用户名: 密码: 验证码:
航天器飞轮动力学建模与振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反作用轮和动量轮(本文中统称为飞轮)是高精度航天器常用的姿态控制和姿态稳定设备,但飞轮工作期间会产生扰动力和扰动力矩,降低高精度航天器载荷的指向精度和指向稳定度,影响有效载荷性能。因此对飞轮系统进行振动控制势在必行。本文从理论分析、数值仿真和地面实验三个方面,系统深入地研究了飞轮动力学建模和振动控制问题,提出并验证了飞轮主、被动振动控制的新方法。本文主要工作如下:
     1.建立了航天器飞轮线性动力学模型和非线性动力学模型,分析了飞轮动力学特性,研究了利用弹性支承提高飞轮转速、降低飞轮扰动力的机理。
     (1)建立了飞轮线性动力学模型和飞轮扰动因素模型,推导了基于传递矩阵的飞轮动力学方程,分析了扰动因素对飞轮扰动力和扰动力矩的影响。
     (2)建立了考虑飞轮轴承刚度非线性的Jeffcott转子模型,分析指出了弹性支承提高飞轮转速、降低飞轮扰动力的基本原理。
     2.建立了航天器飞轮被动隔振和主动振动控制模型,提出并分析了利用被动隔振和主动振动控制对飞轮振动进行抑制的方法和技术。
     (1)提出了一种基于折臂梁支承的弹性支承飞轮被动隔振方法,建立了弹性支承飞轮动力学模型,推导了基于传递矩阵的弹性支承飞轮动力学方程,分析了弹性支承飞轮隔振性能。结果表明:越过临界转速后,弹性支承可以有效隔离质量不平衡引起的扰动力和扰动力矩。
     (2)提出了一种基于折臂梁式的飞轮被动隔振平台设计方法,建立了飞轮与隔振平台系统动力学模型,推导了考虑陀螺效应的飞轮与隔振平台系统动力学方程,分析了陀螺效应对隔振平台隔振性能的影响。结果表明:飞轮与隔振平台系统临界转速与飞轮质量特性有关。当飞轮转子轴向转动惯量大于飞轮系统径向转动惯量时,系统临界转速小于静止时的径向固有频率;反之,系统临界转速大于静止时的径向固有频率。越过临界转速后,隔振平台可以有效隔离质量不平衡引起的扰动力和扰动力矩。
     (3)提出了一种弹性支承飞轮主动振动控制方法;建立了弹性支承飞轮主动振动控制模型,推导了基于速度负反馈的飞轮主动振动控制方程,分析了飞轮主动振动控制性能。结果表明:主动振动控制系统可以控制除轴向转动外其余五个自由度的振动,有效抑制飞轮共振转速时的扰动力和扰动力矩。
     3.建立了航天器飞轮振动控制实验系统,验证了飞轮振动控制方法的有效性。
     (1)建立了高精度、宽频带的飞轮微振动测试系统,该实验系统能够测量3-300Hz范围内毫牛级的扰动力。
     (2)测试了刚性支承飞轮扰动力和扰动力矩,测量结果与理论分析结果一致,验证了飞轮动力学模型和扰动因素模型的正确性和有效性。
     (3)测试了弹性支承飞轮飞轮隔振平台静止时的固有频率和非旋转黏性阻尼系数。弹性支承飞轮飞轮隔振平台固有频率设计值与实验值吻合,验证了弹性支承飞轮飞轮隔振平台设计方法和理论模型的正确性。
     (4)开展了弹性支承飞轮隔振性能实验研究。结果表明弹性支承飞轮具有转速高、扰动低的特点,验证了弹性支承飞轮被动隔振方法的正确性和有效性。
     (5)开展了飞轮隔振平台隔振性能实验研究,结果表明系统临界转速发生在2600rev/min,远高于系统静止时第六阶固有频率26.29Hz(1577rev/min),验证了陀螺效应影响飞轮隔振系统隔振性能的现象;隔振平台可以有效隔离飞轮高频扰动,证明了隔振平台对飞轮被动隔振的有效性。
     (6)开展了弹性支承飞轮主、被动一体化振动控制实验研究。结果表明主动振动控制可以有效抑制弹性支承飞轮在临界转速的扰动力,验证了飞轮主、被动一体化振动控制方法的正确性和有效性。
Reaction wheel assembly and momentum wheel assembly (named flywheel in thisdissertation) are widely used on high accuracy spacecraft to provide attitude controltorque or maintain stability. However, the microvibrations produced by the flywheel canaffect the pointing accuracy and stability of the spacecraft, and even degrade theperformance of high sensitive instruments. Thus, the vibration control of the flywheel isimperative. This dissertation focuses on investigating the issue of dynamic modelingand vibration control of the flywheel through theoretical analysis, numerical simulationand experimental research. The methods of passive and active vibration control for theflywheel are proposed and verified by experiment; the main research efforts in thisdissertation are summarized as follows.
     1. A linear and a nonlinear dynamic model of the flywheel for spacecraft areestablished; the dynamic characteristic of the flywheel is analyzed; and theprinciple that the soft suspension flywheel can increase the rotational speed anddecrease the disturbance is studied.
