重预扩增法可获得与单重预扩增法相近的检测灵敏度,经过多重预扩增的产物较适合进行特异性多重PCR检测,可显著提高检测效率;
     (3)通过使用环介导等温扩增法(LAMP)对预扩增产物进行特异性扩增的结果显示,本预扩增方法可成功实现与LAMP法联用且灵敏度极高,表明预扩增产物可普遍作为PCR类方法或恒温核酸扩增方法等目前常用特异性核酸扩增方法的模板,显示出其灵活性与普遍适用性;
     (4)深入探究了接头结构等因素对mLM-PCR预扩增体系的影响,并对预扩增体系设计中关键点进行了总结如下:a)在一定范围内选择较长(大于200bp)的酶切片段作为预扩增目标;b)在一定范围内接头特异性越高,预扩增灵敏度越高;c)使用单条通用引物进行预扩增时茎环结构(loop)会影响PCR反应,但影响程度随模板长度的增长而减小;d)使用较高退火温度、增加引物浓度、增加反应循环数可有效减少茎环结构对预扩增PCR效率的影响;
     (5)对人工污染牡蛎样品中副溶血弧菌的检测结果显示,mLM-PCR预扩增法可成功用于实际样品中致病菌的高灵敏度检测,检测灵敏度可达到0.1-1弧菌拷贝/管反应。
     综上,本研究建立了一种基于LM-PCR技术的高效预扩增方法,可通过对预扩增体系进行灵活设计而实现对不同状态样品的高效预扩增,可实现大量背景核酸中极微量目标DNA的有效扩增,并对影响预扩增反应的因素进行了总结探讨,通过对水产品中致病菌的检测验证了本方法的可行性与高效性,可普遍应用于食品检测、临床诊断等相关领域。
Gene detection methods based on nucleic acids amplification technique haveadvantages of high sensitivity and specificity and are widely used in various fields,however, under some cases that only little sample DNA could be obtained, sampleDNA was not in good conditions or target DNA existed in massive backgroundnucleic acids thus may hamper its detection efficiency and application. For example,the DNA array technology could perform high-throughput analysis in a short period oftime but need relatively high quality and large quantity of sample. To overcome theseproblems, the pre-amplification of sample DNA is an effective way, one of which isthe whole genome amplification (WGA) technique that already been widely used inanalysis of single nucleotide polymorphisms (SNPs), genotyping and whole genomesequencing.
     Among the existing WGA methods, the ligation-mediated polymerase chainreaction (LM-PCR) possessed advantages of high efficiency and less affected by thepoor conditions of template DNA, however, the self-ligation between templatefragments may happen and cause bad results. To solve this problem, a modifiedLM-PCR (mLM-PCR) was developed to carry out WGA: type IIS restriction enzymes(BbvI and Alw26I) were employed to cleave template DNA into numerous fragmentswith random sequences overhangs followed by ligated to a pool of adapters to formthe substrates for PCR, and finally all of the substrates were amplified with auniversal primer. The WGA results showed that V. parahaemolyticus genomic DNAcould be amplified with high sensitivity and uniformity. Compared to multipledisplacement amplification (MDA), the results based on specific PCR and qPCRanalysis showed that the mLM-PCR method obtained higher WGA efficiency thanMDA.
     WGA based pre-amplification method require high purity template DNA thus not suitable for pre-amplify little amount of target DNA existed in massive backgroundnucleic acids. For this purpose, this study established a novel selectivepre-amplification method based on mLM-PCR that could selective pre-amplify thelittle amount of target DNA from massive background nucleic acids:
     (1) Combined mLM-PCR pre-amplification with specific PCR, the detectionsensitivity of V. parahaemolyticus, S. typhimurium, V. cholera, S. putrefaciensgenomic DNA in massive background nucleic acids achieved about10copies,significantly higher (102to103times) than that with conventional PCR method.
     (2) Multiple pre-amplification could be successfully performed with mLM-PCR.According to the multiple pre-amplification results of above four food bornepathogens, the sensitivity of multiple pre-amplification was as same as that of singletarget pre-amplification. The multiple pre-amplified products could be served astemplates for specific multiplex PCR detection.
     (3) By using pre-amplified products as templates, loop mediated isothermalamplification (LAMP) could be successfully performed and the results confirmed thehigh sensitivity of the combination of the two methods. The results also indicated theflexibility and general applicability of mLM-PCR pre-amplification method toprovide general templates for various DNA amplification approaches.
     (4) The adapter structure was crucial for mLM-PCR pre-amplification and itseffect was discussed as following: a) restriction fragments longer than200bp shouldbe chosen as pre-amplification targets; b) in a certain range, the higher specificity thatthe adapter obsessed, the higher pre-amplification efficiency could be obtained; c)when using single universal primer, the formation of stem-loop structure may affectpre-amplification, and the effect will decrease as the target fragment get longer; d) theeffect of stem-loop structure could be eliminated by using higher annealingtemperature, more PCR cycles and higher primer concentration.
     (5) Artificially contaminated oyster samples for V. parahaemolyticus test resultsshowed that mLM-PCR could be successfully applied to the detection of pathogensexisted in actual seafood sample, and the sensitivity could achieve0.1to1pathogencopy per reaction tube.
     In conclusion, this study established a novel pre-amplification method that basedon mLM-PCR. Through the variable designation of mLM-PCR, sample DNA underdifferent conditions could be pre-amplified with high efficiency, especially the littleamount of target DNA in massive background nucleic acids could be also effectivelypre-amplified to meet the detection requirements of conventional methods, the highefficiency of mLM-PCR pre-amplification also indicated its wide applications invarious gene detection fields such as food detection and clinical diagnosis.
引文
[1] Kleppe, K., Ohtsuka, E., Kleppe, R., et al. Studies on polynucleotides. XCVI. Repair replications ofshort synthetic dna's as catalyzed by DNA polymerases. Journal of molecular biology,1971,56(2):341-361.
    [2] Smith, H.O. and Wilcox, K.W. A restriction enzyme from hemophilus influenzae. I. Purification andgeneral properties. Journal of molecular biology,1970,51(2):379-391.
    [3] Chien, A., Edgar, D.B., and Trela, J.M. Deoxyribonucleic acid polymerase from the extremethermophile thermus aquaticus. Journal of bacteriology,1976,127(3):1550-1557.
    [4] Saiki, R.K., Scharf, S., Faloona, F.A., et al. Enzymatic amplification of beta-globin genomicsequences and restriction site analysis for diagnosis of sickle cell anemia. Science,1985,230(4732):1350-1354.
    [5] Mullis, K.B. and Faloona, F.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chainreaction. Methods in enzymology,1987,155:335-350.
    [6] Saiki, R.K., Gelfand, D.H., Stoffel, S., et al. Primer-directed enzymatic amplification of DNA witha thermostable DNA polymerase. Science,1988,239(4839):487-491.
    [7] Oliveira, D.C. and DeLencastre, H. Multiplex pcr strategy for rapid identification of structural typesand variants of the mec element in methicillin-resistant staphylococcus aureus. Antimicrobialagents and chemotherapy,2002,46(7):2155-2161.
    [8] Anderson, T.P., Werno, A.M., Barratt, K., et al. Comparison of four multiplex pcr assays for thedetection of viral pathogens in respiratory specimens. Journal of virological methods,2013,191(2):118-121.
    [9] Kubista, M., Andrade, J.M., Bengtsson, M., et al. The real-time polymerase chain reaction.Molecular aspects of medicine,2006,27(2-3):95-125.
    [10] Burnet, J.B., Ogorzaly, L., Tissier, A., et al. Novel quantitative taqman real-time pcr assays fordetection of cryptosporidium at the genus level and genotyping of major human andcattle-infecting species. Journal of applied microbiology,2013,114(4):1211-1222.
