用户名: 密码: 验证码:
城市水源水质风险评价及应急处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
供水系统是城市基础设施的重要组成部分,与城市发展和社会稳定息息相关。近年来,受环境变化、工农业生产和居民生活的影响,我国水环境质量呈现恶化趋势,而居民对于饮用水质量的要求却不断提高;同时,在持续性污染尚未得到彻底控制的情况下,以交通事故、生产事故和违规排放为代表的各类突发性水污染事件发生频率日渐升高,危害日益增大,给城市供水安全带来了新的隐患。
     目前,我国许多城市开始有计划的进行水质安全保障研究,分析潜在威胁,研究应对方法,制定应急预案。但是,不同城市、不同水厂的水源情况、水质状况、潜在污染源、可能发生的污染情景不同,水厂所采用的工艺和所具备的资金、技术、应急设施也有所差异,因此,需针对特定研究对象有针对性的开展水质安全保障研究。本文以西北某市供水系统为研究对象,针对系统在水源水质、污染风险及净水能力等方面存在的问题,重点开展水质风险评价、水质变化趋势分析与预测、潜在污染源与污染特征分析及应急处理方法等方面的研究,主要研究内容与结论包括:
     1)建立了基于主成分分析的模糊综合评价模型
     针对传统评价模型存在的评价因子选取主观性强,评价结果可比性差及超标存在性表述不直观等问题,以模糊评价原理为基础,建立了基于主成分分析的模糊综合评价模型。利用主成分分析的降维原理筛选评价因子,降低主观因素对评价结果的影响;以级别特征值J作为同级别水体水质状况比较和超标因子存在性判定的依据,提高评价模型的实用性。研究结果表明,当级别特征值J大于2时,无论最终评价结果如何,均表明评价水体存在超标因子,且J值越大,水体状况越差;以筛选后的水质指标作为评价因子,所得J值能更准确的反映超标因子的存在性,使得最终评价结果更加科学。
     2)分析了案例城市水厂原水主要水质指标的变化趋势
     采用Spearman秩相关系数法和季节性肯达尔法对案例城市地表水源水厂和地下水源水厂原水主要水质指标的变化特征进行了分析,结果表明:地表水源水厂原水中表征有机物含量的指标高锰酸盐指数、化学需氧量以及表征水体富营养化的指标总氮,呈现上升趋势,水厂有机污染风险、藻类爆发风险、消毒副产物生成风险升高;地下水源水厂原水天然水化学特征并未发生不利变化,微生物类指标(细菌总数、大肠杆菌群)不断降低,营养盐成分稳定,有机污染风险小,但锰、亚硝酸盐污染风险较高;在所研究水体水质季节性变化特征不明显,漏测值、奇异值个数较少,且仅需对变化趋势做定性评价时,Spearman秩相关系数法与季节性肯达尔法评判结果基本相同,且Spearman秩相关系数法计算简便,对数据量要求较小,在实际应用中更便于推广。
     3)建立了基于Lyapunov指数的原水水质混沌预测模型
     以混沌学原理为基础,以混沌学在其它学科的研究成果为参考,建立了基于Lyapunov指数的原水水质混沌预测模型,探讨了采用混沌学原理分析原水水质序列变化特征的可行性。研究结果表明,原水水质序列可能存在混沌特性,利用文中提出的混沌预测模型可以实现短期内水质变化的预测,平均预测误差低于10%,为周期性水质高负荷风险的预测提供了一种新的途径。
     4)确定了案例城市水源地污染风险源类型及污染方式
     通过现场调查和资料收集的方式,对案例城市水源保护区内潜在的污染源种类、可能发生的污染情景以及可能造成的污染影响进行了分析,结果表明:地表水源保护区潜在污染源以突发性污染源为主,污染特征表现为短时间内污染物的大量排放,而地下水源保护区潜在污染源以常规污染源为主,污染特征表现为长时间的持续性污染积累;案例城市地表水源保护区面临事故源、工业源、流域源、内部源及自然灾害源五类潜在突发性污染源的威胁,可能发生石油类污染、氮磷污染、重金属污染(镉、铬)等多种污染形式;地下水源保护区内潜在污染源类型可分为工业源、补给源、农业生产源、居民生活源及固体废物源,可能引发有机污染、氮元素污染等多种污染形式,其中以氨氮污染最为显著。
     5)评估了水厂常规工艺对主要风险污染物的去除效果
     以有机物、总磷、重金属(镉、铬)三类典型风险污染物为研究对象,分析了混凝+沉淀+过滤+消毒的常规工艺的净水效果,研究结果表明:常规工艺对CODMn的平均去除率为38.3%,去除能力有限,但通过强化混凝的方式可满足当前水质状况下净水安全的需要;常规工艺对总磷的去除率约为60%-90%,去除效果较好,出水安全风险较小;常规工艺可应对六价铬和二价镉的最大污染强度分别为0.150mg/L和0.025mg/L,不能满足应急处理的需要,安全风险较大。
     6)提出了案例城市应急处理系统建设方案
     针对案例城市地表水源水厂和地下水源水厂面临的不同水质风险和具备的不同应急条件,以试验结果为依据,提出了建设以粉末活性炭投加系统+化学药剂投加系统为核心的地表水源水厂应急处理系统和以高锰酸钾氧化+砂滤工艺为核心的地下水源水厂应急处理系统。研究结果表明,粉末活性炭吸附法和化学沉淀法对以重金属污染物为代表的多种突发性污染物具有较好的去除效果,是目前较为常用的突发性水污染应急处理方法;将地表水源水厂应急处理系统建于案例城市地表水引水工程汇流池管理站可实现应急处理的“关口前移”,降低进厂原水污染物负荷,最大限度的降低污染事件对水厂常规工艺的影响,提高水厂出水水质安全保障系数;高锰酸钾氧化+砂滤工艺在进水锰≤0.7mg/L、氨氮≤1.1mg/L时具有稳定的运行效果,可满足现阶段案例城市地下水高锰、高氨氮风险应急处理的需要。
Water supply system is an important city facility and plays a key role in citydevelopment and social stability.Recently,due to environment changes,industry andagriculture production and people’S life,the quality of water environment becomesworse in our country.But the requirements of drinking water quality becomecontinuously more rigorous Meanwhile,with the persistent pollution not beingcontrolled,water pollution accidents,represented by traffic accidents,industrialaccidents and illegal discharge,occur more and more frequently.So new-dangers axebrought to water supply safety