     (1) The dynamic models of the flywheel and the disturbance sources areestablished; the dynamical equation of the flywheel based on transfer matrix isdeveloped; the influence of the vibration sources on the disturbance force and momentproduced by the flywheel is analyzed.
     (2) Considering the nonlinear effect of the bearing stiffness, the flywheel issimplified as a Jeffcott rotor model, and the basic principle is analyzed that the softsuspension can effectively increase the maximum rotational speed and decrease thedisturbance force.
     2. The passive vibration isolation model and active vibration control modelare established; method and technique of the passive vibration isolation and activevibration control for the flywheel are proposed and analyzed.
     (1) A soft suspension flywheel based on folded beams is proposed; the dynamicmodel of the flywheel is established; the dynamic equation of the flywheel is developed,the passive vibration isolation performance of the soft suspension flywheel is analyzed.The analysis results show that the soft suspension structure can effectively isolate thedisturbance force and moment produced by the mass imbalance when the flywheeloperates above the critical speed.
     (2) A passive vibration isolation platform for the flywheel (momentum wheelassembly) is proposed; the dynamic model of the flywheel and the platform isestablished; the dynamic equation of the system is developed, which includes thegyroscopic effect term; the influence of the gyroscopic term on the performance ofvibration isolation of the platform is analyzed. The analysis results show that the critical speed of the system consisting of flywheel and platform is affected by the mass propertyof the flywheel; the critical speed occurs before the natural frequencies of the system atrest if the axial moment of inertia of the rotor is larger than the radial moment of inertiaof the flywheel; else, the critical speed occurs after the natural frequencies at rest. Theplatform can effectively isolate the disturbance force and moment produced by massimbalance.
     (3) An active vibration control structure for the soft suspension flywheel isproposed; the dynamic model of the active control for the soft suspension flywheel isestablished; the dynamic equation of the active vibration control based on velocityfeedback is developed; the performance of active vibration control for the flywheel isanalyzed. The results show that the active control structure can suppress the vibrationsat all the six degrees of freedom except the axial rotation, and the active vibrationcontrol can effectively suppress the dynamic amplification at critical speed,
     3. An experimental system for the vibration control of the flywheel ofspacecraft is established; the effectiveness of the vibration control method for theflywheel is verified.
     (1) A high accuracy and broad frequency range microvibration measurementexperimental system for the flywheel is constructed, which can measure themili-Newton force at the frequency range of3-300Hz.
     (2) The disturbance produced by the flywheel is tested; the test results areconsistent with the theoretical results, which demonstrates the correctness andeffectiveness of the dynamic model and disturbance sources model of the flywheel.
     (3) The natural frequencies and nonrotating damping coefficients of the softsuspension flywheel and the passive vibration isolation platform are studied. The resultsshow that both of the designed natural frequencies are consistent with the experimentalvalues, which verifies the validity of the design method and mathematical model of thesoft suspension flywheel and the platform.
     (4) The performance of the soft suspension flywheel is researched by experimentaltest. The results show that the flywheel implements the relatively high rotational speedbut low disturbance force, which verifies that it is correct and valid to isolate thevibration from the flywheel using soft suspension design.
     (5) The performance of the passive vibration isolation platform is researched byexperimental test. The results show that the critical speed occurs at2600rev/min, whichis larger than the sixth natural frequency of the system (26.29Hz), which demonstratesthat the gyroscopic effect affects the performance of the platform; the platform caneffectively isolate the high frequency disturbance, which verifies the effectiveness of thepassive vibration isolation of the platform.
     (6) An integrated passive and active vibration control strategy for the flywheel isresearched by experimental test. The test results show that the active vibration control strategy can effectively suppress the disturbance force at critical speed, which verifiesthe correctness and effectiveness of the integrated passive and active control strategy.
引文
[1] Christopher Emil Eyerman. A system engineering approach to disturbance minimization forspacecraft utilizing controlled structures technology[D]. Master Degree, MIT,1990.
    [2] Morio Toyoshima, Takashi Jno, etc. Transfer functions of microvibrational disturbances on asatellite[C].21st International communications satellite systems conference and exhibit,AIAA2003~2406.
    [3] K.C. Liu, P. Maghami and C. Blaurock. Reaction Wheel disturbance modeling, jitter analysis,and validation tests for Solar Dynamics Observatory[C]. AIAA Guidance, Navigation andControl Conference and Exhibit. Honolulu, Hawaii,18-21August,2008:1~18, AIAA2008-7232.
    [4] R.G.Ross, Jr. Vibration suppression of advanced space cryocooler-an overview[J]. Smartstructure and materials,2003, Vol. SPIE-5052:1~12.
    [5] Ross, R.G., Jr., Moore, D.M., Larson, C.A. and Mauritz. A Sensor/Cooler Vibration Control[R].Annual Report of the Investigators Carried Out Under the1989Director’s Discretionary Fund,JPL Report D-7138, Internal Report, Jet Propulsion Laboratory, Pasadena, CA, June1990.
