用户名: 密码: 验证码:
采用摆振柔软式旋翼的倾转旋翼机动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
倾转旋翼飞行器兼具直升机高效垂直起降与固定翼螺旋桨飞机高速巡航特点。由于其特殊的结构与工作特点,其动力学特性也类似于传统直升机与固定翼螺旋桨飞机,同时倾转旋翼机具备特殊的倾转过渡模式,倾转过渡飞行模式下存在更加复杂的气弹耦合现象。本文建立了考虑机体自由度在内的倾转旋翼机气弹分析模型,对倾转旋翼飞行器在直升机模式,过渡模式以及飞机模式下进行气弹耦合分析。
     基于Hamilton能量原理,利用多体系统动力学的方法,对系统各部件进行运动学描述。建立考虑机体自由度的倾转旋翼机气弹动力学全展模型,充分考虑结构的各种偏置,刚柔耦合与气弹耦合。在对动力学部件进行运动学描述以及气弹耦合动力学建模与方程推导过程中,保留所有非线性项与高阶项的影响。可对起落架,倾转机构,阻尼器等部件的力学性能(包括刚度,阻尼)进行独立赋值,也可基于滞弹位移场理论进行粘弹阻尼器建模,与气弹动力学方程耦合求解。对机翼大梁采用中等变形梁理论进行有限元建模,考虑复合材料梁耦合特性的影响,可通过基于剪裁设计的复合材料梁理论对机翼大梁进行结构建模。基于叶素理论,采用考虑动态失速的Leishman与ONERA非定常气动模型以及动力入流模型对旋翼气动力进行建模。通过将左右两侧旋翼/短舱/机翼气弹耦合动力学方程与机体方程进行组集,构成考虑机体自由度在内的倾转旋翼机耦合气弹动力学方程。采用广义方法结合Newton-Raphson迭代对倾转旋翼气弹动力学方程进行瞬态响应高效求解。
     对建立的倾转旋翼机气弹动力学综合分析平台中所用模型进行验证。对复杂几何外形桨叶在不同根部约束条件下进行理论与试验对比研究,并进一步对带有复杂几何外形桨叶的万向铰式旋翼进行整体模态的理论分析与试验验证。在不同铺层角下,对盒形复合材料梁耦合特性进行理论分析,并与静力试验值进行对比验证。基于滞弹位移场理论在多种激励条件下对粘弹阻尼器的刚度特性与能量耗散能力进行理论分析,与设计加工的粘弹阻尼器试验值进行对比验证。采用Leishman与ONERA非定常气动模型进行剖面气动力建模,在不同迎角变化规律下,与国外文献计算值和相应实验值进行对比,验证建模方法的正确性。通过各模块理论分析与试验测量对比,达到对倾转旋翼机气弹动力学模型综合验证的目的。
     对摆振柔软式倾转旋翼机在飞机模式,直升机模式以及倾转过渡模式下进行气弹稳定性分析。考虑机体自由度与机翼对称/反对称模态的影响,重点对摆振柔软式倾转旋翼机在多种工作状态下的“地面共振”,空中共振与回转颤振等不稳定现象进行多种参数影响分析。对不同旋翼构型与建模方式下的倾转旋翼机气弹动力学模型稳定性进行对比研究。通过系统耦合关系对摆振柔软式倾转旋翼机气弹稳定性问题的机理进行深入探讨。
     针对摆振柔软式倾转旋翼机气弹动力学模型进行瞬态响应分析。在直升机模式下,进行摆振柔软倾转旋翼机“地面共振”和地面开车过程的仿真研究。在飞机模式下,进行回转颤振与阵风扰动的瞬态响应分析。动态倾转过渡过程中,对不同结构参数、倾转角与旋翼转速变化规律,以及飞行状态的影响进行瞬态响应对比研究。
     通过建立倾转旋翼机气弹分析模型,重点对摆振柔软式倾转旋翼机在飞机模式、直升机模式以及倾转过渡模式下进行稳定性分析与瞬态响应计算。对三种常见工作模式下的参数影响与多种复杂工作状态下的动态响应进行对比研究,发现一些有价值的规律和有意义的结论,这些结论对倾转旋翼机的进一步发展提供理论支持,并对倾转旋翼机动力学设计的工程实践具有一定的指导意义。
Combining the operating features of vertical take-off and landing capability of a helicopter withthe high-speed and long-range of a conventional fixed-wing aircraft, tiltrotors aircraft has its ownoperating features. These unique characters are determined by its configuration features. Due to these,the tiltrotor is subject to aeroelastic dynamical problems of the two aircrafts, and in addition, it mayencounter more complex aeroelastic instability problems like Inertia force and unsteady aerodynamiccondition during transition flight. To address these problems, full-span soft-inplane tiltrotor model isestablished with consideration of fuselage. Aeroelastical analysis is made in helicopter, airplane andconversion flight condition.