     Presently,studies on water safety axe carried out in many cities in our country,including potential t11]reat analysis.treating measures study and emergency schemestudy.However,it is essential to developing specific water safety studies as thepollution situations.water treatlllent processes and other conditions are different Bytaking the water supply system of a certain city in northwest,the risk assessment ofwater quality,water quality changes analysis and prediction,potential pollution sourcesand characteristics analysis,and emergency treatment technologies are studied in thisPaper
     1)The assessmem model of source water quality based on fuzzy theory andprincipal component
     In order to solve the problems oftraditional assessmem models in factor selection,weights assigning and results analysis,a fuzzy synthesized assessment model based onprincipal component analysis is proposed,which sifts factors by dimension reductionprinciple and characterizes the different quality level and existence of over-prooffactors based on level characteristic value∽The results show-that w-hen the levelcharacteristic value is more than two,it indicates that there are over-proof factors,nomatter what the assessment result is,and as the level characteristic value is bigger,the quality is worse By taking the water quality indices which are analyzed by the modelas assessment factors,the level characteristic value can reflect existence of over-prooffactors more accurately.
     2)Analysis of source water quality changes
     The characteristics of main indices in surface water plants and ground waterplants are studied by Spearman rank related coefficient method and seasonal Kendalmethod The results shove-that the CODMn,COD~.and TP in surface water plantspresent a rising tendency,which indicates the existence of organic pollution risk,algaepollution risk and disinfection by-products risk In ground water plants,the naturalchemical characteristics don’t chmage worse,microbe indices(total bacteria andcoliform group)continue to be lower,nutrient composition is stability and organicpollution risk is relatively small,but Mmaganese and Nitrite pollution risk is relativelyhigh Moreover,an the condition of indistinctive Seasonal VaJdation,relatively smallmnount of missed measure and singular values,and only needing qualitative evaluation,the Spearman rank related coefficient method show-s the same results with the seasonalKendal method and better application foreground,because of easy calculation and lowrequirement to data quantity.