    [6] Ross, R.G., Jr., Johnson, D.L. and Sugimura, R.S.. Characterization of Miniature Stirling-cycleCryocoolers for Space Application[C]. Proceedings of the6th International CryocoolerConference, Plymouth, MA, October1990, DTRC-91/002, David Taylor Research Center,1991:27~38.
    [7]张振华,杨雷,庞世伟.高精度航天器微振动力学环境分析[J].航天器环境工程.2009,26(6):528~534.
    [8]杨雷,庞世伟,曲广吉.高精度航天器微振动集成建模与综合评估技术—进展综述与研究思路[C].2007年全国结构动力学学术研讨会论文集,中国,南昌,2007:207~219.
    [9]庞世伟,杨雷,曲广吉.高精度航天器微振动建模与评估技术最近进展[J].强度与环境,2007,34(6):1~9.
    [10] T. Wacker, L. Weimer and K. Eckert. GOCE platform micro-vibration verification by test andanalysis[C]. Proceedings of the European Conference on Spacecraft Structures, Materials andMechanical Testing,2005(ESA SP-581).10-12May2005, Noordwijk, Netherlands.
    [11] T. Jono, M. Toyoshima, N. Takahashi, T.Yamawaki, K. Nakagawa and A. Yamamoto. Lasertracking test under satellite microvibrational disturbances by OICETS ATP system, inAcquisition, Tracking, and Pointing XVI, M. K. Masten; L. A. Stockum; eds.,2002, Proc. SPIE4714:97~104.
    [12] C. L. Foster, M. L. Tinker, G. S. Nurre and W. A. Till. Solar-array-induced disturbance of theHubble space telescope pointing system[J]. Journal of Spacecraft Rockets,1995,32:634~644.
    [13] N. Jedrich, D. Zimbelman, M. Turczyn, J. Sills, C.Voorhees and B. Clapp. Cryo coolerInduced Micro-Vibration Disturbances to the Hubble Space Telescope[C].5th Cranfield SpaceDynamics Conference, July2002.
    [14] Blair, M., and Sills, J.. Hubble Space Telescope On-Orbit System Identification[C]. Proc.12thInternational Modal Analysis Conference, Honolulu, HA, February1994:663~669.
    [15] L. P. DAVIS, J. F. WILSON, R. E. JEWELL and J. J. RODEN. Hubble space telescope reactionwheel assembly vibration isolation system[R]. NASA Marshall Space Flight Centre,1986.
    [16] G. S. Aglietti, R. S. Langley, E. Rogers and S. B. Gabriel. Model building and verification foractive control of micro-vibrations with probabilistic assessment of the effects of uncertainties[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of MechanicalEngineering Science,2004,218:389~399.
    [17] S. Miller, P. Kirchman and J. Sudey. Reaction wheel operational impacts on the GOES-N jitterenvironment. AIAA Guidance, Navigation and Control Conference and Exhibit. Hilton Head,South Carolina,2007:20~23, AIAA2007-6736.
    [18]周伟勇,李东旭.高分辨率航天器指向稳定度与微振动抑制方法[C].高分辨率遥感卫星结构振动及控制技术研讨会.长沙,2011.06:357~363.
    [19] Vaillon L, Sanctorum B, Sperandei J, Defendini A and Griseri G. Flight prototyping of activecontrol of vibration&very high accuracy pointing systems[C].5th ESA InternationalConference on Spacecraft Guidance, Navigation and Control Systems, proceeding of theconference held22-25October2002in Frascati, Italy. Compiled by K. Fletcher and R.A. Harris.ESA SP-516. European Space Agency,2003,599.
    [20] A Grillenbeck, IABG mbH, Ottobrunn, Germany, and M. Wagner. ESA/ESTEC.Micro-Vibration qualification on spacecraft structures: a challenge for test Engineers[C].Manhattan Beach, Calif, oct12-15,2009.
    [21]刘天雄,林益明,王明宇,柴洪友,华宏星.航天器振动控制技术进展[J].宇航学报,Vol.29, No.1,2008,29(1):1~12.
    [22] V. Guillaud, C. Champetier, A. Capitaine, Y. M. Lefevre. Mastering microvibrations for highpointing accuracy systems[C]. Proc. of2nd ESA International Conference on Spacecraft GNCSystems,1994.
    [23] Porter Davis, David Cunningham, Andy Bicos, Mike Enright. Adaptable Passive ViscousDamper (An Adaptable D-Strut)[C]. Honeywell, Inc, SPIE North American Conference,February1994.
    [24] Marie B. Levine. The interferometry program flight experiments: IPEX I&II[C]. Astronomicalinterferometry; Proceedings of the Meeting, Kona, HI; UNITED STATES;20-24Mar.1998:707~718.
    [25] P. Christophe, L. Yves M, C. Christian, and D.G. Eaton. Microvibration transmission in spacestructures at medium high frequencies[C]. Spacecraft structures and mechanical testing;Colloquium,4th, Paris, France; FRANCE; June1994:85~102.