     Based on Hamilton Principle, taking structure offsets, rigid-flexible, aeroelastic coupling, theimpact of nonlinear and higher order terms into consideration, the components of system aredescribed in kinematics by the method of multibody dynamics. The elastic and dampling componentsare modeled by assigning mechanical properties (stiffness and damping) of landing gear, tilt-hinge,and lag damper independently, or by putting it into viscoelastic damper and being solved withaeroelastic dynamics equations. Dynamic-inflow is employed. Airfoil unsteady aerodynamic model isused to simulate complex aerodynamic environment of tiltrotor aircraft. Leishman and ONERAunsteady aerodynamic models are employed. Metal beam and tailored composite box-beam are usedto model wing beam. Then the right and left rotor/pylon/wing aeroelastic coupled equations combinedwith fuselage equations can be used to constitute full-span soft-inplane tiltrotor aeroelastic dynamicsequations. The method of generalized-combined with Newton iteration is used to improve theefficiency of solving aeroelastic dynamics equations for transient response.
     In order to ensure the correctness of submodules of full-span soft-inplane tiltrotor model, eachtheory modeling is supposed to be verified. Theory analysis results of advanced geometry blade arecompared with experimental results in different root restraints. Furthermore, integral modes ofgimbaled rotor with advanced geometry blades are analyzed theoretically and measured. For differentcomposite plys, coupling properties of tailored composite box-beam are discussed by comparison withtheoretical analysis and experiments. Viscoelastic dampers are measured in multiple-excitation cases.Stiffness characteristic and ability of energy dissipation of dampers are studied in anelasticdisplacement field theory. Leishman and ONERA unsteady aerodynamic models are employed in foilsection aerodynamic analysis. Aerodynamic coefficients of calculation are compared with foreign research literatures in various changing laws of angles of attack. In conclusion, the above processreaches the goal of validating the every submodules.
     Aerolatic stability of full-span soft-inplane tiltrotor model also needs analyzing in various flightconditions like helicopter, airplane and conversion. In airplane mode, parameters influence on whirlflutter of full-span soft-inplane tiltrotor are discussed, and compared with analysis results ofsemi-span gimbaled tiltrotor. In helicopter mode, parameters influence on ground resonanceaeroelastic stability of full-span soft-inplane tiltrotor model are studied. Aeroelastic stability offull-span soft-inplane tiltrotor is researched in different nacelle tilting angles and forward speeds.
     Transient response analysis of full-span soft-inplane tiltrotor model is made. Ground resonanceand rotor starting process on ground are researched by transient response of full-span soft-inplanetiltrotor model in helicopter mode. Transient response of whirl flutter and gust disturbance arediscussed in airplane mode. Transient response of full-span soft-inplane tiltrotor model is analyzed invarious structure parameters, nacelle tilting angles, changing laws of rotor speed, flight conditions.