     3)The chaotic prediction model of source water quality based on Lyapunovexponent
     Based on chaotic theory and existing research results in other fields,theprediction model of source water quality is established and the application effects ofthis model are discussed as well The results show-that rave-water quality time seriesposses chaotic characteristics,it is possible to predict short-term variation,and theaccuracy ofmodel prediction is verified and the average error is less than 10%
     4)Analysis of pollution risk sources in water source areas
     According to field investigation and data collection,the types and characteristicsof potential pollution sources in case city water source areas are studied in detail Theresults shove-that sudden pollution sources including release source,industrial source,area source,internal source and natural disaster source,are the main risks in surfacewater protection areas,which take instantaneous discharge of large amounts ofpollutants as characteristics and can induce several pollution types,such as petroleumpollution,nitrogen and phosphorus pollution,heavy metal pollution(Cd、Or)Moreover,conventional pollution sources including industrial source,recharge source,agricultural production sourc,resident life sourc mad solid wastes source,are the mainrisks in groundwater protection areas,which take accumulation of pollution as characteristics and can induce several pollution types,such as organic pollution,nitrogen element pollution,especially ammonia nitrogen pollution
     5)Analysis oftreatment capability of surface water plants
     Based on typical potential pollutaats,such as orgafic compounds,totalphosphorus and heavy metal(Cd、Cr),the treatment capability of surface water plantsis discussed The results show that the average removal rate of CODMn is about 38 3%,which is relatively lOW,but by enhancing coagulation,it can meet requirements at thepresent quality condition The removal rate of TP is from 60%to 90%,which isrelatively high,and it means less security risk The maximum load of hexavalentchromium and divalent cadmium which the conventional process can treat,are0 1 50mg/L and O 025m/l,it mean large security risk in emergent treatment
     6)Proposing the construction scheme of emergent treatment system in case city
     In viev~-of difl~rent risk and existing emergency condition in surface water plantsand ground water plants,the emergent treatment system is studied in detail based onexperimental results,which takes dosing system of powdered activated carbon andchemicals as the key in surface water plants,and the process of potassiumpermanganate oxidation and sand filtration in ground water plants The results show-that powdered activated carbon adsorption and chemical precipitation are the commonemergent treatment methods to sudden pollution incidents The strategic pass movedforward can be realized,which can reduce pollution load and influence of pollutionincidents to plants operation,when the emergent treatment system is constructed at theriver junction management station of the main water supply source Meanwhile,theprocess of potassium permanganate oxidation and sand filtration presents the stableoperation effect at the condition of Mn O 7m孚L and ammonia-nitrogen 1 lmg/L,which means the process proposed in the paper can meet the emergent treatmentrequirements of high manganese and high ammonia-nitrogen risk in case city.
引文
[1]金磊.城市供水安全及其保障对策[M].北京:高等教育出版社.
    [2]吕谋,裘巧俊,李乃虎等.浅谈城市供水系统安全性[J].青岛工程学院学报,2005,26(1):1-4.
    [3]秦秋莉,陈景艳.我国城市供水安全状况分析及保障对策研究[J].水利经济,2001,(5):27-31.
    [4]冶雪燕.黄河下游悬河段地下水开发风险评价与调控研究.[D].吉林大学,2006.
    [5] Regan Murray. Water and Homeland Security: An Introduction. Journal of Contemporary Water Research and Esucation[J].Journal of Contemporary Water Research and Education,2004,10(129):1-2.
    [6]李莲芳.北京市地表水水体污染评价与控制对策研究[D].北京农业大学,2004.
    [7]苏德林,武斌,沈晋.水环境质量评价中的层次分析法[J].哈尔滨工业大学学报,1997,29(5):105-108.
    [8]郑西来,吴新利,荆静.西安市潜水污染的潜在性分析与评价[J]. 1997(4):22-25.
    [9]衣强.集中式地表饮用水水源地安全评价方法研究[D].中国水利水电科学研究院,2007.
    [10]徐敏,混沌理论在水质预测中的应用初探[J],环境科学与技术,2004,27(1):51-53.
    [11]李新贤,李红,宋宏娟.新疆地表水资源质量及变化趋势分析[J].干旱区地理,2003,26(3):254-259.
    [12]黄廷林,卢金锁,韩宏大等.地表水源水质预测方法研究[J].西安建筑科技大学学报(自然科学版),2004,36(2):134-137..
    [13]赵雪辉.灰色系统GM(1,1)残差模型在水质预测中的应用与探讨[J].干旱环境监测, 1997, 11(2): 118-120.
    [14]王开章.灰色模型在大武水源地水质预测中的应用[J].山东农业大学学报(自然科学版), 2002, 33(1):66-71.
    [15]田怀军,舒为群,张学奎等.长江、嘉陵江(重庆段)源水有机污染物的研究[J].长江流域资源与环境,2003,12(2):118-123.