    [26]张昭,孙谦,王振华.超高分辨率商业成像卫星现状与发展趋势[J].数字通信世界,2009(11):57~60.
    [27] Anandakrishnan S M, Connnor C T, Lee S, Shade E, Sills J, Maly J R, and Pendleton S C.Hubble space telescope solar array damper for improving control system stability[C] Aerospaceconference proceedings,2000(4):261~276.
    [28] Norimasa Yoshida, Osamu Takahara, etc.. Systematic Approach to Achieve Fine PointingRequirement of SOLAR-B[C]. IFAC ACA2004(16th Symposium on Automatic Control inAerospace), June14-18m2004, St-Petersburg, Russia.
    [29] O. Takahara, N. Yoshida, K. Minesugi, T. Hashimoto, S. Nagata, M. Koike, S. Shimada and T.Nakaoji. Microvibration Transmissibility Test of Solar-B[C]. The24th ISTS (InternationalSymposition on Space Technology and Science), May30-June6,2004, Miyazaki, Japan.
    [30] T. Shimizu, S. Nagata, S. Tsuneta, T. etc.. Image stabilization system for Hinode (Solar-B) solaroptical telescope[J]. Solar Physics,2008(249):221~232.
    [31] T. Kosugi, K. Matsuzaki, T.Sakao, T.Shimizu, Y.Sone, S.Tachikawa, etc.. The Hinode (Solar-B)Mission: an over view[J]. Solar Phys,2007,243(1):3~17.
    [32] Osamu. Takahara; K. Ichimoto, etc.. Prediction of the Pointing Stability from Ground Test andIts Initial In-orbit Evaluation of the Solar Observation Satellite SOLAR-B[C]. First CEASEuropean Air and Space Conference,10-13September2007in Berlin, Germany.(not found)
    [33] http://solar-b.nao.ac.jp/meeting/sot17/files/2-04/SOT_pointing_with_microvib.ppt
    [34] ALLAN Y. LEE,JEFFREY W. YU,PETER B. KAHN,RICHARD L. STOLLER. SpaceInterferometry Mission Spacecraft Pointing Error Budgets[J]. IEEE Transactions on Aerospaceand Electronic Systems,2002,38(2):502~514.
    [35] Liu, K.-C., T. Kenney, et al. Jitter Test Program and On-Orbit Mitigation Strategies for SolarDynamic Observatory[R], Goddard Space Flight Center,2007.
    [36] Defendini, A., L. Vaillon, etc.. Technology Predevelopment for Active Control of Vibration andVery High Accuracy Pointing Systems[C]. Spacecraft Guidance, Navigation and ControlSystems, Proceedings of the4th ESA International Conference, held18-21October,1999inESTEC, Noordwijk, the Netherlands. Edited by B. Schürmann. ESA SP-425. Paris: EuropeanSpace Agency,2000:385~391.
    [37] http://www.eoportal.org/directory/pres_GeoEye1OrbView5.html.
    [38]常庆瑞,蒋平安,周勇等.遥感技术导论[M].北京:科学出版社.2004.
    [39]顾逸东.探秘太空—迁徙空间资源开发与利用[M].北京:中国宇航出版社.2011.
    [40] R. L. Lucke, S. W. Sirlin, and A. M. S. Martin. New Definitions of Pointing Stability: AC andDC Effects[J]. Journal of the Astronautical Sciences,1992,40(4):557~576.
    [41] Emily L. Burrough and Allan Y. Lee. Pointing stability performance of the Cassinispacecraft[C]. AIAA Guidance, Navigation and Control Conference and Exhibit,18-21August2008, Honolulu, Hawaii, AIAA2008-6810.
    [42] L.Munoz Sevilla. Microvibration test of the ARTEMIS structural model[C]. EuropeanConference on Spacecraft Structures, Materials and Mechanical Testing, Braunschweig,Germany; NETHERLANDS;4-6Nov.1998:497~501.
    [43] U. Roberto, M. Flavia. Artemis Micro-Vibration Environment Prediction. Spacecraftstructures[C]. Materials and mechanical testing, Proceedings of a European Conference held atBraunschweig, Germany,4-6November1998. Paris: European Space Agency (ESA), ESA-SP,Vol.428,1999:489~495.
    [44] C.Galeazzi, etc.. Experimental Activities on Artemis for the Microvibration Verification[C].ESA International Conference on Spacecraft Structures, Materials and Mechanical Testing,Noordwijk, Netherlands; INTERNATIONAL ORGANIZATION;27-29Mar.1996:997~1006.
    [45]刘天雄,范本尧,杨慧.卫星飞轮扰振控制技术研究[J].航天器工程,2009,18(1):53~59.
    [46] Brij Agrawal. Jitter control for imaging spacecraft[C]. Recent Advances in Space Technologies,2009,615~620.
    [47] Brian L. Kantsiper, J. C. Ray, John W. Hunt, and Thomas E. Strikwerda. AutonomousAvoidance of Structural Resonances on the STEREO Mission[C]. AIAA2007-6549.