     Aeroelastic stability and transient response analysis is made by established full-spansoft-inplane tiltrotor aeroelastic dynamical model in helicopter, airplane and conversion flightcondition. Some valuable conclusions of full-span soft-inplane tiltrotor are summarized by analyzingparameters influence on aeroelastic stability and transient response in three common operating modes.Essential laws have guiding significance in engineering practice of dynamic design.
引文
[1]高正,陈仁良,直升机飞行动力学[M],北京:科学出版社,2003。
    [2]张呈林,郭才跟,直升机总体设计[M],北京:国防工业出版社,2006。
    [3] Nixon, M. W., Aeroelastic Response and Stability of Tiltrotors with Elastically CoupledComposite Rotor Blades[D], University of Maryland,1993.
    [4] Wernicke,K.G.,The Tiltrotor:Better for VTOL than the Tilt-Wing[R].1990,Bell Helicopter Co.:FortWorth,Texas.
    [5] McCormik,B.W.,Aerodynamics,Aeronautics,and Flight Mechanics[C].2nd,1995,NewYork:JohnWiley&Sons,Inc.
    [6] Wayne Johnson,Helicopter Theory[M],USA:Dover Publications,Inc.,31East2ndStreet,Mineola,N.Y.11501,1994.
    [7] Orchard, M. N. and Newman, S. J. The compound helicopter versus tilt rotor-Europe’s shortcut tothe future[C]. In the26th European Rotorcraft Forum Proceedings,September2000.
    [8] Balmford, D. E. H. and Benger, B. S. The compound helicopter-a concept revisited[C]. InProceedings of the17th European Rotorcraft and Powered Lift Aircraft Forum,September1991.
    [9] Esculier,J.et al. Preliminary Comparisons of Tilt Rotor and Compound Helicopter for CivilApplications[C], The46th Annual National Forum and Technology Display ofAHS,1989,Boston,Massachusetts.
    [10] JC Tai, DN Mavris, DP Schrage.Application of a response surface method to the design of tipjetdriven stopped rotor/wing concepts[C]. Presented at the1st AIAA AircraftEngineering,Technology, and Operations Congress, Los Angeles, CA,September19-21,1995.
    [11] Maisel,M.D.,Giulianetti,D.J.,and Dugan,D.C.,The History of the XV-15Tilt Rotor ResearchAircraft: From Concept to Flight[R],NASA SP-2000-4517,2000.
    [12] Ga_ey,T.M.,Yen,J.G.,and Kvaternik,R.G.,Analysis and Model Tests of the Proprotor Dynamics ofa Tilt-Proprotor VTOL Aircraft[C], Air Force V/STOL Technology and Planning Conference,Las Vegas,Nevada, September23-25,1969.
    [13] Taylor, E. S. and Browne, K. A., Vibration Isolation of Aircraft Power Plants[J].Journal of theAeronautical Sciences, vol.6, no.2, December1938.
    [14] Abbott, F. T., Jr.; Kelly, H. N.; and Hampton, K.D.: Investigation of1/8-SizeDynamic-Aeroelastic Model of the Lockheed Electra Airplane in the Langley TransonicDynamics tunnel. NASA TM SX-456, November1960.
    [15] Bennett, R. M.; Kelly, H. N.; and Gurley, J. R.,Jr.: Investigation in the Langley TransonicDynamics Tunnel of a1/8-Size Aeroelastic-Dynamic Model of the Lockheed Electra Airplanewith Modifications in the Wing-Nacelle Region.NASA TM SX-818, March1963.
    [16] Donham,R.E.and Watts,G.A.,The Revolution in Structural Dynamics[M]. Dynaflo Press,PalmBeach Gardens,FL,1997.
    [17] Donham,R.E.and Watts,G.A.,Lessons Learned from Fixed and Rotary Wing Dynamic andAeroelastic Encounters[C].Proceedings of the41st AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference,Atlanta, GA, April3–6,2000.
    [18] Houbolt,J.C. and Reed III,W.H.,Propeller-Nacelle Whirl Flutter[J].Journal of the AerospaceSciences, vol.29, no.3, March1962.