    [11] Wei, X., Su, S., Guo, Y., et al. DNA detection: A molecular beacon-based signal-offsurface-enhanced raman scattering strategy for highly sensitive, reproducible, and multiplexedDNA detection. Small,2013,9(15):2652-2652.
    [12] Joyner, J., Wanless, D., Sinigalliano, C.D., et al. Use of quantitative real-time pcr for directdetection of serratia marcescens in marine and other aquatic environments. Applied andenvironmental microbiology,,2014,80(5):1679-1683.
    [13] Guy, R.A., Tremblay, D., Beausoleil, L., et al. Quantification of e. Coli o157and stec in feces offarm animals using direct multiplex real time PCR (qPCR) and a modified most probable numberassay comprised of immunomagnetic bead separation and qPCR detection. Journal ofmicrobiological methods,2014,99:44-53.
    [14] López-Calleja, I.M., De la Cruz, S., Pegels, N., et al. High resolution taqman real-time PCRapproach to detect hazelnut DNA encoding for its rdna in foods. Food chemistry,2013,141(3):1872-1880.
    [15]李旦,王加启,卜登攀,等.高分辨率熔解曲线及其应用.生物技术通报,2009,7:48-51.
    [16] Ando, T., Monroe, S.S., Gentsch, J.R., et al. Detection and differentiation of antigenically distinctsmall round-structured viruses (norwalk-like viruses) by reverse transcription-PCR and southernhybridization. Journal of clinical microbiology,1995,33(1):64-71.
    [17] Wu, L., Ding, L., Pei, Z., et al. A multiplex reverse transcription-PCR assay for the detection ofinfluenza a virus and differentiation of the H1, H3, H5and H9subtypes. Journal of vrologicalmethods,2013,188(1-2):47-50.
    [18]来培培,李阳,李海东,等.胃癌组织中mRNA-375基因高甲基化及其表达的研究.中国肿瘤临床,2013,2:81-84.
    [19]张天英,陈清瑞,杨炳春,等.高灵敏度巢式PCR方法扩增HBV全长基因组.厦门大学学报(自然科学版),2011,50(5):947-950.
    [20] Reinwald, M., Buchheidt, D., Hummel, M., et al. Diagnostic performance of anaspergillus-specific nested PCR assay in cerebrospinal fluid samples of immunocompromisedpatients for detection of central nervous system aspergillosis. PloS one,2013,8(2): e56706.
    [21] Atkinson, C., Emery, V.C., and Griffiths, P.D. Development of a novel single tube nested PCR forenhanced detection of cytomegalovirus DNA from dried blood spots. Journal of virologicalmethods,2014,196:40-44.
    [22]邵碧芳,王猛.反向PCR鉴定piggyBAC介导的哺乳动物细胞转基因研究.河南农业科学,2011,40(10):141-143.
    [23] Guo, J., Yang, L., Chen, L., et al. Mpic: A high-throughput analytical method for multiple DNAtargets. Analytical chemistry,2011,83(5):1579-1586.
    [24] Tewhey, R., Warner, J.B., Nakano, M., et al. Microdroplet-based pcr enrichment for large-scaletargeted sequencing. Nature biotechnology,2009,27(11):1025-1031.
    [25] Komori, H.K., LaMere, S.A., Torkamani, A., et al. Application of microdroplet PCR forlarge-scale targeted bisulfite sequencing. Genome research,2011,21(10):1738-1745.
    [26] Metzker, M.L. Sequencing technologies-the next generation. Nature reviews genetics,2010,11(1):31-46.
    [27] Reddy, K.D., Nagaraju, J., and Abraham, E.G. Genetic characterization of the silkworm bombyxmori by simple sequence repeat (ssr)-anchored PCR. Heredity,1999,83:681-687.
    [28] Szymczak-Workman, A.L., Vignali, K.M., and Vignali, D.A. Generation of2a-linkedmulticistronic cassettes by recombinant PCR. Cold spring harbor protocol,2012,2012(2):251-254.
    [29] Perez, J.W., Vargis, E.A., Russ, P.K., et al. Detection of respiratory syncytial virus usingnanoparticle amplified immuno-polymerase chain reaction. Analytical biochemistry,2011,410(1):141-148.
    [30] Gill, P. and Ghaemi, A. Nucleic acid isothermal amplification technologies: A review. Nucleosides,nucleotides&nucleic acids,2008,27(3):224-243.
    [31] Notomi, T., Okayama, H., Masubuchi, H., et al. Loop-mediated isothermal amplification of DNA.Nucleic acids research,2000,28(12): e63.
    [32] Mori, Y., Hirano, T., and Notomi, T. Sequence specific visual detection of LAMP reactions byaddition of cationic polymers. BMC biotechnology,2006,6:3.
    [33] Mori, Y., Kitao, M., Tomita, N., et al. Real-time turbidimetry of LAMP reaction for quantifyingtemplate DNA. Jouanal of biochemical and biophysical methods,2004,59(2):145-157.
    [34] Savan, R., Igarashi, A., Matsuoka, S., et al. Sensitive and rapid detection of Edwardsiellosis in fishby a loop-mediated isothermal amplification method. Applied and environmental microbiology,2004,70(1):621-624.
    [35] Hong, T.C., Mai, Q.L., Cuong, D.V., et al. Development and evaluation of a novel loop-mediatedisothermal amplification method for rapid detection of severe acute respiratory syndromecoronavirus. Journal of clinical microbiology,2004,42(5):1956-1961.
    [36] Tomita, N., Mori, Y., Kanda, H., et al. Loop-mediated isothermal amplification (LAMP) of genesequences and simple visual detection of products. Nature protocols,2008,3(5):877-882.
    [37] Yang, B.C., Wang, F.X., Zhang, S.Q., et al. Comparative evaluation of conventional polymerasechain reaction (PCR), with loop-mediated isothermal amplification and SYBR green I-basedreal-time PCR for the quantitation of porcine circovirus-1DNA in contaminated samples destinedfor vaccine production. Journal of virological methods,2013,191(1):1-8.
    [38] Mori, Y., Nagamine, K., Tomita, N., et al. Detection of loop-mediated isothermal amplificationreaction by turbidity derived from magnesium pyrophosphate formation. Biochemical andbiophysical research communications,2001,289(1):150-154.
    [39]汪琳,罗英,周琦,等.核酸恒温扩增技术研究进展.生物技术通讯,2011,22(3):296-302.
    [40] Schweitzer, B., Roberts, S., Grimwade, B., et al. Multiplexed protein profiling on microarrays byrolling-circle amplification. Nature biotechnology,2002,20(4):359-365.
    [41] Larsson, C., Koch, J., Nygren, A., et al. In situ genotyping individual DNA molecules bytarget-primed rolling-circle amplification of padlock probes. Nature methods,2004,1(3):227-232.
    [42] An, L., Tang, W., Ranalli, T.A., et al. Characterization of a thermostable UvrD helicase and itsparticipation in helicase-dependent amplification. The Journal of biological chemistry,2005,280(32):28952-28958.
    [43] Vincent, M., Xu, Y., and Kong, H. Helicase-dependent isothermal DNA amplification. EMBOreports,2004,5(8):795-800.
    [44] Detter, J.C., Jett, J.M., Lucas, S.M., et al. Isothermal strand-displacement amplificationapplications for high-throughput genomics. Genomics,2002,80(6):691-698.
    [45] Lanciotti, R.S. and Kerst, A.J. Nucleic acid sequence-based amplification assays for rapiddetection of west nile and st. Louis encephalitis viruses. Journal of clinical microbiology,2001,39(12):4506-4513.
