用户名: 密码: 验证码:
静止轨道卫星太阳X-EUV成像望远镜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足国内空间天气预报天基监测网建设的迫切需要,正积极研制太阳X-EUV成像望远镜,该望远镜用来监测和预报影响空间天气变化的主要太阳活动,成像资料专门服务于空间天气预报研究。本论文的主要研究内容开展太阳X-EUV成像望远镜相关的物理设计、技术设计及在轨运行方案,并完成系统的部分关键技术攻关。
     物理设计的主要研究内容包括:分析目前国内国际空间天气预报的发展现状及开展空间天气预报的必要性和重要性;分类讨论了灾害性空间天气的种类、影响及目前国际上的预报方法:分析了空间天气太阳扰动源及扰动源爆发的先兆现象或者伴生现象;讨论了太阳短波辐射线谱和连续谱辐射强度的计算方法:推导了利用望远镜多波段的观测结果反演日冕等离子体温度、发射量等参数的物理方法:论证了开展空间天气经验预报和发展数值预报有效的成像谱段。
     技术设计的主要内容包括:分析了望远镜的系统组成及成像方式选择;完成太阳 X-EUV成像望远镜光学、电子学、机械等方面的技术设计:计算分析了太阳X-EUV成像望远镜对不同温度的等离子体响应、反演高低温等离子体参数的最佳过滤片组合利用及望远镜对不同太阳活动现象的响应。
     在轨运行方案的主要研究内容包括:针对静止轨道卫星应用平台,制订和优化了望远镜在轨试验方案;完成望远镜的机电热初步接口设计。
     关键技术突破包括:完成X射线和极紫外波段都敏感的抗辐照型CCD技术设计,并利用CPLD实现了非规则像素阵列CCD的驱动时序和读取电子学电路设计和调试:完成1ms~10s宽动态范围快门装置设计和调试。
     太阳X-EUV成像望远镜在国际上首次提出并设计实现单台设备集成掠入射望远镜和正入射望远镜系统,分析表明,该设计方式完全满足应用要求。太阳X-EUV成像望远镜工作在4-100A的X射线波段和195A极紫外谱段,体积φ236mm×795mm,视场角45arcmin,CCD阵列544×544像素,角度分辨5arcsec,提供全日面、高分辨的成像观测。太阳X-EUV成像望远镜能够观测活动区、耀斑、冕洞、CME、EIT波、dimming、sigmoid、CUSP等影响空间天气变化的太阳活动、太阳爆发先兆现象、太阳爆发伴生现象。太阳X-EUV成像望远镜是目前国际上同类仪器中功能最强、开展空间天气预报最为有效的太阳成像监测仪器。该仪器在静止轨道卫星上的成功运行,将会大大提高我国对空间天气的监测和预报能力。
The solar X-EUV imaging telescope is being developed for meeting the requirement of domestic space weather forecast. It will be used to monitor and predict the solar activities that affect the space weather. The observed materials will be dedicated to the space weather forecast. The main research purposes of this thesis are to develop the physical, technical and operational design related to the solar X-EUV imaging telescope. Parts of the critical techniques of system are tackled.
    The main research contents of the physical design include: presenting the domestic and international status of space weather and expanding on the need and the importance about the space weather forecast; sorting the disastrous space weather and discussing their effects and adapted prediction methods; analyzing the solar disturbing resources of space weather and the precursor or concomitant phenomena of solar eruption based on the newest observational results; probing into the radiation principle of solar short-wave ray and presenting the computing methods about solar continuum and line spectrum radiation; extrapolating physical methods of reconstructing the temperature and the emission measure of coronal plasma; argumenting the effective observing spectrum for space weather empirical forecast and space weather numerical forecast.
    The main research contents of the technical design include: analyzing the necessary parts of the solar X-EUV telescope and the method of imaging X and EUV ray; developing the optic, electronic and mechanical design of this instrument; computing solar X-EUV imaging telescope's response to different temperature plasma, analyzing combination application of telescope filters for reconstructing the plasma paramaters and apprasing the telescope's response to the solar activities.
    The main research contents of the operational design include: working out the in-orbit experiment scheme and optimizing the in-orbit control and observation scheme for solar X-EUV imaging telescope; analyzing the requirements to the mounting platform of telescope; implementing the rudimental mechanical, electronic, thermal interface design.
    The research about the critical technique includes: developing the radiation-hard CCD sensitive to the X and EUV ray; implementing the design of CCD driving clock and signal readout electronic using CPLD; implementing shutter design which can realizing 1ms - 10s exposing time.
    It is the first time to be brought out and designed that the solar X-EUV imaging telescope integrates the grazing mirror and the normal incidence mirror. This design can fully meet the applied requirements according to simulation. The solar X-EUV imaging telescope operates in the 0.4-10nm X-ray intervals and the 19.5nm EUV wavelength. And it can provide the high resolving solar disk imaging for its field of view of 45 arcmin and spatial resolution of 5 arcsec. The size of the telescope is 236mmx795mm. The pixel array of the CCD is 544x544. Theoretical analysis shows the solar X-EUV imaging telescope can observe the active region, flare, CME, EIT wave, "dimming", "sigmoid" and "CUSP" phenomena. Compared with the international similar instruments, this telescope is the most powerful and efficient for space weather forecast. The telescope will be aboard the geostationary satellites. It will greatly enhance the capability in domestic space weather forecast if the telescope operates successfully in orbit.