    [16]李绍峰,王丽,黄君礼. UV/H2O2技术去除水中有机污染物[J].哈尔滨工业大学学报,2004,32(16):1686-1689.
    [17]刘卫华,季民,杨洁等.高藻水中污染物氧化降解及卤代烃生成的控制[J].中国环境科学,2004,24(6):679~683.
    [18]季民,刘卫华,任智勇等.新型组合工艺对微污染原水中有机污染物和消毒副产物前体物的去除[J].水处理技术,2004,30(6):333-337.
    [19]李建新.德国饮用水水源保护区的建立与保护[J].地理科学进展,1998,17(4):88~96.
    [20] Manan.A .,Ibtrhim,M .Community-based river management in southeast Sulawesi,Indonesia:a case study of the Bau-Bau River[J].Water Science and Technology,2003,48 (7 ): 181~190.
    [21] Boyle J.D,Scott J.A ..The role of benthic films in the oxygen balance in an east Devon River[J].Water Resource,1984,18 (9):1089~1099.
    [22] Sarikays,H .Z.Sevimli,M.F.Citil.E .Region-wide assessment of the land-based sources of pollution of the Black sea[J].Water Science and Technology,1998,39(8):193-200.
    [23] Overton E B.Organics in the water column and air-water interface samples of Mississipi River water. Chemoshpere[J],1980,9 (10):629~633.
    [24] APHA,AWWA,WPCF.Standard methods for the examination of water and wastewater (sixteenth). Port City Press,Baltimore,Maryland,1985.
    [25] USEPA. Vulnerability Assessment Factsheet. www.epa.gov./ogwdw/security/index.html,2002,12.
    [26] NRWA. Security Vulnerability Self-Assessment Guide for Small Drinking Water Systems Serving Populations Between 3,300 and 10,000. 2002, 11, 13, http:// www.asdwa.org/docs/ 2002/.
    [27] Urbansky E. T. , SchockM. R. Issues in managing therisks associated with perchlorate in drinking water[J]. Jounal ofEnvironmentalManagement,1999, 56: 79~95.
    [28] Lennox S. D. . A comparison of agriculture waterpollution incidents in Northern Ireland with those in England andWales[J]. WaterResearch,2002, 32: 649~656.
    [29] ChristopherWard. First responders: Problems and solutions: Water supplies[J]. Technology in Society,2003, 25:535~537.
    [30]郭劲松.基于人工神经网络(ANN)的水质评价与水质模拟研究[D].重庆大学,2002.
    [31]丁桑岚.环境评价概论[M].北京:化学工业出版社,2001.
    [32] Chen Suo-zhong, Wang Xiao-jing, Zhao Xiu-jun. An attribute recongnition model based on entropy weight for evaluating the quality of groundwater sources[J]. Journal of China University of Mining and Technology,2008,18(1):72-75.
    [33] Zou Zhi-hong, Yun Yi, Sun Jing-nan. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment [J]. Journal of Environmental Sciences, 2006, 18(5):1020-1023.
    [34] Dshiya S, Singh B, Gaur S, et al. Analysis of groundwater quality using fuzzy synthetic evaluation[J]. Journal of Hazardous Materials, 2007, 147(3):938-946.
    [35]曾永,樊引琴,王丽伟等.水质模糊综合评价法与单因子指数评价法比较[J].人民黄河,2007,29(2):64-65.
    [36]宋述军,周万村.沱江流域地表水水质的模糊综合评价[J].水土保持研究,2007,14(6):128-131.
    [37]刘康兰,袁洁.模糊综合评判在环境质量评价中的应用[J].环境工程,2000,18(1):55-57.
    [38]万金保,侯得印.水质模糊综合评价模型的建立与应用[J].给水排水,2006,22(20):101-104.
    [39]江永明,倪朝辉,樊启学等.天鹅洲、黑瓦屋长江故道湿地水质的模糊综合评价[J].淡水渔业,2006(36)6:16-20.
    [40]李祚永,丁晶,彭荔红.环境质量评价原理与方法[M].北京:化学工业出版社,2004.
    [41] Subhankar Karmakar,P.P.Mujumdar.An inexact optimization approach for river water-quality management[J]. Journal of Enviromental Management,2006,81(3):233-248.
    [42]周林飞,许士国,孙万光.基于灰色聚类法的扎龙湿地水环境质量综合评价[J].大连理工大学学报,2007,47(2):240-245.