    [19] Reed III,W. H., Propeller-Rotor Whirl Flutter: A State-Of-The-Art Review.Journal of Sound andVibration, vol.4, no.3, April1966.
    [20] Maisel,M.D.,Giulianetti,D.J.,and Dugan,D.C.,The History of the XV-15Tilt Rotor ResearchAircraft from Concept to Flight[R].NASA SP-2000-4517,2000.
    [21] Hall,Jr.,W.E.,Prop-Rotor Stability at High Advance Ratios[J]. Journal of the American HelicopterSociety,vol.11,no.2, April1966, pp11–26.
    [22] Young,M.I. and Lytwyn,R.T.,The Influence of Blade Flapping Restraint on the Dynamic Stabilityof Low Disk Loading Propeller-Rotors[J].Journal of the American Helicopter Society, vol.12, no.4, October1967, pp.38–54.
    [23] Edenborough,H.K.,Investigation of Tilt-Rotor VTOL Aircraft Rotor-Pylon Stability[J]. Journal ofAircraft, vol.5, no.6, March-April1968, pp.97–105.
    [24] Delarm,D.L.N., Whirl Flutter and Divergence Aspects of Tilt-Wing and Tilt-Rotor Aircraft[C].Air Force V/STOL Technology and Planning Conference,Las Vegas, Nevada, September23–25,1969.
    [25] Gaffey,T.M.,The Effect of Positive Pitch-flap Coupling (Negative δ3) on Rotor Blade MotionStability and Flapping[J]. Journal of the American Helicopter Society,vol.14, no.2, April1969,pp.49–67.
    [26] Kaza,K.R.V.,Effect of Steady State Coning Angle and Damping on Whirl Flutter Stability[J].Journal of Aircraft, vol.10, no.11, November1973, pp.664–669.
    [27] Wernicke,K.G.,Tilt Proprotor Composite Aircraft,Design State of the Art[J]. Journal of theAmerican Helicopter Society, vol.14, no.2, April1969, pp.10–25.
    [28] Kvaternik,R.G.,Studies in Tilt-Rotor VTOL Aircraft Aeroelasticity[D], Ph.D. thesis,Case WesternReserve University,1973.
    [29] Kvaternik,R.G.,Experimental and Analytical Studies in Tilt-Rotor Aeroelasticity[C]. Presented atthe AHS/NASA Ames Specialists’Meeting on Rotorcraft Dynamics,February13-15,1974.
    [30] Kvaternik,R.G.,A Review of Some Tilt-Rotor Aeroelastic Research at NASA Langley[J]. Journalof Aircraft, vol.13, no.5, May1976, pp.357–363.
    [31] Yeager,Jr.,W.T. and Kvaternik,R.G.,Contributions of the Langley Transonic Dynamics Tunnel toRotorcraft Technology and Development[C]. AIAA Dynamics Specialists Conference, Atlanta,GA, April5–6,2000.
    [32] Anon.,Advancement of Proprotor Technology Task II–Wind-Tunnel Test Results[R]. NASA CR114363, Bell Helicopter Co., Sept.1971.
    [33] Magee,J.P. and Alexander,H.R.,Wind Tunnel Tests of a Full Scale Hingeless Prop/RotorDesigned for the Boeing Model222Tilt Rotor Aircraft[R]. NASA CR114664, Boeing Vertol Co.,Oct.1973.
    [34] Wernicke,K.G. and Edenborough,H.K.,Full-Scale Proprotor Development[J]. Journal of theAmerican Helicopter Society, vol.17, no.1, January1972, pp.31–40.
    [35] Alexander,H.R., Hengen,L.M.,and Weiberg,J.A.,Aeroelastic-Stability Characteristics of aV/STOL Tilt-Rotor Aircraft with Hingeless Blades: Correlation of Analysis and Test[J]. Journalof the American Helicopter Society, vol.20, no.2, April1975, pp.12–22.