    [46] Huppert, J.S., Mortensen, J.E., Reed, J.L., et al. Rapid antigen testing compares favorably withtranscription-mediated amplification assay for the detection of trichomonas vaginalis in youngwomen. Clinical infectious diseases,2007,45(2):194-198.
    [47] Lasken, R.S. and Egholm, M. Whole genome amplification: abundant supplies of DNA fromprecious samples or clinical specimens. Trends in biotechnology,2003,21(12):531-535.
    [48] Hawkins, T.L., Detter, J.C., and Richardson, P.M. Whole genome amplification-applications andadvances. Current opinion in biotechnology,2002,13(1):65-67.
    [49] Hasmats, J., Green, H., Orear, C., et al. Assessment of whole genome amplification for sequencecapture and massively parallel sequencing. PloS one,2014,9(1): e84785.
    [50] Kumar, S., Gangoliya, S.R., Berri, M., et al. Whole genome amplification of the obligateintracellular pathogen coxiella burnetii using multiple displacement amplification. Journal ofmicrobiological methods,2013,95(2013):368-372..
    [51] Maciejewska, A., Jakubowska, J., and Pawlowski, R. Whole genome amplification of degradedand nondegraded DNA for forensic purposes. International journal of legal medicine,2013,127(2):309-319.
    [52] Zhang, L., Cui, X., Schmitt, K., et al. Whole genome amplifcation from a single cell-implicationsfor genetic analysis. Proceedings of the national academy of sciences of the U.S.A.,1992,89:5847-5851.
    [53] Vona, G., Beroud, C., Benachi, A., et al. Enrichment, immunomorphological, and geneticcharacterization of fetal cells circulating in maternal blood. The American journal of pathology,2002,160(1):51-58.
    [54] Dietmaier, W., Hartmann, A., Wallinger, S., et al. Multiple mutation analyses in single tumor cellswith improved whole genome amplification. The American journal of pathology,1999,154(1):83-95.
    [55] Telenius, H., Carter, N.P., Bebb, C.E., et al. Degenerate oligonucleotide-primed PCR: Generalamplification of target DNA by a single degenerate primer. Genomics,1992,13(3):718-725.
    [56] Huang, Q., Schantz, S.P., Rao, P.H., et al. Improving degenerate oligonucleotide primedPCR-comparative genomic hybridization for analysis of DNA copy number changes in tumors.Genes, chromosomes&cancer,2000,28(4):395-403.
    [57] Pfeifer, G.P., Steigerwald, S.D., Mueller, P.R., et al. Genomic sequencing and methylation analysisby ligation mediated PCR. Science,1989,246.
    [58] Dai, S.M., Chen, H.H., Chang, C., et al. Ligation-mediated PCR for quantitative in vivofootprinting. Nature biotechnology,2000,18(10):1108-1111.
    [59] Hornstra, I.K. and Yang, T.P. In vivo footprinting and genomic sequencing by ligation-mediatedPCR. Analytical biochemistry,1993,213(2):179-193.
    [60] Quivy, J.P. and Becker, P.B. An improved protocol for genomic sequencing and footprinting byligation-mediated PCR. Nucleic acids research,1993,21(11):2779-2781.
    [61] Klein, C.A., Schmidt-Kittler, O., Schardt, J.A., et al. Comparative genomic hybridization, loss ofheterozygosity, and DNA sequence analysis of single cells. Proceedings of the national academyof sciences of the U.S.A.,1999,96(8):4494-4499.
    [62] Hosono, S., Faruqi, A.F., Dean, F.B., et al. Unbiased whole-genome amplification directly fromclinical samples. Genome research,2003,13(5):954-964.
    [63] Dean, F.B., Hosono, S., Fang, L., et al. Comprehensive human genome amplification usingmultiple displacement amplification. Proceedings of the national academy of sciences of theU.S.A.,2002,99(8):5261-5266.
    [64] Fernandez-Ortuno, D., Tores, J.A., DeVicente, A., et al. Multiple displacement amplification, apowerful tool for molecular genetic analysis of powdery mildew fungi. Current genetics,2007,51(3):209-219.
    [65] Dickson, P.A., Montgomery, G.W., Henders, A., et al. Evaluation of multiple displacementamplification in a5cm STR genome-wide scan. Nucleic acids research,2005,33(13): e119.
    [66] Evans, M.F., Adamson, C.S., VonWalstrom, G.M., et al. Use of multiple displacementamplification in the investigation of human papillomavirus physical status. Journal of clinicalpathology,2007,60(10):1135-1139.
    [67] Ellegaard, K.M., Klasson, L., and Andersson, S.G. Testing the reproducibility of multipledisplacement amplification on genomes of clonal endosymbiont populations. PloS one,2013,8(11): e82319.
    [68] Zong, C., Lu, S., Chapman, A.R., et al. Genome-wide detection of single-nucleotide andcopy-number variations of a single human cell. Science,2012,338(6114):1622-1626.
    [69] Lasken, R.S. Single-cell sequencing in its prime. Nature biotechnology,2013,31(3):211-212.
    [70] Ni, X., Zhuo, M., Su, Z., et al. Reproducible copy number variation patterns among singlecirculating tumor cells of lung cancer patients. Proceedings of the national academy of sciences ofthe U.S.A.,2013,110(52):21083-21088.
    [71] Su, Y.C. and Liu, C. Vibrio parahaemolyticus: A concern of seafood safety. Food microbiology,2007,24(6):549-558.
    [72] Bej, A.K., Patterson, D.P., Brasher, C.W., et al. Detection of total and hemolysin-producing Vibrioparahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh, and trh. Journal ofmicrobiological mehtods,1999,36:215-225.
    [73] Chiang, Y.C., Tsen, H.Y., Chen, H.Y., et al. Multiplex PCR and a chromogenic DNA macroarrayfor the detection of Listeria monocytogens, Staphylococcus aureus, Streptococcus agalactiae,Enterobacter sakazakii, Escherichia coli O157:H7, Vibrio parahaemolyticus, Salmonella spp. andpseudomonas fluorescens in milk and meat samples. Journal of microbiological methods,2012,88(1):110-116.
    [74] Yamazaki, W., Ishibashi, M., Kawahara, R., et al. Development of a loop-mediated isothermalamplification assay for sensitive and rapid detection of Vibrio parahaemolyticus. BMCmicrobiology,2008,8:163.
    [75] Zeng, J., Wei, H., Zhang, L., et al. Rapid detection of Vibrio parahaemolyticus in raw oysters usingimmunomagnetic separation combined with loop-mediated isothermal amplification. Internationaljournal of food microbiology,2014,174:123-128.
    [76] Duan, N., Wu, S., Yu, Y., et al. A dual-color flow cytometry protocol for the simultaneousdetection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugatedquantum dots as labels. Analytica chimica acta,2013,804:151-158.
    [77] McCarthy, N., Reen, F.J., Buckley, J.F., et al. Sensitive and rapid molecular detection assays forSalmonella enterica serovars typhimurium and heidelberg. Journal of food protection,2009,72(11):2350-2357.
    [78] Ma, L., Zhang, G., Gerner-Smidt, P., et al. Survival and growth of Salmonella in salsa and relatedingredients. Journal of food protection,2010,73(3):434-444.
    [79] Malorny, B., Paccassoni, E., Fach, P., et al. Diagnostic real-time PCR for detection of Salmonellain food. Applied and environmental microbiology,2004,70(12):7046-7052.
    [80] Jenikova, G., Pazlarova, J., and Demnerova, K. Detection of Salmonella in food samples by thecombination of immunomagnetic separation and PCR assay. International microbiology: theofficial journal of the Spanish society for microbiology,2000,3(4):225-229.