    [43]于洪涛,吴泽宁.灰色关联分析在南水北调中线澧河水质评价中的应用[J].节水灌溉,2010,(3):39-42.
    [44]孟宪林,孙丽欣,周定.灰色理论在环境质量评价中的应用与完善[J].哈尔滨工业大学学报,2002,34(5):700-702.
    [45]张蕾,王高旭,罗美蓉.灰色关联分析在水质评价应用中的改进[J].中山大学学报(自然科学版),2004,43(增刊):234-236.
    [46] W.C.Ip,B.Q.Hu,H.Wong,et al.Applications of grey relation method of river environment quality evaluation in China[J].Journal of Hydrology,2009,379(3-4):284-290.
    [47]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000.
    [48]陈守煜,李亚.基于模糊人工神经网络识别的水质评价模型[J].水科学进展, 2005, 16(1): 88-91.
    [49]闫英战,杨勇,陈爱斌.可拓神经网络在水质评价中的应用[J].人民长江,2010,41(15):27-30.
    [50]蒋福兴,田立慧,白国峰.改进的BP神经网络在浑河水质评价中的应用[J].辽宁工程技术大学学报,2004,23(5):616-617.
    [51]张成燕,徐望,赵冬冬.基于神经网络的水厂原水水质的综合评价[J].冶金分析,2008,28(5):44-47.
    [52]周蓉蓉,孙英.遗传神经网络在海水水质综合评价的应用[J].海洋湖沼通报,2009,(3):167-173.
    [53] 02H1Richard W Gullick, 03H1Leah J Gaffney, 04H1Christopher S Crockett,et al. Developing regional early warning systems for us source waters[J]. 05H1American Water Works Association.Journal.Denver, 2004,96(6):68-83.
    [54] Larry W. Mays , Ph. D. , P.E. , P.H. Water Supply Systems Security. [M].McGRAw-HILL,2004.
    [55] J.G. Evans, P.D. Wass, P. Hodgson. Integrated continuous water quality monitoring for the LOIS river programme [J]. The Scienceo f the Total Environment,1997,194/l95:111-118.
    [56] Sean A. McKenna1; David B. Hart2; and Lane Yarrington. Impact of Sensor Detection Limits on Protecting WaterDistribution Systems from Contamination Events[J]. Journal of water resources planning and management,2006,(7):305-309.
    [57] I. Mariolakos, I. Fountoulis, E. Andreadakis,et al. Real-time monitoring on Evrotas River(Laconia, Greece):dissolved oxygen as a critical parameter for environmentalstatus classification and warning[J]. Desalination,2007,213:72-80.
    [58] Daniel Aguado,_, Christian Rosen. Multivariate statistical monitoring of continuous wastewater treatment plants[J]. Engineering Applications of Artificial Intelligence,2007,(8):1-12.
    [59] Y. Jeffrey Yang,James A. Goodrich, Robert M. Clark,et al. Modeling and testing of reactive contaminant transport in drinking water pipes: Chlorine response and implications for online contaminant detection[J]. Water research, 2008,42:1397– 1412.
    [60] 06H1Y. Jeffrey Yang, 07H1Roy C. Haught, 08H1John Hall,et al. 09H1Adaptive Water Sensor Signal Processing: Experimental Results and Implications for Online Contaminant Warning Systems[C]. World Environmental and Water Resources Congress 2007.
    [61] John Hall, Alan D Zaffiro, Randall B Marx, et al. On-line water quality parameters as indicators of distribution system contamination[J]. American Water Works Association. Journal, 2007, 99(1):66-78.
    [62] Jessica Newberry,Jennifer Wichterman,John Kuchta,et al. Rapid analytical techniques for Drinking Water security investigations[J]. American Water Works Association. Journal, 2004, 96(1): 52-64.
    [63] Michele Scheuring; John Kuchta; Jessica Newberry,Utility-based analytical methods to ensure public water supply security[J]. American Water Works Association. Journal, 2004, 96(1): 103-116.
    [64] Katherine A. Klise,Sean A. McKenna. Multivariate applications for detection anomalous water quality [C]. 8th Annual Water Distribution Systems Analysis Symposium, Cincinnati, Ohio, USA, 2006.
    [65] Sean A. McKenna, Katherine A. Klise , Mark P. Wilson. Testing water quality change detectiong algorithms [C]. 8th Annual Water Distribution Systems Analysis Symposium, Cincinnati, Ohio, USA,2006.