    [36] Edenborough, H. K.; Gaffey, T. M.; and Weiberg, J. A.: Analyses and Tests Confirm Design ofProprotor Aircraft. AIAA4th Aircraft Design, Flight Test, and Operations Meeting, LosAngeles,CA, August7-9,1972.
    [37] Maisel,M.,Tilt Rotor Research Aircraft Familiarization Document[R].NASA TMX-62,407,January,1975.
    [38] Johnson,W.,Dynamics of Tilting Proprotor Aircraft in Cruise Flight[R].NASA TND-7677, May,1974.
    [39] Johnson,W.,Analytical Model for Tilting Proprotor Aircraft Dynamics, Including Blade Torsionand Coupled Bending Modes, and Conversion Mode Operation[R]. NASA TM X-62,369, May,1974.
    [40] Johnson,W.,Analytical Modeling Requirements for Tilting Proprotor Aircraft Dynamics[R].NASA TN D-8013, July,1975.
    [41] Johnson,W.,The Influence of Engine/Transmission/Governor on Tilting Proprotor AircraftDynamics[R]. NASA TM X-62,455, June,1975.
    [42] Johnson,W.,A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics[M],Palo Alto, CA,1988.
    [43] Bilger,J.M.,Marr,R.L., and Zahedi,A.,Results of Structural Dynamic Testing of the XV-15TiltRotor Research Aircraft[J]. Journal of the American Helicopter Society,vol.27, no.2, April1982,pp.58–65.
    [44] Johnson,W.,Recent Developments in the Dynamics of Advanced Rotor Systems[R]. NASA TM86669, March,1985.
    [45] Settle,T.B. and Kidd,D.L.,Evolution and Test History of the V-220.2-Scale Aeroelastic Model[C].Presented at the American Helicopter Society National Specialists’Meeting on RotorcraftDynamics, Arlington, Texas, November1989.
    [46] Anon.,University of Maryland Advanced Rotor Code (UMARC) Theory Manual[M].Center forRotorcraft Education and Research, University of Maryland, College Park,MD, July1994.
    [47] Venkat Srinivas,Inderjit Chopra,Formulation of a Comprehensive Aeroelastic Analysis forTiltcraft[C].Presneted at the37th Structures,Structural Dynamics,and Materials Conference,SaltLake City,Utah,April15-17,1996.
    [48] Srinivas,V. and Chopra,I.,Validation of a Comprehensive Aeroelastic Analysis for TiltrotorAircraft[J]. Journal of the American Helicopter Society, vol.43, no.4, October1998, pp.333–341.
    [49] Ghiringhelli,G.L., Masarati,P., Mantegazza,P., and Nixon,M.W.,Multi-Body Analysis of aTiltrotor Configuration[C]. Presented at the7th Conference on Nonlinear Vibration, Stability,and Dynamics of Structures, Virginia Polytechnic Institute and State University, Blacksburg, VA,July26–30,1998.
    [50] Ghiringhelli,G.L., Masarati,P., Mantegazza,P., and Nixon,M.W.,Multi-Body Analysis of the1/5Scale Wind Tunnel Model of the V-22Tiltrotor[C]. Proceedings of the55th Annual AHS Forum,Montreal, Canada, May25–27,1999.
    [51] Piatak,D.J., Kvaternik,R.G., Nixon,M.W., Langston,C.W., Singleton,J.D., Bennett,R.L., andBrown,R.K.,A Parametric Investigation of Whirl-Flutter Stability on the WRATS TiltrotorModel[J].Journal of the American Helicopter Society, vol.47,no.2, April2002, pp.134–144.
    [52] Nixon,M.W., Langston,C.W.,Singleton,J.D., Piatak,D.J., Kvaternik,R.G.,Corso, L.M., andBrown,R.K.,Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane TiltrotorModel[C].Proceedings of the59th Annual AHS Forum,Phoenix, Arizona, May6–8,2003.