    [81] Sankar, S., Vadivel, K., Nandagopal, B., et al. A multiplex nested PCR for the simultaneousdetection of Salmonella typhi, Mycobacterium tuberculosis, and Burkholderia pseudomallei inpatients with pyrexia of unknown origin (puo) in vellore, south India. Molecular diagnosis&therapy,2014.
    [82] Benetti, T.M., Monteiro, C.L., Beux, M.R., et al. Enzyme-linked imunoassays for the detection ofListeria sp. and Salmonella sp. in sausage: a comparison with conventional methods. Brazilianjournal of microbiology,2013,44(3):791-794.
    [83] Turner, J.W., Malayil, L., Guadagnoli, D., et al. Detection of Vibrio parahaemolyticus, Vibriovulnificus and Vibrio cholerae with respect to seasonal fluctuations in temperature and planktonabundance. Environmental microbiology,2013.
    [84] Fakruddin, M.D., Sultana, M., Ahmed, M.M., et al. Multiplex PCR (polymerase chain reaction)assay for detection of E.Coli O157:H7, Salmonella sp., Vibrio cholerae and Vibrioparahaemolyticus in spiked shrimps (penaeus monodon). Pakistan journal of biological sciences,2013,16(6):267-274.
    [85] Imani, F.A., Iman, I.D., Hosseini, D.R., et al. Design of a multiplex PCR method for detection oftoxigenic-pathogenic in Vibrio cholerae. Asian pacific journal of tropical medicine,2013,6(2):115-118.
    [86] Osterberg, F.W., Rizzi, G., Donolato, M., et al. On-chip detection of rolling circle amplified DNAmolecules from Bacillus globigii spores and Vibrio cholerae. Small,2014.
    [87] Warner, E.B. and Oliver, J.D. Multiplex PCR assay for detection and simultaneous differentiationof genotypes of Vibrio vulnificus biotype1. Foodborne pathogens and disease,2008,5(5):691-693.
    [88] Neogi, S.B., Chowdhury, N., Asakura, M., et al. A highly sensitive and specific multiplex PCRassay for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibriovulnificus. Letters in applied microbiology,2010,51(3):293-300.
    [89] Surasilp, T., Longyant, S., Rukpratanporn, S., et al. Rapid and sensitive detection of Vibriovulnificus by loop-mediated isothermal amplification combined with lateral flow dipstick targetedto rpos gene. Molecular and cellular probes,2011,25(4):158-163.
    [90] Wu, Z.H., Lou, Y.L., Lu, Y.Y., et al. Development of quantitative real-time polymerase chainreaction for the detection of Vibrio vulnificus based on hemolysin (vvhA) coding system.Biomedical and environmental sciences,2008,21(4):296-301.
    [91] Yan, Z.M., Zheng, J., Chen, Q., et al. Development of an immunochromatographic strip test forrapid detection of Vibrio vulnificus. Journal of southern medical university,2011,31(5):894-896.
    [92]段霞,赖卫华,张莉莉.单核细胞增生李斯特氏菌检测技术研究进展.食品科学,2009,30(15):281-284.
    [93] Ahmed, H.A., Hussein, M.A., and El-Ashram, A.M. Seafood a potential source of some zoonoticbacteria in Zagazig, Egypt, with the molecular detection of Listeria monocytogenes virulencegenes. Veterinaria italiana,2013,49(3):299-308.
    [94] Garrido, A., Chapela, M.J., Roman, B., et al. In-house validation of a multiplex real-time PCRmethod for simultaneous detection of Salmonella spp., Escherichia coli O157and Listeriamonocytogenes. International journal of food microbiology,2013,164(1):92-98.
    [95] Yang, Y., Xu, F., Xu, H., et al. Magnetic nano-beads based separation combined with propidiummonoazide treatment and multiplex PCR assay for simultaneous detection of viable Salmonellatyphimurium, Escherichia coli O157:H7and Listeria monocytogenes in food products. Foodmicrobiology,2013,34(2):418-424.
    [96] Wang, R.F., Cao, W.W., and Cerniglia, C.E. A universal protocol for PCR detection of13speciesof foodborne pathogens in foods. Journal of applied microbiology,1997,83(6):727-736.
    [97] Abu Al-Soud, W., Jonsson, L.J., and Radstrom, P. Identification and characterization ofimmunoglobulin G in blood as a major inhibitor of diagnostic PCR. Journal of clinicalmicrobiology,2000,38(1):345-350.
    [98] Hoorfar, J., Cook, N., Malorny, B., et al. Making internal amplification control mandatory fordiagnostic PCR. Journal of clinical microbiology,2003,41(12):5835.
    [99] Hoorfar, J., Malorny, B., Abdulmawjood, A., et al. Practical considerations in design of internalamplification controls for diagnostic PCR assays. Journal of clinical microbiology,2004,42(5):1863-1868.
    [100] Tebbs, R.S., Brzoska, P.M., Furtado, M.R., et al. Design and validation of a novel multiplexreal-time PCR assay for Vibrio pathogen detection. Journal of food protection,2011,74(6):939-948.
    [101]翁思聪,朱军莉,励建荣.水产品中4种常见致病菌多重PCR检测方法的建立及评价.水产学报,2011,35(2):305-314.
    [102] Wang, X., Jothikumar, N., and Griffiths, M.W. Enrichment and DNA extraction protocols for thesimultaneous detection of Salmonella and Listeria monocytogenes in raw sausage meat withmultiplex real-time PCR. Journal of food protection,2004,67(1):189-192.
    [103] Ward, L.N. and Bej, A.K. Detection of vibrio parahaemolyticus in shellfish by use of multiplexedreal-time PCR with TaqMan fluorescent probes. Applied and environmental microbiology,2006,72(3):2031-2042.
    [104] Amagliani, G., Omiccioli, E., Brandi, G., et al. A multiplex magnetic capture hybridisation andmultiplex real-time PCR protocol for pathogen detection in seafood. Food microbiology,2010,27(5):580-585.
    [105] Nagamine, K., Watanabe, K., Ohtsuka, K., et al. Loop-mediated isothermal amplification reactionusing a nondenatured template. Clinical Chemistry,2001,47(9):1742-1743.
    [106] Yamazaki, W., Kumeda, Y., Misawa, N., et al. Development of a loop-mediated isothermalamplification assay for sensitive and rapid detection of the tdh and trh genes of Vibrioparahaemolyticus and related Vibrio species. Applied and environmental microbiology,2010,76(3):820-828.
    [107] Fang, X., Liu, Y., Kong, J., et al. Loop-mediated isothermal amplification integrated onmicrofluidic chips for point-of-care quantitative detection of pathogens. Analytical chemistry,2010,82(7):3002-3006.
    [108] Hara-Kudo, Y., Yoshino, M., Kojima, T., et al. Loop-mediated isothermal amplification for therapid detection of Salmonella. FEMS microbiology letters,2005,253(1):155-161.
    [109] Shuga, J., Zeng, Y., Novak, R., et al. Single molecule quantitation and sequencing of raretranslocations using microfluidic nested digital PCR. Nucleic acids research,2013,41(16): e159.
    [110] Tan, E., Erwin, B., Dames, S., et al. Specific versus nonspecific isothermal DNA amplificationthrough thermophilic polymerase and nicking enzyme activities. Biochemistry,2008,47(38):9987-9999.
    [111]王保军,刘双江.环境微生物培养新技术的研究进展.微生物学通报,2013,40(1):6-17.
    [1] Brugman, M.H., Suerth, J.D., Rothe, M., et al. Evaluating a ligation-mediated PCR andpyrosequencing method for the detection of clonal contribution in polyclonal retrovirallytransduced samples. Human gene therapy methods,2013,24(2):68-79.
    [2] Singh, S., Shih, S.J., and Vaughan, A.T. Detection of DNA double-strand breaks and chromosometranslocations using ligation-mediated PCR and inverse PCR. Methods in molecular biology,2014,1105:399-415.