    [48] W. Keith Belvin. Spacecraft jitter attenuation using embedded piezoelectric actuators[C].Proceedings of the International Forum on Aeroelasticity and Strcutural Dynamics1995,Manchester, UK.
    [49] Cobb R G, etc.. Vibration Isolation and Suppression system for precision payload in space[J].Smart Material and Structure,1999(8):798~812.
    [50]林德荦.卫星相机的侧视反射镜振动及空间环境的影响分析[C].中国空间科学学会空间探测专业委员会第十七次学术会议论文集,2004,37~43.
    [51] S.S. Narayan, P.S. Nair, and A. Ghosal, Dynamic interaction of rotating momentum wheels withspacecraft elements[J]. Journal of Sound and Vibration,2008(315):970~984.
    [52] G.S. Aglietti, Active control of microvibrations for equipment loaded spacecraft panels[D].Doctor degree thesis, Southampton,1999.
    [53] A.C.H. Tan, T. Meurers, S. M. Veres, G. Aglietti and E. Rogers. Robust Control ofMicro-vibrations with Experimental Verification[J]. Proceedings of the Institution ofMechanical Engineers, Part C, Mechanical Engineering Science,2005,219(5):435~460.
    [54] E.H. Anderson J.P. Fumo and R.S. Erwin. Satellite ultraquiet isolation technology experiment(SUITE)[C]. Aerospace Coference Proceesings, IEEE,2000:299~313.
    [55] L.M. Elias. Dynamics of Multi-body Space Interferometers Including Reaction WheelGyroscopic Stiffening Effects: Structurally Connected and Electromagnetic Formation ofFlying Architectures[D]. Doctor Degree Thesis, MIT,2004.
    [56] Nelson Pedreiro. Next generation space telescope pointing stability[C]. AIAA Guidance,Navigation, and Control Conference and Exhibit, Denver, CO; UNITED STATES;14-17Aug.2000, AIAA2000-4543.
    [57]吴刚.混合磁轴承飞轮系统设计与控制方法研究[D],国防科学技术大学博士论文,2006.10.
    [58]黄圳圭.航天器姿态动力学[M].湖南,长沙:国防科技大学出版社,1997.
    [59] Zhang Z., Zhou W.Y., W, G.S. Aglietti, and G. Bianchi. Modelling microvibrations emitted bysatellites reaction wheel assemblies[C]. In,10th International Conference on Recent Advancesin Structural Dynamics, Southampton, UK12-14Jul2010.
    [60] K.Sathyan, K.Gopinath, H.Y.Hsu, and S.H. Lee. Development of a lubrication system formomentum wheels used in spacecrafts[J]. Tribol Lett,2008(32):99~107.
    [61] K.Sathyan, H.Y. Hsu, S.H. Lee, and K. Gopinath, Long-term lubrication of momentum wheelsused in spacecrafts-an overview[J]. Tribology International,2010(43):259~267.
    [62]赵发刚,周徐斌,申军烽.高精度遥感卫星飞轮扰动分析与仿真[C].高分辨率遥感卫星结构振动及控制技术研讨会.湖南.长沙,2011:342~348.
    [63]邓瑞清,虎刚,王全武.飞轮和控制力矩陀螺高速转子的涡动特性研究[J].空间控制技术与应用,2009,35(1):56~60.
    [64] Bialke Bill. A compilation of reaction wheel induced spacecraft disturbances[C].20th AnnualAAS Guidance and Control Conference, February1997.AAS Paper97-038.
    [65] Oliveier de Weck. Reaction wheel disturbance analysis[R]. Massachusetts Institute ofTechnology Space systems Labaoratory, Research contract NO. NAG5-6079. Oct29,1998.
    [66] Hasha, M. D.. Reaction Wheel Mechanical Noise Variations[R]. Space Telescope ProgramEngineering Memo SSS218, June1986.
    [67] H. Youichi, O. Yoshiaki and T. Shigemune. Experiment and analysis of reaction wheeldisturbance with periodical torque applied[J]. Trans. Jap. Soc. Mech. Eng.2004,70(7):56~62.
    [68] Zhou W.Y., Li D.X, Luo Q., and Liu K.. Analysis and testing of microvibrations produced bymomentum wheel assemblies[J]. Chinese Journal of Astronautics,2012(25):640~649.
    [69] R.A. Masterson. Development and validation of empirical and analytical reaction wheeldisturbance models[D]. Master's Thesis, Department of Mechanical Engineering, MassachusettsInstitute of Technology,1999.
    [70] R.A. Masterson, D.W. Miller, and R.L. Grogan. Development of Empirical and AnalyticalReaction Wheel Disturbance Models[C]. In Proceedings of the40thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference andExhibit, St. Louis, MO April, AIAA99-1204.
    [71] R.A. Masterson, Miller D W and Grogan R L. Development and validation of reaction wheeldisturbance models: empirical model[J]. Journal of Sound and Vibration,2002(249):575~598.
    [72] L.M. Elias, D.W. Miller. A coupled disturbances analysis method using dynamic massmeasurement techniques[C]. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,and Materials Conference22-25April2002, AIAA2002-1252.