    [53] Nixon,M.W., Langston,C.W., Singleton,J.D., Piatak,D.J., Kvaternik,R.G.,Corso, L.M., andBrown,R.K.,Technical Note: Hover Test of a Soft-Inplane Gimballed Tiltrotor Model[J].Journalof the American Helicopter Society, vol.48,no.1, January2003, pp.63–66.
    [54] Johnson,W.,Yamauchi,G.K.,and Watts,M.E.,Designs and Technology Requirements for CivilHeavy Lift Rotorcraft[C],AHS Vertical Lift Aircraft Design Conference,San Francisco,California,Jan.2006.
    [55] Johnson,W.,Yamauchi,G.K.,and Watts,M.E.,NASA Heavy Lift Rotorcraft SystemsInvestigation[R],NASA TP-2005-213467, September2005.
    [56] C.W.Acree,Jr,Impact of Technology on Heavy Lift Tiltrotors[C],Presented at the AmericanHelicopter Society62nd Annual Forum,Phoenix,AZ,May9-11,2006.
    [57] Nixon,M.W., Langston,C.W., Singleton,J.D., Piatak,D.J.,Kvaternik,R.G., Corso, L.M., andBrown,R.,Aeroelastic Stability Of A Soft-Inplane Gimballed Tiltrotor Model In Hover[C].Proceedings of the42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, andMaterials Conference, Seattle, Washington, April16-19,2001.
    [58]杨卫东,董凌华,变转速倾转旋翼机多体系统气弹响应分析[J],哈尔滨工业大学学报,2006(02).
    [59] Dong Linghua, Yang Weidong, Xia Pinqi,MULTI-BODY AEROELASTIC STABILITYANALYSIS OF TILTROTOR AIRCRAFT IN HELICOPTER MODE[J], Transactions ofNanjing University of Aeronautics&Astronautics,23(3),2006.
    [60]侯鹏,董凌华,黄文俊,杨卫东,万向铰式倾转旋翼整体模态分析与试验[J],南京航空航天大学学报,2011(06).
    [61]董凌华,杨卫东,张呈林,倾转旋翼/机翼耦合系统过渡状态气弹动力学试验研究[J],振动工程学报,2008(05).
    [62]杨卫东,董凌华,倾转旋翼过渡状态瞬态响应分析与试验[J],航空动力学报,2005(05).
    [63]董凌华,倾转旋翼/机翼气弹耦合动力学研究[D],南京航空航天大学,2011.
    [64]薛立鹏,张呈林,动力学参数对倾转旋翼机气弹稳定性的影响[J],南京航空航天大学学报,2011(01).
    [65]薛立鹏,张呈林,前飞状态倾转旋翼机气弹稳定性建模[J],航空动力学报,2009(02).
    [66]邵松,张呈林,朱清华,薛立鹏,基于虚拟样机的倾转旋翼/机翼系统动力学仿真[J],系统仿真学报,2007(09).
    [67]杨朝敏,夏品奇,模态响应识别的粒子群优化方法在倾转旋翼机上的应用[J],振动工程学报,2011(02).
    [68]薛立鹏,张呈林,倾转旋翼气动优化设计[J],空气动力学学报,2011(04).
    [69]彭名华,蔡杰,张呈林,倾转旋翼桨叶空气动力学/结构动力学多学科优化设计研究[J],航空动力学报,2007(06).
    [70]李春华,徐国华,悬停和前飞状态倾转旋翼机的旋翼自由尾迹计算方法[J],空气动力学学报,2005(02)
    [71] LI Chunhua,ZHANG Jie,XU Guohua,过渡状态的倾转旋翼气动特性计算分析(英文)[J],空气动力学学报,Vol.27,no.2,2009.
    [72]李春华,徐国华,倾转旋翼过渡状态的尾迹及气动力特性计算与分析[J],应用力学学报,2008(03).
    [73]李春华,黄水林,徐国华,倾转旋翼机机翼向下载荷的计算方法及参数影响分析[J],实验流体力学,2007(03).