    [66] Katherine Umberg, James G. Uber, Regan Murray. Preformance evaluation of real-timeevent detectiong algorithms [C]. 8th Annual Water Distribution Systems Analysis Symposium, Cincinnati, Ohio, USA,2006.
    [67] Wei Yang, Jun Nan, Dezhi Sun. An online water quality monitoring and management system developed for the Liming River basin in Daqing, China[J]. Journal of Environmental Management,2008,88:318-325.
    [68]高志康.对水质自动监测中测量值突变的判别与处理[J].环境监测管理与技术,2002,14(4):43-44.
    [69]许国辉,余春林.卡尔曼滤波模型的建立及其在施工变形测量中的应用[J].测绘通报,2004,(4):22-25.
    [70]马军海.复杂非线性系统的重构技术[M].天津大学出版社.2004.
    [71]迟东璇.基于Lyapunov指数预报方法及在气象预报中的应用[J],锦州师范学院学报,2003,24(2):49-51
    [72]李眉眉,丁晶.电力日负荷的混沌特性分析及短期预测[J],水电能源科学,2003,21(3):84-85.
    [73]殷光伟.小波包与混沌集成的股票市场预测新方法[J],哈尔滨工业大学学报,2005,7(1):64-68
    [74] Toshiro Katayama.A blood glucose prediction system by chaos approach [C]. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.2004.
    [75]姚娟娟,高乃云,张可佳等.饮用水源亚砷酸盐污染应急处理的中试研究[J].水工业市场,2008,(1):40-45.
    [76]谭丽红,陆少鸣,方平等.突发性水污染事件中镍的去除研究[J].工业用水与废水,2007,38(6):16-19.
    [77]张晓健,张悦,王欢等.无锡自来水事件的城市供水应急除臭处理技术[J].给水排水,2007,23(9):7-12.
    [78]李勇;张晓健;陈超等.臭氧活性炭去除水中硫醇类致嗅物质的研究[J].清华大学学报(自然科学版),2009,49(3):30-392.
    [79]张晓健,陈超,李伟等.汶川地震灾区城市供水的水质风险和应急处理技术与工艺[J].给水排水,2008,34(7):7-13.
    [80]张晓健,陈超,李勇.贵州省都柳江砷污染事件的应急供水技术与实施要点[J].给水排水,2008,34(6):14-18.
    [81]张晓健.加强城市供水应急处理技术和应急系统建设的研究[J].给水排水,2007,33(11):1-4.
    [82]张晓健.松花江和北江水污染事件中的城市供水应急处理技术[J].给水排水,2006,32(6):6-12.
    [83]张振宇,崔福义,黄鹏飞等.松花江水源粉末活性炭去除硝基苯的试验研究[J].哈尔滨商业大学学报(自然科学版),2008,24(6):672-677.
    [84]张兵,崔福义,左金龙等.斜发沸石对氨氮的去除效果及其再生试验研究[J].中国给水排水,2008,24(23):85-88.
    [85]崔福义.城市给水厂应对突发性水源水质污染技术措施的思考[J].给水排水,2006,32(7):7-9.
    [86]赵志伟,崔福义,张震宇等.粉末活性炭吸附去除水源水中硝基苯的优选试验[J].沈阳建筑大学学报(自然科学版),2007,23(1):134-137.
    [87]崔福义,李伟光,张悦等.哈尔滨气化厂(达连河)供水系统应对硝基苯污染的措施与效果[J].给水排水,2006,32(6):13-17.
    [88]张悦,张晓键,陈超等.城市供水系统应急净水技术指导手册(试行).北京:中国建筑工业出版社,2009.
    [89]彭文启,张祥伟等.现代水环境质量评价理论与方法[M].北京:化学工业出版社,2005.
    [90]叶文虎,奕胜基编著.环境质量评价学[M].北京:高等教育出版社.1994.
    [91]中国科学技术大学等合编.自然辩证法原理[M].长沙:湖南教育出版社,1984.
    [92]侯俊,王超,吉栋梁.我国饮用水水源水质标准的现状及建议[J].中国给水排水,2007,23(20):103-106.
    [93]衷克定.数据统计分析与实践[M].北京:高等教育出版社,2005.
    [94]陈玉成,李章平,曹秋华.环境质量评价中的赋权技术[J].重庆环境科学,1997,19(2):42-46.
    [95]杨志峰,张玉先.水源水质模糊评价中的综合赋权和折减系数赋权[J].给水排水,30(4),2004:37-40.