    [73] L.M. Elias. A Structurally Coupled Disturbance Analysis Using Dynamical Mass MeasurementTechniques, with Application to Spacecraft Reaction Wheel Systems[D]. Master degree thesis.MIT,2001.
    [74]王全武,虎刚.飞轮扰动原因与测量技术现状[J].空间科学学报,2009,29(1):39~44.
    [75] Shigemune T, Yoshiaki O. Experimental and numerical analysis of reaction wheeldisturbances[J]. JSME Int. J.,2003,4(2):519~526
    [76] Shigemune T, Masahito K, Makoto S, Yoshiaki O. Analysis of retainer induced disturbances ofreaction wheel[J]. Journal of System Design and Dynamics, Vol.1, No.2,2007.
    [77] S.A. Collins and A.H. von Flotow. Active vibration isolation for spacecraft[C]. In42ndCongress of the International Astronautical Federation, volume IAF-91-289, Montreal, Canada,October1991.
    [78]罗青,李东旭.航天器高速转动部件微振动测试技术研究综述.高分辨率遥感卫星结构振动及控制技术研讨会[C].湖南.长沙,2011:124~130.
    [79] Zhou W.Y., G.S. Aglietti, and Zhang Z.. Modelling and testing of a soft suspension design for areaction/momentum wheel assembly[J]. Journal of Sound and Vibration,2011(330):4596~4610.
    [80]赵煜,张鹏飞,程伟.反作用轮扰动特性测量及研究[J].实验力学,2009,24(6):532~538.
    [81] Choong-Seok Oh, Wonsuk Lee and Hyochoong Bang. Passive jitter isolation for reaction wheelof satellites[C]. SICE-ICASE International joint conference2006, Oct.18-21,2006in Bexcon,Busan, Korea:3891~3895
    [82] Rodden J J, Dougherty H J, Reschke L F,Hasha M D and Davis L P. Line-of-sight performanceimprovement with reaction-wheel isolation[C]. Guidance and control1986; Proceedings of theAnnual Rocky Mountain Guidance and Control Conference, Keystone, CO; UNITED STATES;1-5Feb.1986:71~84.
    [83] Oh H-U, Izawa K and Taniwaki S. Development of variable damping isolator using bio-metalfiber for reaction wheel vibration isolation[J]. Smart Mater. Struct.2005(14):928~933.
    [84] Oh H-U, Izawa K, Taniwaki S, Kinjyo N and Izawa K. Flywheel vibration isolation test using avariable-damping isolator[J]. Smart Mater.Struct.2006(15):365~370.
    [85] D. Stewart. A platform with six degrees of freedom. Proc. Instn. Mech. Engrs.,1965-1966,180(15):371~386.
    [86] A. Abu Hanieh, M. Horodinca, A. Preumont, N. Loix, and J.Ph. Verschueren. Stiff and softStewart platforms for active damping and active isolation of vibrations[C]. In Actuator2002,Bremen, Germany, June2002:254~256.
    [87] M. Horodinca, A. Abu Hanieh, and A. Preumont. A soft six degrees of freedom active vibrationisolator based on Stewart platform[C]. In International Symposium on Active Control of Soundand Vibration (Active2002), Southampton, UK, July2002:644~661.
    [88] R. Taranti, C. Cristi and B. Agrawal. State-space equations for a high-precision pointinghexapod[C]. IEEE Conference on Control Applications (CCA),2001.
    [89] A. Abu Hanieh, M. Horodinca, and A. Preumont. Six-degree-of-freedom hexapods for activedamping and active isolation of vibrations[J]. Journal de Physique IV (Proceedings), Volume12,Issue11, décembre2002:41~48.
    [90] O. A. Akisanya. Reaction Wheel Vibrational Force Disturbance Input to the Design of aSix-Axial Muliticonfigure Hexapod Isolator[D]. Master Thesis, California Sate University,2002.
    [91] D. Thayer, M. Kampell, and J. Vagners. Six axis vibration isolation using modern controltechniques[C]. Guidance and control1999; Proceedings of the22nd Annual AAS RockyMountain Guidance and Control Conference, Breckenridge, CO; UNITED STATES;3-7Feb.1999:167~180.
    [92] D. Thayer, M. Kampell, J. Vagners, and A. von Flotow. Six axis vibration isolation system usingsoft actuators and multiple sensors[J]. Journal of Spacecraft and Rockets,2002,39(2):206~212.
    [93] A. Preumont. Vibration Control of Active Structures, An Introduction[M]. Third Edition.Springer-Verlag Berlin Heidelberg,2011.
    [94] Ahmed Abu Hanieh. Active Isolation and Damping of Vibration via Stewart Platform[D].Université Libre De Bruxelles, Active Structures Laboratory, Degree of Doctor,2003.
    [95] Bruno de Marneffe. Active and Passive Vibration Isolation and Damping via ShuntedTransducers[D]. Active Strcture Labortory, Department of Mechanical Engineering andRobotics. December, Degree of Doctor,2007.