    [3] O'Malley, R.C., Alonso, J.M., Kim, C.J., et al. An adapter ligation-mediated PCR method forhigh-throughput mapping of T-DNA inserts in the arabidopsis genome. Nature protocols,2007,2(11):2910-2917.
    [4] Akman, L., Yamashita, A., Watanabe, H., et al. Genome sequence of the endocellular obligatesymbiont of tsetse flies, wigglesworthia glossinidia. Nature genetics,2002,32(3):402-407.
    [5] Joneja, A. and Huang, X. A device for automated hydrodynamic shearing of genomic DNA.Biotechniques,2009,46(7):553-556.
    [6] Smith, D.R. Ligation-mediated PCR of restriction fragments from large DNA molecules. Genomeresearch,1992,2(1):21-27.
    [7] O'Geen, H., Nicolet, C., Blahnik, K., et al. Comparison of sample preparation methods forchip-chip assays. Biotechniques,2006,41(5):577-580.
    [8] Pingoud, A. and Jeltsch, A. Structure and function of type II restriction endonucleases. Nucleicacids research,2001,29(18):3705-3727.
    [9] Miyahara, M., Shimada, T., Kotani, H., et al. Isolation and characterization of new restrictionendonucleases from Vibrio parahaemolyticus: Vpak32I enzyme with the class-IIS heptanucleotidespecificity, GCTCTTCN1/N4. Gene,1992,117(1):103-106.
    [10] Krawczyk, B., Leibner-Ciszak, J., Stojowska, K., et al. The new LM-PCR/shifter method for thegenotyping of microorganisms based on the use of a class IIS restriction enzyme and ligationmediated PCR. Journal of microbiology and biotechnology,2011,21(12):1336-1344.
    [11] West, S.E.H., Schweizer, H.P., Dall, C., et al. Construction of improved escherichia-pseudomonasshuttle vectors derived from pUC18/19and sequence of the region required for their replication inpseudomonas-aeruginosa. Gene,1994,148(1):81-86.
    [12]萨姆布鲁克,拉塞尔.分子克隆实验指南(黄培堂等译).北京:科学出版社,2002:32-36.
    [13] Vincze, T., Posfai, J., and Roberts, R.J. Nebcutter: A program to cleave DNA with restrictionenzymes. Nucleic acids research,2003,31(13):3688-3691.
    [14] Masny, A. and Plucienniczak, A. Ligation mediated PCR performed at low denaturationtemperatures-PCR melting profiles. Nucleic acids research,2003,31(18): e114.
    [15] Wiedmann, M., Wilson, W.J., Czajka, J., et al. Ligase chain reaction (LCR)-overview andapplications. PCR methods and applications,1994,3(4): S51-64.
    [16] Lohman, G.J., Chen, L., and Evans, T.C. Kinetic characterization of single strand break ligation induplex DNA by T4DNA ligase. The Journal of biological chemistry,2011,286(51):44187-44196.
    [17] Rossi, R., Montecucco, A., Ciarrocchi, G., et al. Functional characterization of the T4DNA ligase.Nucleic acids research,1997,25(11):2106-2113.
    [18] Shuman, S. DNA ligases: progress and prospects. The Journal of biological chemistry,2009,284(26):17365-17369.
    [19] Liu, Q.Y., Ribecco-Lutkiewicz, M., Carson, C., et al. Mapping the initial DNA breaks in apoptoticjurkat cells using ligation-mediated PCR. Cell death differ,2003,10(3):278-289.
    [20] Nikawa, J. and Kawabata, M. PCR-and ligation-mediated synthesis of marker cassettes with longflanking homology regions for gene disruption in saccharomyces cerevisiae. Nucleic acidsresearch,1998,26(3):860-861.
    [21] Gentner, B., Fruehauf, S., Laufs, S., et al. Ligation-mediated PCR and PCR with partly degenerate,arbitrary primers both allow detection of clonal integration of retroviral vectors in humanhematopoietic cells. Blood,2000,96(11):71a-71a.
    [22]姚新生,马骊,温茜,等.检测人TCR BD基因重排时RSS断裂末端的LM-PCR方法的建立.中国免疫学杂志,2006,22(4):342-345.
    [1] Hawkins, T.L., Detter, J.C., and Richardson, P.M. Whole genome amplification-applications andadvances. Current opinion in biotechnology,2002,13(1):65-67.
    [2] Hughes, S., Arneson, N., Done, S., et al. The use of whole genome amplification in the study ofhuman disease. Progress in biophysics and molecular biology,2005,88(1):173-189.
    [3] Lasken, R.S. and Egholm, M. Whole genome amplification: abundant supplies of DNA fromprecious samples or clinical specimens. Trends in biotechnology,2003,21(12):531-535.
    [4] Abulencia, C.B., Wyborski, D.L., Garcia, J.A., et al. Environmental whole-genome amplification toaccess microbial populations in contaminated sediments. Applied and environmentalmicrobiology,2006,72(5):3291-3301.
    [5]蔡海强,柳海涛,史斌,等.全基因组扩增技术及其在法医个体识别中的应用.遗传,2010,32(11):1119-1125.
    [6]秦楠,栗东芳,杨瑞馥.高通量测序技术及其在微生物学研究中的应用.微生物学报,2011,51(4):445-457.
    [7] Zhang, L., Cui, X., Schmitt, K., et al. Whole genome amplifcation from a single cell-implicationsfor genetic analysis. Proceedings of the National academy of sciences of the U.S.A.,1992,89(13):5847-5851.
    [8] Barbaux, S., Poirier, O., and Cambien, F. Use of degenerate oligonucleotide primed PCR(DOP-PCR) for the genotyping of low-concentration DNA samples. Journal of molecularmedicine,2001,79(5-6):329-332.
    [9] Liu, D., Liu, C., DeVries, S., et al. LM-PCR permits highly representative whole genome.Diagnostic molecular pathology,2004,13.
    [10] Lovmar, L. and Syvanen, A.C. Multiple displacement amplification to create a long-lasting sourceof DNA for genetic studies. Human mutation,2006,27(7):603-614.
    [11] Dean, F.B., Hosono, S., Fang, L., et al. Comprehensive human genome amplification usingmultiple displacement amplification. Proceedings of the National Academy of Sciences of theU.S.A.,2002,99(8):5261-5266.
    [12] Jiang, Z., Zhang, X., Deka, R., et al. Genome amplification of single sperm using multipledisplacement amplification. Nucleic acids research,2005,33(10): e91.
    [13] Barker, D.L., Hansen, M.S., Faruqi, A.F., et al. Two methods of whole-genome amplificationenable accurate genotyping across a2320-SNP linkage panel. Genome research,2004,14(5):901-907.
    [14] Hosono, S., Faruqi, A.F., Dean, F.B., et al. Unbiased whole-genome amplification directly fromclinical samples. Genome research,2003,13(5):954-964.
    [15] Lasken, R.S. Single-cell genomic sequencing using multiple displacement amplification. Currentopinion in microbiology,2007,10(5):510-516.
    [16] Paez, J.G., Lin, M., Beroukhim, R., et al. Genome coverage and sequence fidelity of29polymerase-based multiple strand displacement whole genome amplification. Nucleic acidsresearch,32(9): e71.
    [17] Yilmaz, S., Allgaier, M., and Hugenholtz, P. Multiple displacement amplification compromisesquantitative analysis of metagenomes. Nature methods,2010,7(12):943-944.
    [18] Besaratinia, A. and Pfeifer, G.P. Measuring the formation and repair of UV damage at the DNAsequence level by ligation-mediated PCR. Methods in molecular biology,2012,920:189-202.