    [96]马玉杰,郑西来,李永霞等.地下水质量模糊综合评判发的改进与应用[J].中国矿业大学学报,2009,38(5):745-748.
    [97]陈秀珍.西安市曲江水厂原水水质特征及常规工艺运行效果分析[D].西安建筑科技大学, 2010.
    [98] Khaled H. Hamed. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis[J].Journal of hydrology,2008,349:350-363.
    [99] R. Bouza-Deano, M. Ternero-Rodr?′guez, A.J. Fernandez-Espinosa.Trend study and assessment of surface water quality in the Ebro River (Spain) [J].Journal of hydrology, 2008, 361 :227-239.
    [100] Sheng Yue, Paul Pilon, George Cavadias. Power of the Mann-Kendall and Spearman’S rho tests for detecting monotonic trends in hydrological series[J].Joural of Hydrology, 2002, 259 : 254-271.
    [101] Robert M. Clark M. ASCE, Nabil R. Adam, et al. Development of a Consortium for Water Security and Safety: Planning for an Early Warning system[C]. World Water Congress,2004,2168-2177.
    [102]董志颖,王娟,李兵.水质预警理论初探[J].水土保持研究,2002,3(9):224-226.
    [103]卢金锁.地表水厂原水水质预警系统研究及应用[D].西安建筑科技大学,2007.
    [104] Richard W Gullick et al. Developing regional early warning systems[J]. ProQuest Science Lournals,2004,96(6):68-84.
    [105]李业.预测学[M].广州:华南工学院出版社,1998.
    [106]韦鹤平.环境系统工程[M].上海,同济大学出版社,1991.
    [107]李如忠.水质预测理论模式研究进展与趋势分析[J].合肥工业大学学报(自然科学版),2006,29(1):26-30.
    [108]黄润生.混沌及其应用[M].武汉:武汉大学出版社,2000.
    [109]申维.分型混沌与矿产[M].北京:地质出版社,2002.
    [110]邹恩,李祥飞,陈建国.混沌控制及优化[M].长沙:国防科技大学出版社,2002.
    [111] Sivakumar B.Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series?[J]. Water Resources Research,2002,38(2):21-28.
    [112] Sivakumar B.Chaos theory in hydrology: important issues and interpretations[J]. Journal of Hydrology,2000,2-7(1-4):1-20.
    [113] Sivakumar B.Chaos in rainfall: variability, temporal scale and zeros[J]. Journal of Hydroinformatics,2005,7(3):175-184.
    [114] Sivakumar B.Chaos theory in geophysics: past, present and future[J]. Chaos, Solitons and Fractals,2004,19(2):441-462.
    [115] S.A.Sannasiraj.Enhancing tidal prediction accuracy in a deterministic model using chaos theory[J]. Advances in Water Resources,2004,24(7):761-772.
    [116]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2004.
    [117] Hugues Chate,Paul Manneville. Spatio-temporal intermittency in coupled map lattices [J]. Physica D:Nonlinear Phenomena,1988,32(3):409-422.
    [118] Wolf A, Swift B, Swinney H L, et al.Determining Lyapunov Exponents from a Times Series [J].Physics D,1985,16(2):285-371.
    [119]汪立忠,陈正夫,陆雍森.突发性环境污染事故风险管理进展[J].环境科学进展,1998,6(3):14~23.
    [120]石秋池.从美国“9.11”之后为保护饮用水水源所做的工作看我国饮用水水源地应急保护中的问题[J].水资源保护,2003, (5):50-52.
    [121]邱凉.城市水源地突发污染事故风险源项辨识与分析)[J].人民长江,2008,39(27):19-20.
    [122]葛长荣.广州市重大危险源的辨识和评价及其风险防范策略[D].南方医科大学,2006.
    [123]虞汉华.基于GIS的城市重大危险源风险管理研究[D].南京工业大学,2006.
    [124]石砚秀,李琴,潘旸等.环境风险评价与安全评价危险源辨识的异同[J].环境保护科学,2009,35(4):94-97
    [125]金石.黑河水源地“急诊”报告[N].西安晚报,2006,(2006-03-21).
    [126]金石.让我们拥有一个放心的水源地[N].西安晚报, 2006,(2006-05-01).
    [127]赵先阳.如果黑河污染了,我们喝什么[EB/Ol].http://www.xatvs.com/lanmu/zhuizong.htm
    [128]黎文安,李旭妍. 1H0四大污染威胁黑河安全[N]西安日报, 2004, (2004-08-24).