    [96] Kim H S, Cho Y M, and Moon J H. Active vibration control using a novel three-DOF precisionmicro-stage[J]. Smart Materials and Structures,2010,19(5):055001.
    [97]关新,王全武,郑钢铁.飞轮拟主动隔振方法[J].宇航学报,2010,31(7):1870~1876.
    [98]关新,崔颖慧,梁鲁等.飞轮隔振装置研制及试验验证[C].高分辨率遥感卫星结构振动及控制技术研讨会.湖南.长沙,2011:38~44.
    [99] D. Kamesh, R. Pandiyan and Ashitava Ghosal. Modeling, design and analysis of low frequencyplatform for attenuating micro-vibration in spacecraft[J]. Journal of Sound and Vibration,2010(329):3431~3450.
    [100] D. Kamesh, R. Pandiyan and Ashitava Ghosal. Passive vibration isolation of reaction wheeldisturbances using a low frequency flexible space platform[J]. Journal of Sound and Vibration.2012(331):1310~1330.
    [101] Zhou W.Y., Li D.X.. Design and analysis of an intelligent vibration isolation platform forreaction/momentum wheel assemblies[J]. Journal of Sound and Vibration,2012(331):2984~3005.
    [102] G.S. Aglietti, G. Bianchi and J. Barrington-Brown. Impact oscillator based suspension systemfor a reaction wheel[C]. ECCOMAS Thematic Conference on Computational Methods inStructural Dynamics and Earthquake Engineering, Greece,22–24June2009.
    [103] Zhang, Z, Aglietti, G.S and Zhou, W.Y.. Microvibration Induced by a Cantilevered WheelAssembly with a Soft-Suspension system[J]. AIAA journal,2011,49(5):1067~1079.
    [104] Zhou W.Y., Li D.X., Luo Q. and Jiang J.P.. Design and Test of a Soft Suspension System forCantilevered Momentum Wheel Assembly[J]. Proceedings of the Institution of MechanicalEngineers, Part G: Journal of Aerospace Engineering. doi:10.1177/0954410012451415.
    [105] J. Spanos, Z. Rahman, and G. Blackwood. A soft6-axis active vibration isolator[C].1995American Control Conference,14th, Seattle, WA; UNITED STATES;21-23June1995:412~416.
    [106] D. Thayer, J. Vagners, A. von Flotow, C. Hardham, and K. Scribner. Six-axis vibrationisolation system using soft actuator and multiple sensors[C]. AAS,1998:497~506,.
    [107] J. Fochage, T. Davis, J. Sullivan, T. Hoffman, and A. Das. Hybrid active/passive actuator forspacecraft vibration isolation and suppression[C].1996, SPIE,2865:104~122.
    [108] C. Taranti, B. Agrawal, and R. Cristi. An efficient algorithm for vibration suppression to meetpointing requirements of optical payloads[C]. AIAA Guidance, Navigation, and ControlConference and Exhibit, Montreal, Canada; UNITED STATES;6-9Aug.2001.
    [109] J. McInroy, J. O’Brien, and G. Neat. Precise, fault-tolerant pointing using a Stewartplatform[J]. IEEE/ASME Transactions on mechatronics,1999(4):91~95.
    [110] A. Abu Hanieh, M. Horodinca, and A. Preumont. A soft-actuator active hexapod for thepurpose of vibration isolation[C]. In International Conference on Noise and VibrationEngineering, KUL, Leuven, Belgium, September2002.
    [111] CSA Engineering. Internet. Http://www.csaengineering.com.
    [112] B. Petitjean and D. Lebihan. Robust control of a satellite truss structure[C]. InternationalConference on Adaptive Structures and Technologies,10th, Paris, France; UNITED STATES;11-13Oct.1999:313~319.
    [113] Z. Geng and L. Haynes. Six degrees-of-freedom active vibration control using the Stewartplatforms. IEEE Transactions on Control Systems Technology,1994,2(1):45~53.
    [114] Physik Instruments. Physik Instruments catalogue. http://www.physikinstrumente.co.uk/
    [115] A. Abu Hanieh, A. Preumont, and N. Loix. Piezoelectric Stewart platform for general purposeactive damping and precision control[C]. In: Proceedings of the9th European SpaceMechanisms and Tribology Symposium,19-21September2001, Liège, Belgium. Compiled byR. A. Harris. ESA SP-480, Noordwijk, Netherlands: ESA Publications Division, ISBN92-9092-761-5,2001:331~334.
    [116] H.C. Corben and Philip Stehle. Classical Mechanics[M],2nd Edition. New York: Wiley,1960:136~152.
    [117] Giancarlo Genta. Dynamics of rotating systems[M]. Springer Science+Business Media, Inc.Printed in the United Sates of America,2005.
    [118] Gunhee Jang, Seong-Weon Jeong, Vibration analysis of a rotating system due to the effect ofball bearing waviness[J]. Journal of Sound and Vibration,2004(269):709~726.
    [119] J.-J. Sinou. Non-linear dynamics and contacts of an unbalanced flexible rotor supported onball bearing[J]. Mechanism and Machine Theory,2009(44):1713~1732.