    [74]李春华,徐国华,倾转旋翼机旋翼对机翼气动干扰的建模及分析[J],空气动力学学报,2008(02).
    [75]李春华,时间准确自由尾迹方法建模及(倾转)旋翼气动特性分析[D],南京航空航天大学,2007.
    [76]沙虹伟,陈仁良,倾转旋翼机飞行力学特性[J],航空动力学报,2012(04).
    [77]沙虹伟,无人倾转旋翼机飞行力学建模与姿态控制技术研究[D],南京航空航天大学,2007.
    [78]郭剑东,宋彦国,夏品奇,小型无人倾转旋翼机全模式飞行操纵控制[J],南京航空航天大学学报,2009(04).
    [79]万华芳,倾转旋翼飞行器过渡段仿真研究[D],南京航空航天大学,2011.
    [80]宋彦国,王焕瑾,沙虹伟,徐敏,倾转旋翼飞行器飞行力学模型研究[J],空气动力学学报,2008(02).
    [81]曹芸芸,陈仁良,倾转旋翼飞行器旋翼对机翼向下载荷计算模型[J],航空动力学报,2011(02).
    [82]朱源,倾转旋翼飞机过渡模式动力学建模与控制研究[D],南京航空航天大学,2005.
    [83]王福新,黄明其,倾转旋翼飞行器的风洞试验技术综述[J],实验流体力学,2005(04).
    [84]杨喜立,朱纪洪,黄兴李,胡春华,孙增圻,倾转旋翼飞机建模与仿真[J],航空学报,2006(04).
    [85]杨喜立,朱纪洪,孙增圻,倾转旋翼飞机直升机模态短舱倾转飞行控制[J],清华大学学报,2006(07).
    [86]邹灿东,王维军,屈香菊,倾转旋翼机悬停建模与实验[J],飞行力学,2010(01).
    [87]邹灿东,王维军,屈香菊,小型连翼布局倾转旋翼无人机方案研究[C],中国力学学会学术大会2009论文摘要集.
    [88]郭家舜,王三民,刘海霞,某新型直升机传动系统弯-扭耦合振动特性研究[J],振动与冲击,2009(10).
    [89]郭家舜,王三民,袁茹,倾转旋翼机传动系统动态效率研究[J],航空动力学报,2010(08).
    [90] Jinho Paik, THE AEROELASTIC STABILITY IMPROVEMENTS OF SOFT-INPLANETILTROTORS BY ACTIVE AND PASSIVE APPROACHES[D], The Pennsylvania StateUniversity,2009.
    [91] Eric L. Hathaway,ACTIVE AND PASSIVE TECHNIQUES FOR TILTROTOR AEROELASTICSTABILITY AUGMENTATION[D], The Pennsylvania State University,2005.
    [92] Anna Kathleen Tyler Howard,The Aeromechanical Stability of Soft-Inplane Tiltrotors,Pennsylvania State University[D],2001.
    [93] Krothapalli, Krishnamohan,Prasad, JVR,Peters, David A,Helicopter rotor dynamic inflowmodeling for maneuvering flight[J], Journal of American Helicopter Society,46(2), pp.129-139.Apr.2001.
    [94]张晓谷,直升机动力学设计[M],北京:航空工业出版社,1995.
    [95] Dale M.Pitt and David A.Petters. Theoretical Prediction of Dynamic-inflow Derivatives [C].SixthEuropean Rotorcraft and Powered Lift Aircraft Forum,1980:21-34.
    [96] Gaonkar, Gopal H.; Peters, David A, Effectiveness of Current Dynamic-Inflow Models in Hoverand Forward Flight[J], Journal of the American Helicopter Society,1986,31(2),pp.47-57.
    [97] J.G.Leishman and K.Q.Nguyen. State-Space Representation of Unsteady Airfoil Behavior [J].AIAA JOURNAL,1990,28(5):836-844.