    [129]程继夏,李刚.公路运输对黑河金盆水库水源地的污染风险[J].长安大学学报(自然科学版),2008,28(3):80-83.
    [130]卢金锁,韩晓刚,黄廷林等.汶川大地震对西安市安全供水的启示[J].中国给水排水,2008,24(22):17-20.
    [131]姜登岭,薄国柱,倪国葳等.常规处理工艺对饮用水中有机物的去除[J].河北理工学院学报,2006,28(3):130-134.
    [132]刘文飞,张玉先.水处理常规工艺对原水水质变化的适应性[J].净水技术,2005,24(5):52-56.
    [133]石明岩,崔福义,张海龙等.给水处理常规工艺除污染特性及混凝剂的优化[J].哈尔滨工业大学学报,2002,34(6):762-766.
    [134]张自杰.给水工程(第四版)[M].北京:中国建筑工业出版社,2000.
    [135]陆柱,蔡兰坤,丛梅.给水与用水处理技术[M].北京:化学工业出版社,2004.
    [136] Ganjidoust H., Tatsuni K.,Wada S., et al. Role of Peroxidase and Chitosan in Removing Chlorophenols from Aqueous Solution[J].Wat·Sci·Tech·, 1996, 34(10): 151-159.
    [137]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998
    [138]姜登岭,张晓健.饮用水中的磷及其在常规处理工艺中的去除[J].环境科学学报,2004,24(5):796-801.
    [139]徐国想,阮复昌.铁系和铝系无机絮凝剂的性能分析[J].重庆环境科学,2001,23(3):52-56.
    [140]王红斌,杨敏,唐光阳等.聚合氯化铝的混凝除磷性能研究[J].化学世界,2004,(1):7-10.
    [141]邢伟,黄文敏,李敦海等.铁盐除礴技术机理及铁益混凝钊的研究进展[J].给水排水,2006,32(2):88-91.
    [142]杜良,王金生.饹馇毒性对环境的影响及产出量分析[J].安全与环境学报,2004,4(2):34-37.
    [143]王志红,崔福义.聚合铝类混凝剂及混凝条件对余铝的影响试验研究[J].给水排水,2001,27(2):25-28.
    [144]刘文军,张丽萍.城市供水应急技术手册[M].北京:中国建筑工业出版社,2007.
    [145]高中方,周克梅,陈志平等.镉污染源水的应急处理技术研究[J].中国给水排水, 2005, 25 (11):86-88.
    [146]陆曦,梅凯.突发性水污染事故的应急处理[J].中国给水排水,2007,23(8):14~18.
    [147]王琳,王宝祯.饮用水深度处理技术[M].北京:化学工业出版社,2003.6.
    [148] Esposito A,Pagnanelli F,and Veglio F.pH-related equilibria models for biosorption in single metal systems[J].Chemical Engineering Science,2002,57:307-313.
    [149] J.W.帕森特.工业废水处理技术手册[M].北京:化学工业出版社,1993.
    [150]武江津,王凯军,丁庭华等.三废处理工程手册——废水卷[M].北京:化学工业出版社,2000.
    [151]张希衡.废水处理工程[M].北京:冶金工业出版社,1983.
    [152]《地下水质量标准》(GB/T14848-93)
    [153]李昌静,卫钟鼎.地下水水质及其污染[M].北京:中国建筑工业出版社,1983.
    [154]刘宏斌,李志宏,张云贵等.北京平原农区地下水硝态氮污染状况及影响因素研究[J].土壤学报,2006,43(3):405-412.
    [155] Thorburn P J,Biggs J S, Weier K L, et al.Nitrate in groundwaters of intensuve agricultural areas in coustal Northeastern Australia[J].Agriculture, Ecosystems and Enviornment, 2003, 94: 49-58.
    [156]林峰.西安城区地下水污染及其防治对策研究[D].长安大学,2006.
    [157]冯绍元,郑耀泉.农田氨氮的转化与损失及其对水环境的影响[J].农业环境保护,1996,15(6):277-279.
    [158] Abollino O,Aceto M,Malandrino M.Adsorption of heavy metals on Narmontmorillonite,effect of pH and organic substances[J]. Water Research,2003,37:1619-1627.
    [159]杨文澜,刘力,朱瑞珺.苏北某市垃圾填埋场周围地下水氮污染及其形态研究[J].地球与环境,2010,38(2):157-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700