    [19] Pfeifer, G.P., Steigerwald, S.D., Mueller, P.R., et al. Genomic sequencing and methylation analysisby ligation mediated PCR. Science,1989,246.
    [20] Tormanen, V.T., Swiderski, P.M., Kaplan, B.E., et al. Extension product capture improves genomicsequencing and DNase I footprinting by ligation-mediated PCR. Nucleic acids research,1992,20(20):5487-5488
    [21] Guilfoyle, R.A., Leeck, C.L., Kroening, K.D., et al. Ligation-mediated PCR amplification ofspecific fragments from a class-II restriction endonuclease total digest. Nucleic acids research,1997,25(9):1854-1858..
    [22] Tanabe, C., Aoyagi, K., Sakiyama, T., et al. Evaluation of a whole-genome amplification methodbased on adaptor-ligation PCR of randomly sheared genomic DNA. Genes, chromosomes andcancer,2003,38(2):168-176.
    [23]祝儒刚.海产品中致病性副溶血弧菌PCR快速检测体系建立及定量研究:[博士学位论文].辽宁沈阳:沈阳农业大学,2011.
    [24] W, S., SC, K., N, H., et al. Class-IIS restriction enzymes-a review. Gene,1991,100:13-26.
    [25] Pingoud, A. and Jeltsch, A. Structure and function of type II restriction endonucleases. Nucleicacids research,2001,29(18):3705-3727.
    [26] Vincze, T., Posfai, J., and Roberts, R.J. NEBcutter: A program to cleave DNA with restrictionenzymes. Nucleic acids research,2003,31(13):3688-3691.
    [27] Benson, D.A., Karsch-Mizrachi, I., Clark, K., et al. Genbank. Nucleic acids research,2012,40(Database issue): D48-53.
    [28] Makino, K., Oshima, K., Kurokawa, K., et al. Genome sequence of vibrio parahaemolyticus: Apathogenic mechanism distinct from that of V cholerae. The lancet,2003,361(9359):743-749.
    [29] Marcy, Y., Ishoey, T., Lasken, R.S., et al. Nanoliter reactors improve multiple displacementamplification of genomes from single cells. PLoS genetics,2007,3(9):1702-1708.
    [30]潘星华,朱海英, Marjani, S.L.单细胞基因组学分析的技术前沿.遗传,2011,33(1):17-24.
    [31] Anchordoquy, H.C., McGeary, C., Liu, L., et al. Genotyping of three candidate genes afterwhole-genome preamplification of DNA collected from buccal cells. Behavior genetics,2003,33(1):73-78.
    [32]周怀谷,张晨.全基因组扩增法应用于低拷贝数DNA检测.法医学杂志,2006,22(1):43-47.
    [1] Ali, M.E., Rahman, M.M., Abd Hamid, S.B., et al. Canine-specific PCR assay targeting cytochromeb gene for the detection of dog meat adulteration in commercial frankfurters. Food analyticalmethods,2014,7(1):234-241.
    [2] Duarte, M.D., Barros, S.C., Henriques, A.M., et al. Development and validation of a real time PCRfor the detection of myxoma virus based on the diploid gene M000.5L/R. Journal of virologicalmethods,2014,197:219-224.
    [3] Jafari, M., Pirouzi, A., Anoosheh, S., et al. Rapid and simultaneous detection of vitamin D receptorgene polymorphisms by a single arms-PCR assay. Molecular diagnosis&therapy,2014,18(1):97-103.
    [4] Fu, Z., Zhou, X., and Xing, D. Sensitive colorimetric detection of listeria monocytogenes based onisothermal gene amplification and unmodified gold nanoparticles. Methods,2013,64(3):260-266.
    [5] Garrido-Maestu, A., Chapela, M.J., Penaranda, E., et al. In-house validation of novel multiplexreal-time PCR gene combination for the simultaneous detection of the main human pathogenicVibrios (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus). Food control,2014,37:371-379.
    [6] Bao, H., Jia, C.P., Zhou, Z.L., et al. A novel DNA detection method based on gold nanoparticleprobes and gene chips. Acta chim sinica,2009,67(18):2144-2148.
    [7] Duan, R.Q., Yuan, J.L., Yang, H., et al. Detection of p53gene mutation by using a novel biosensorbased on localized surface plasmon resonance. Neoplasma,2012,59(3):348-353.
    [8] Tebbs, R.S., Brzoska, P.M., Furtado, M.R., et al. Design and validation of a novel multiplexreal-time PCR assay for Vibrio pathogen detection. Journal of food protection,2011,74(6):939-948.
    [9] Piggott, M.P., Bellemain, E., Taberlet, P., et al. A multiplex pre-amplification method thatsignificantly improves microsatellite amplification and error rates for faecal DNA in limitingconditions. Conservation genetics,2004,5(3):417-420.
    [10] Mamon, H.J., Hader, C., Kulkez, M.H., et al. Whole genome amplification permits the detection ofcirculating tumor-derived k-ras mutations in the plasma of patients treated with radiation therapy.International journal of radiation oncology biology physics,2007,69(3): S65-S65.
    [11] Suzuki, K., Takigawa, W., Tanigawa, K., et al. Detection of mycobacterium leprae DNA fromarchaeological skeletal remains in Japan using whole genome amplification and polymerase chainreaction. PloS one,2010,5(8).
    [12] Xia, P., Radpour, R., Kohler, C., et al. A selected pre-amplification strategy for genetic analysisusing limited DNA targets. Clinical chemistry and laboratory medicine,2009,47(3):288-293.
    [13] Yamada, K., Terahara, T., Kurata, S., et al. Retrieval of entire genes from environmental DNA byinverse PCR with pre-amplification of target genes using primers containing locked nucleic acids.Environmental microbiology,2008,10(4):978-987.
    [14] Callow, M.J., Drmanac, S., Drmanac, R. Selective DNA amplification from complex genomesusing universal double-sided adapters. Nucleic acids research,2004,32(2): e21.
    [15]马锦琪,纪亚忠,盛毅,等.单细胞引物延伸预扩增分析多个基因.中华医学遗传学杂志,2001,18(5):391-394.
    [16] Lowe, B., Kobayashi, L., Lonncz, A., et al. HPV genotype detection using hybrid capture samplepreparation combined with whole genome amplification and multiplex detection with LuminexXMAP. Journal of molecular diagnostics,2010,12(6):847-853.
    [17]刘阳.克雷伯氏菌噬菌体p13基因组学及多糖解聚酶性质的研究:[硕士学位论文].山东青岛:中国海洋大学,2013.
    [18]邵碧英,王传得,郑晶,等.黄曲霉DNA提取及PCR_RFLP检测方法的建立.食品科学,2008,29(12):393-396.
    [19]刘奇正,王秀丹,于方塘,等.一株海洋芽孢杆菌调节黄曲霉aflR和aflJ表达研究.大连理工大学学报,2011,51(s1): s39-s41.
    [20] Akiyama, M., Maki, H., Sekiguchi, M., et al. A specific role of MutT protein: to prevent dG.dAmispairing in DNA replication. Proceedings of the national academy of sciences of the U.S.A.,1989,86(11):3949-3952.
    [21] Harada, K. and Orgel, L.E. Unexpected substrate specificity of T4DNA ligase revealed by in vitroselection. Nucleic acids research,1993,21(10):2287-2291.
    [22] Luo, J., Bergstrom, D.E., and Barany, F. Improving the fidelity of thermus thermophilus DNAligase. Nucleic acids research,1996,24(15):3071-3078.
    [23] Hedmark, E. and Ellegren, H. A test of the multiplex pre-amplification approach in microsatellitegenotyping of wolverine faecal DNA. Conservation genetics,2006,7(2):289-293.
    [24] Mengual, L., Burset, M., Marín-Aguilera, M., et al. Multiplex preamplification of specific cDNAtargets prior to gene expression analysis by TaqMan arrays. BMC research notes,2008,1(1):21.