    [98] J.G.Leishman and Gilbert L.Crouse. State-Space Model for Unsteady Airfoil Behavior andDynamic Stall [C]. AIAA/ASME/ASCE/AHS/ASC30th Structural Dynamics and MaterialsConference.89-1319-CP.1989:1372-1383.
    [99] J.G.Leishman.Principles of Helicopter Aerodynamics[M],the Press Syndicate of the Univercity ofCambridge,the Pitt Building,Trumpington Street, Cambridge, United Kingdom,2000.
    [100] Leishman,J.G,Beddoes,T.S, A Semi-Empirical Model for Dynamic Stall[J],Journal of theAmerican Helicopter Society,1989,34(3):3-17.
    [101] Jermy Beedy and George Barakos.Non-linear Analysis of Stall Flutter Based on ONERAAerodynamic Model[R].Aerospace Engineering Report NO:0205,July2002.
    [102] D.M.TANG and E.H.DOWELL.Comments on the ONERA Stall Aerodynamic Model and ItsImpact on Aeroelastic Stability[J].Journal of Fluids and Structures,1996,10(4),pp:353-366.
    [103] Truong, V.K. A2-D Dynamic Stall Model Based on a Hopf Bifurcation[R].ONERA-TAP--93-156,1993.
    [104] Peter Dunn and John Dugundji.Nonlinear Stall Flutter and Divergence Analysis of CantileveredGraphite/Epoxy Wings[J].AIAA Journal,1992,30(1),pp:153-162.
    [105] D.Petot.Differential Equation Modeling of Dynamic Stall[J].La Recherche Aerospatible(English Edition),1989,(5),pp:59-72.
    [106] Smith,Edward C.,Chopra, Inderjit.Formulation and Evaluation of an Analytical Model forComposite Box-Beams[J]. Journal of the American Helicopter Society,1991,36(3),pp:23-35.
    [107]郭连峰,带新型桨尖的复合材料桨叶气弹响应分析[D],南京航空航天大学,1998.
    [108]武珅,杨卫东,旋翼液弹阻尼器模型试验与非线性动力学特性分析[J],南京航空航天大学学报,2011(3).
    [109]吴晓莉,粘弹减摆器参数影响分析与试验研究[D],南京航空航天大学,2009.
    [110]曹涛,带叶间粘弹减摆器的旋翼耦合系统气弹动力学研究[D],南京航空航天大学,2004.
    [111] J.Chung and G.M.Hulbert.A Time Integration Algorithm for Structural Dynamics withImproved Numerical Dissipation:The Generalized-α Method[J].Journal of AppliedMechanics,1993,60(2),pp:371-375.
    [112]张雄,王天舒,计算动力学[M],北京:清华大学出版社,2007.
    [113] MatthewW.Floros.Elastically Tailored Composite Rotor Blades for Stall Alleviation andVibration Reduction[D].The Pennsylvanta State Univercity,2000.
    [114]李其汉,陈志英,张大林.螺旋桨桨叶试验模态分析[J].航空动力学报,1991(4),pp:337-341.
    [115]胡海岩,孙久厚,陈怀海.机械振动与冲击[M].北京:航空工业出版社,2002.
    [116] Ramesh Chandra,Alan D.Stemple,Inderjit Chopra,Thin-Walled Composite Beams UnderBending,Torsional,and Extensional Loads[J].Journal of Aircraft,1990,27(7),pp:619-626.
    [117] Kristi Marie Kleinhesselink, Comprehensive Nonlinear Simulation with Robust AutonomousControl[D]. Univercity of Maryland,2007.
    [118] C.W.Acree,Jr.R.J.Peyran,Wayne Johnson, Improving Tiltrotor Whirl-Mode Stability with RotorDesign Variations[C].26th European Rotorcraft Forum,2000,pp14.1-14.10.
    [119]航空航天部科学技术研究院,直升机动力学手册[M],北京:航空工业出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700