    [120] S.P. Harsha. Non-linear dynamic response of a balanced rotor supported on rolling elementbearings[J]. Mechanical Systems and Signal Processing,2005(19):551~578.
    [121] T. C. Lim, R. Singh. Vibration transmission through rolling element bearings, part I: bearingstiffness formulation; part II: system studies[J]. Journal of sound and vibration,1990,139(2),179~225.
    [122] Bai Changqing, XU Qingyu. Dynamic model of ball bearings with internal clearance andwaviness[J]. Journal of Sound and Vibration,2006(294):23~48.
    [123]冈本纯三著,黄志强,译.球轴承设计计算[M].北京:机械工业出版社,2003:171-179.
    [124]彭超英,高燕云,朱均,陈瑞琪.利用弹性支承改善滚动轴承的振动特性[J].机械设计,1997(3):20~22.
    [125]宋兆泓.涡轮发动机转子的弹性支承[J].现代航空,1965(12):23~26.
    [126]冯国全,周柏卓.鼠笼式弹性支承结构参数优化设计与试验[J].航空动力学报,2011,26(1):199~203.
    [127]彭超英,高燕伟,陈瑞琪,朱均.弹性支承用于高速纺纱锭子的减振与降噪[J].振动与冲击,1997,16(3):70~72.
    [128]林立,华志宏,刘晓丽.锭子弹性支承刚度对其不平衡响应的影响[J].东华大学学报(自然科学版),2003,29(1):20~23.
    [129] SNFA Precision Ball Bearing Assembly manual and bearing damage analysis,2003:35..
    [130] Tedric A. Harris, Michael N. Kotzalas. Rolling bearing analysis: Essential concepts of bearingtechnology[M]. Taylor&Francis Group, LLC.
    [131]清华大学工程力学系固体力学教研组振动组.机械振动[M].机械工业出版社,1980.8.
    [132]罗继伟,罗天宇.滚动轴承分析计算与应用[M].北京:机械工业出版社,2009.6.
    [133] K. Makihara, J. Onoda, and K. Minesugi. New approach to semi-active vibration isolation toimprove the pointing performance of observation satellites[J]. Smart Materials and Structures,2006(15):342~350.
    [134] Piezo Ceramic Actuators and Custom Subassemblies. PI Company. PP40.http://www.piceramic.de/pdf/PIC_Catalog_Piezoelectric_Ceramic_Actuators_Custom_Piezo_Assemblies_c.pdf.
    [135] C. Q. Chen, W. M. Wang and Y. P. Shen. Finite element approach of vibration control usingself-sensing piezoelectric actuators[J]. Computer&Structures,1996,60(3):505~512.
    [136] N. Jalili. Piezoelectric-Based vibration control [M]. Springer Science+Business Media, Inc.Printed in the United Sates of America,2010.
    [137] S. H. Chen, Z. D. Wang and X. H. Liu. Active vibration control and suppression for intelligentstructures[J]. Journal of Sound and Vibration,1997,200(2):167~177.
    [138] C. I. Tseng. Electromechanical dynamics of a coupled piezoelectric/mechanical systemapplied to vibration control and distributed sensing[D], Ph.D. Thesis, University of Kentucky,1981.
    [139] S. Narayanan and V. Balamurugan. Finite elment modelling of piezolaminated intelligentstructures for active vibration control with distributed sensors and actuators[J]. Journal ofSound and Vibration,2003(262):529~563.
    [140] H. S. Tzou. Piezoelectric Shells—Distributed Sensing and Control of Continua[M]. KluwerAcademic, London,1993.
    [141] William T. Thomson, Marie Dillon Dahleh. Theory of Vibration with Application[M]. FifthEdition, Pearson Education Asia Limited and Tsinghua University Press,2005.
    [142]王济. Matlab在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [143]李德葆,陆秋海.工程振动试验分析[M].北京:清华大学出版社,2004.
    [144]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [145] S.O. Reza Moheimani and Andre J. Fleming. Piezoelectric Transducers for Vibration Controland Damping[M]. Germany: Springer Science,2006.
    [146]蒋建平.航天器太阳能帆板智能结构动力学建模与分散化控制研究[D].长沙:国防科技大学,2009.10.
    [147]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社,2003.
    [148]秦荣.智能结构力学[M].北京:科学出版社,2005.
    [149] http://www.pi-china.cn/New%20version/products/PDF/PicmaBender_Datasheet.pdf
    [150]刘昆等.磁悬浮飞轮技术及其应用[C].卫星总体和可靠性技术研讨会论文集,北京:中国人民解放军总装备部卫星技术专业组,2004:101~111.
    [151]李连军,戴金海.反作用轮系统内干扰建模与仿真分析[J].系统仿真学报,2005,17(8):1855~1858.
    [152] Yang Zhao, Jie Sun, and Hao Tian. Development of methods identifying parameters inreaction wheel assembly disturbance model[J]. Aircraft Engineering and Aerospace Technology.2006,78(4):326~330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700