    [25] Milbury, C.A., Chen, C.C., Mamon, H., et al. Multiplex amplification coupled with COLD-PCRand high resolution melting enables identification of low-abundance mutations in cancer sampleswith low DNA content. The Journal of Molecular Diagnostics,2011,13(2):220-232.
    [26] Smith, M.J., Pascal, C.E., Grauvogel, Z., et al. Multiplex preamplification PCR and microsatellitevalidation enables accurate single nucleotide polymorphism genotyping of historical fish scales.Molecular ecology resources,2011,11(s1):268-277.
    [1] Lindahl, T. Instability and decay of the primary structure of DNA. Nature,1993,362(6422):709-715.
    [2] Wang, W.P., Ni, K.Y., and Zhou, G.H. Multiplex single nucleotide polymorphism genotyping byadapter ligation-mediated allele-specific amplification. Analytical biochemistry,2006,355(2):240-248.
    [3] O'Malley, R.C., Alonso, J.M., Kim, C.J., et al. An adapter ligation-mediated PCR method forhigh-throughput mapping of T-DNA inserts in the arabidopsis genome. Nature protocols,2007,2(11):2910-2917.
    [4] Yan, Y.X., An, C.C., Li, L., et al. T-linker-specific ligation PCR (T-linker PCR): an advanced PCRtechnique for chromosome walking or for isolation of tagged DNA ends. Nucleic acids research,2003,31(12).
    [5] Yoshizawa, S., Kawai, G., Watanabe, K., et al. GNA trinucleotide loop sequences producingextraordinarily stable DNA minihairpins. Biochemistry,1997,36(16):4761-4767.
    [6] Chou, S.H., Chin, K.H., Wang, A.H. Unusual DNA duplex and hairpin motifs. Nucleic acidsresearch,2003,31(10):2461-2474.
    [7] Kotlyar, A.B., Borovok, N., Molotsky, T., et al. In vitro synthesis of uniform poly(dG)-poly(dC) byklenow exo-fragment of polymerase I. Nucleic acids research,2005,33(2):525-535.
    [8] Spiess, A.N., Mueller, N., and Ivell, R. Trehalose is a potent PCR enhancer: Lowering of DNAmelting temperature and thermal stabilization of taq polymerase by the disaccharide trehalose.Clinical chemistry,2004,50(7):1256-1259.
    [9] Gudnason, H., Dufva, M., Bang, D.D., et al. Comparison of multiple DNA dyes for real-time PCR:Effects of dye concentration and sequence composition on DNA amplification and meltingtemperature. Nucleic acids research,2007,35(19).
    [10] VonAhsen, N., Wittwer, C.T., and Schutz, E. Oligonucleotide melting temperatures under PCRconditions: Nearest-neighbor corrections for Mg2+, deoxynucleotide triphosphate, and dimethylsulfoxide concentrations with comparison to alternative empirical formulas. Clinical chemistry,2001,47(11):1956-1961.
    [11] DiGiusto, D.A. and King, G.C. Construction, stability, and activity of multivalent circularanticoagulant aptamers. The journal of biological chemistry,2004,279(45):46483-46489.
    [12] Lin, L., Liu, Y.G., Xu, X.P., et al. Efficient linking and transfer of multiple genes by a multigeneassembly and transformation vector system. Proceedings of the national academy of sciences ofthe U.S.A.,2003,100(10):5962-5967.
    [13] Opel, K.L., Chung, D., and McCord, B.R. A study of PCR inhibition mechanisms using real timePCR. Journal of forensic sciences,2010,55(1):25-33.
    [1]张晓君,白雪松,毕可然,等.水生动物副溶血弧菌、霍乱弧菌的PCR同步检测方法.水产科学,2013,32(7):412-415.
    [2] Parkhill, J., Wren, B.W., Mungall, K., et al. The genome sequence of the food-borne pathogenCampylobacter jejuni reveals hypervariable sequences. Nature,2000,403(6770):665-668.
    [3] Champion, O.L., Gaunt, M.W., Gundogdu, O., et al. Comparative phylogenomics of the food-bornepathogen Campylobacter jejuni reveals genetic markers predictive of infection source.Proceedings of the national academy of sciences of the U.S.A.,2005,102(44):16043-16048.
    [4]马丽萍,姚琳,周德庆.食源性致病微生物风险评估的研究进展.中国渔业质量与标准,2011,1(2):20-25.
    [5]中华人民共和国卫生部. GB/T4789.7-2008.中华人民共和国国家标准食品卫生微生物学检验副溶血性弧菌检验.北京:中国标准出版社,2008.
    [6]中华人民共和国卫生部. GB/T4789.4-2010.中华人民共和国国家标准-食品安全国家标准食品微生物学检验沙门氏菌检验.北京:中国标准出版社,2010.
    [7]中华人民共和国国家质量监督检验检疫总局. SN/T2332-2009.中华人民共和国出入境检验检疫行业标准-离境口岸霍乱弧菌的荧光PCR检测方法.北京:中国标准出版社,2009.
    [8] Richmond, G., Gutierrez, J.R., and Hofstadler, S.A. Method for the purification of targeted nucleicacids from background nucleic acids. US patent, pub. No.: Us2014/0011201A1, pub. Date: Jan.9,2014.
    [9] Zhou, L. and Pollard, A.J. A novel method of selective removal of human DNA improves PCRsensitivity for detection of Salmonella typhi in blood samples. BMC infectious diseases,2012,12:164.
    [10] Shuga, J., Zeng, Y., Novak, R., et al. Single molecule quantitation and sequencing of raretranslocations using microfluidic nested digital PCR. Nucleic acids research,2013,41(16): e159.
    [11] Sparbier, K., Weller, U., Boogen, C., et al. Rapid detection of Salmonella sp. by means of acombination of selective enrichment broth and MALDI-TOF MS. European journal of clinicalmicrobiology&infectious diseases,2012,31(5):767-773.
    [12] He, X.H., Qi, W.Y., Quinones, B., et al. Sensitive detection of Shiga Toxin2and some of itsvariants in environmental samples by a novel immuno-PCR assay. Applied and environmentalmicrobiology,2011,77(11):3558-3564.
    [13] Avbersek, J., Zajc, U., Micunovic, J., et al. Improved detection of clostridium difficile in animalsby using enrichment culture followed by lightcycler real-time PCR. Veterinary microbiology,2013,164(1-2):93-100.
    [14] Dwivedi, H.P. and Jaykus, L.A. Detection of pathogens in foods: The current state-of-the-art andfuture directions. Critical reviews in microbiology,2011,37(1):40-63.
    [15] Stark, D., Al-Qassab, S.E., Barratt, J.L.N., et al. Evaluation of multiplex tandem real-time PCR fordetection of Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardiaintestinalis in clinical stool samples. Journal of clinical microbiology,2011,49(1):257-262.
    [16] Girones, R., Ferrus, M.A., Alonso, J.L., et al. Molecular detection of pathogens in water-the prosand cons of molecular techniques. Water research,2010,44(15):4325-4339.
    [17]何琳.环介导等温扩增技术快速检测水产动物病原的研究:[博士学位论文].浙江杭州:浙江大学,2012.
    [18] Paydar, M., Teh, C.S.J., and Thong, K.L. Prevalence and characterisation of potentially virulentVibrio parahaemolyticus in seafood in malaysia using conventional methods, PCR and REP-PCR.Food control,2013,32(1):13-18.
    [19] Pui, C.F., Wong, W.C., Chai, L.C., et al. Multiplex PCR for the concurrent detection anddifferentiation of Salmonella spp., Salmonella typhi and Salmonella typhimurium. Tropicalmedicine and health,2011,39(1):9-15.
    [20] Awasthi, S.P., Asakura, M., Neogi, S.B., et al. Development of a PCR-restriction fragment lengthpolymorphism assay for detection and subtyping of cholix toxin variant genes of Vibrio cholera.Journal of medical microbiology,2014.
    [21] Kirs, M., Depaola, A., Fyfe, R., et al. A survey of oysters (crassostrea gigas) in New Zealand forVibrio parahaemolyticus and Vibrio vulnificus. International journal of food microbiology,2011,147(2):149-153.
    [22] Ammendola, S., Ajello, M., Pasquali, P., et al. Differential contribution of SodC1and SodC2tointracellular survival and pathogenicity of Salmonella enterica serovar choleraesuis. Microbes andinfection,2005,7(4):698-707.
    [23] Moreno, C., Romero, J., and Espejo, R.T. Polymorphism in repeated16s rRNA genes is a commonproperty of type strains and environmental isolates of the genus Vibrio. Microbiology,2002,148:1233-1239.
    [24]张晓静.腐败希瓦氏菌代谢氧化三甲胺相关研究:[硕士学位论文].山东青岛:中国海洋大学,2012.
    [25] Nemoto, J., Sugawara, C., Akahane, K., et al. Rapid and specific detection of the thermostabledirect hemolysin gene in Vibrio parahaemolyticus by loop-mediated isothermal amplification.Journal of food protection,2009,72(4):748-754.
    [26] Nemoto, J., Ikedo, M., Kojima, T., et al. Development and evaluation of a loop-mediatedisothermal amplification assay for rapid and sensitive detection of Vibrio parahaemolyticus.Journal of food protection,2011,74(9):1462-1467.
    [27] Tomita, N., Mori, Y., Kanda, H., et al. Loop-mediated isothermal amplification (LAMP) of genesequences and simple visual detection of products. Nature protocols,2008,3(5):877-882.
    [28] Nagamine, K., Hase, T., and Notomi, T. Accelerated reaction by loop-mediated isothermalamplification using loop primers. Molecular and cellular probes,2002.
    [29] Mori, Y., Nagamine, K., Tomita, N., et al. Detection of loop-mediated isothermal amplificationreaction by turbidity derived from magnesium pyrophosphate formation. Biochemical andbiophysical research communications,2001,289(1):150-154.
    [30] Parida, M., Sannarangaiah, S., Dash, P.K., et al. Loop mediated isothermal amplification (LAMP):a new generation of innovative gene amplification technique; perspectives in clinical diagnosis ofinfectious diseases. Reviews in medical virology,2008,18(6):407-421.
    [31] Mori, Y. and Notomi, T. Loop-mediated isothermal amplification (LAMP): A rapid, accurate, andcost-effective diagnostic method for infectious diseases. Journal of infection and chemotherapy:official journal of the Japan society of chemotherapy,2009,15(2):62-69.
    [32]徐芊,孙晓红,赵勇,等.副溶血弧菌LAMP检测方法的建立.中国生物工程杂志,2007,27(12):66-72.
    [33] Imai, M., Ninomiya, A., Minekawa, H., et al. Development of H5-RT-LAMP (loop-mediatedisothermal amplification) system for rapid diagnosis of H5avian influenza virus infection.Vaccine,2006,24(44-46):6679-6682.
    [34] Fujino, M., Yoshida, N., Yamaguchi, S., et al. A simple method for the detection of measles virusgenome by loop-mediated isothermal amplification (LAMP). Journal of medical virology,2005,76(3):406-413.
    [1]王静,黄磊,陆益梅,等.3种海洋细菌脂肪酸组成特性的研究.中国海洋大学学报(自然科学版),2011,41:252-258.
    [2]王小丽.环介导等温扩增技术(LAMP)检测猪肉中单核增生李斯特氏菌的研究:硕士学位论文.河北保定:河北农业大学,2010.
    [3]许龙岩,周宏斌,覃文,等.多重PCR检测食品中霍乱弧菌和副溶血性弧菌的研究.检验检疫科学,2004,14(3):48-50.
    [4]吕海沧.食品中五种主要的致病性弧菌的多重PCR检测方法研究:[硕士学位论文].福建厦门:福建农林大学,2007.
    [5] Chen, S.Y. and Ge, B.L. Development of a toxR-based loop-mediated isothermal amplificationassay for detecting Vibrio parahaemolyticus. BMC microbiology,2010,10:41.
    [6] Kim, Y.B., Okuda, J., Matsumoto, C., et al. Identification of Vibrio parahaemolyticus strains at thespecies level by PCR targeted to the toxR gene. Journal of clinical microbiology,1999,37(4):1173-1177.
    [7] Montieri, S., Suffredini, E., Ciccozzi, M., et al. Phylogenetic and evolutionary analysis of Vibrioparahaemolyticus and Vibrio alginolyticus isolates based on toxR gene sequence. Newmicrobiology,2010,33(4):359-372.
    [8] Rosec, J.P., Simon, M., Causse, V., et al. Detection of total and pathogenic Vibrio parahaemolyticusin shellfish: comparison of PCR protocols using PR72H or toxR targets with a culture method.International journal of food microbiology,2009,129(2):136-145.
    [9]赵玉玲,张天生,张巧艳. PCR法快速检测肉食品污染沙门菌的实验研究.微生物学杂志,2010,30(3):103-105.
    [10]徐晓可,吴清平,张菊梅,等. PCR技术检测食源性致病菌的研究进展.微生物学通报,2007,34(5):970-972.
    [11]周明东,张臣伟,张海滨,等.食源性致病菌快速检测方法的建立与应用.中国食品学报,2012,12(10):169-176.
    [12] Blackstone, G.M., Nordstrom, J.L., Vickery, M.C., et al. Detection of pathogenic Vibrioparahaemolyticus in oyster enrichments by real time PCR. Journal of microbiological methods,2003,53(2):149-155.
    [13] Han, F., Wang, F., and Ge, B. Detecting potentially virulent Vibrio vulnificus strains in raw oystersby quantitative loop-mediated isothermal amplification. Applied and environmental microbiology,2011,77(8):2589-2595.
    [14] Yamazaki, W., Kumeda, Y., Uemura, R., et al. Evaluation of a loop-mediated isothermalamplification assay for rapid and simple detection of Vibrio parahaemolyticus in naturallycontaminated seafood samples. Food microbiology,2011,28(6):1238-1241.
    [15] Verheyen, J., Kaiser, R., Bozic, M., et al. Extraction of viral nucleic acids: comparison of fiveautomated nucleic acid extraction platforms. Journal of clinical virology,2012,54(3):255-259.
    [16] Huang, J., Wu, Y., Chen, Y., et al. Pyrene-excimer probes based on the hybridization chain reactionfor the detection of nucleic acids in complex biological fluids. Angewandte chemie internationaledition,2011,50(2):401-404.
    [17] Mamanova, L, Coffey, A.J., Scott, C.E., et al. Target-enrichment strategies for next-generationsequencing. Nature methods,2010,7(2):111-118.
    [18] Vora, G.J., Meador, C.E., Stenger, D.A., et al. Nucleic acid amplification strategies for DNAmicroarray-based pathogen detection. Applied and environmental microbiology,2004,70(5):3047-3054.
    [19] Zhou, L. and Pollard, A.J. A novel method of selective removal of human DNA improves PCRsensitivity for detection of Salmonella typhi in blood samples. BMC infectious diseases,2012,12:164.
    [20]叶姜瑜,罗固源.未培养微生物的研究与微生物分子生态学的发展.微生物学通报,2004,31(5):111-115.
    [21]彭伶俐,王琴,辛明秀.自然界中不可培养微生物的研究进展.微生物学杂志,2011,31(2):75-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700