引文
[1] Van Allen, J. A. , J. Geophys. Res. 64, 1683(1959)
    [2] Vernov, S. N. et al. Soviet Phys. Doklady, 4 338(1959)
    [3] Tascione, T. F. , introduction to the space environment, orbit company, Malabar, Florida, 1988.
    [4] Song, P, H. J. Singer, G. L. Siscoe, space weather, Geophysical Monograph Series, 125, AGU, 2001
    [5] http: //image. gsfc. nasa. gov/poetry/storm/storms. html
    [6] B. Poppe, A. Hilton et al. Anomalies from Solar Events, CGMS ⅩⅩⅩ USA-WP-04
    [7] http: //www. space. com/scienceastronomy/japan_deadsat_000920. html
    [8] Space Studies Board, Radiation and the International Space Station, National Academy Press, Wahington DC, 1999, pp. 7-21;
    [9] NATIONAL SPACE WEATHER PROGRAM. THE IMPLEMENTATION PLAN, FCM-P31-1997, Washington, DC, January, 1997
    [10] living with a star: a program of NASA Sun-Earth connection theme, W. J. Wagner, paper W1-01, the first S-RAMP conference, Sapporo, Japan, October 2-6, 2000
    [11] 朱光武,李保权等。风云二号卫星空间环境监测器,中国科学,将于2004年中期发表
    [12] J. Davis, D. Bagdigian, S. Buschmann et al. , the solar X-ray imager for the geostationary operational environmental satellite(GOES), AIAA space programs and technologies conference, September 27-29, 1994/Huntsville, AL.
    [13] http: //www. publicaffairs. noaa. gov/releases2003/jan03/noaa03012. html
    [14] DONALD V. REAMES, Particle Acceleration at the Sun and in the Hleliophere, Space Science Review, 1999(90): 413-491,
    [15] H. V. Cane, D. V. Reames, R. E. Mcguire et al. , Solar Flare Nuclear Gamma-rays and Interplanetary Proton Events, the Astrophysical Journal, 1989(343): 953-970
    [16] E. W. Cliver, B. R. Dennis, A. L. Kiplinger et al. , Solar Gradual Hard X-ray bursts And Associated Phenomena, the Astrophysical Journal, 1986(305): 920-935
    [17] 林华安,王世金,太阳质子耀斑X射线辐射特征及质子事件警报,空间科学学报 1993 13(2):122-126
    [18] Christopher C. Balch, SEC proton prediction model: verification and analysis,
    
    Radiation Measurements 1999 (30): 231-250
    [19] Kahler, S. W. , solar flares and coronal mass ejections, Annual Rev. Astron. Astrophys. , 1992(30): 113-141
    [20] Gosling, J. T. , the solar flare myth, J. Geophys. Rrs. , 1993(98): 18937-19849,
    [21] D. N. Baker, Effects of the Sun on the Earth's environment, Journal of Atmospheric and Solar-Terrestrial Physics, 2000 (62): 1669-1681
    [22] Rostoker, G. , Commentary on Anik sartellite upsets, Report to Telesat Canada, Canadian Network for Space Research Report, January(1994)
    [23] Burton R. K. , McPherron R. L. and Russell C. T. An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res. , 1975(80): 4204-4214,
    [24] K. Marubashi, Perspectives of present and future space weather forecasts, Journal of Atmospheric and Terrestrial Physics, 1995, Vol. 57, No. 12, pp. 1385-1396,
    [25] Rosen, A. (editor), Spacecraft Charging by Magnetospheric Plasmas, AIAA, 47, New York (1976)
    [26] D. N. Baker, What Is Space Weather? Adv. Space Res. 1998, Vol. 22, No. 1, pp. 7-16,
    [27] R. W. Schunk, L. Scherliess, and J. J. Sojka, recent approaches to modeling ionospheric weather, Adv. Space Res. 2003, Vol. 31, No. 4, pp. 819-828,
    [28] Lj. R. Cander, TOWARDS FORECASTING AND MAPPING IONOSPHERIC SPACE WEATHER UNDER COST ACTIONS, Adv. Space Res. , 2003, Vol. 31, No. 4. pp. 957-964,
    [29] Hundhausen, A. J. , In: Sonett, C. P. , Coleman Jr. P. J. , Wilcox J. M. , Solar Wind. NASA(SP-308), NASA, Washington DC, pp. 393-420, 1972
    [30] Tousey, R. , In: Rycroft, M. J. , Runcorn, S. K. . COSPAR Space Research ⅩⅢ, 1973, Vol. 2. Akademie-Verlag, Berlin, pp. 713-730
    [31] MacQueen, R. M. , Eddy, J. A. , Gosling, J. T. , Hildner, E. , Munro, R. H. , Newkirk, Jr. G. A. , Poland, A. I. Ross, C. L. , Ap J 187, L85, 1974
    [32] J. Geiss, G. Gloeckler, R. von Steiger et al. , the southern high-speed stream: results from the SWICS instrument on Ulysses, SCIENCE, Vol. 268, pp. 1033-1035, 1995
    [33] 章振大著,曰冕物理,北京:科学出版社,2000
    [34] Insley, J. E. , Moore, V. and Harrison, R. A. Solar Phys. , The differential rotation of the corona as indicated by coronal holes, , 1995(160): 1-18
    [35] Moore, R. L. , et al. , the thermal x-ray flare plasma, in solar flares, ed. P. A. Sturrock, Colorado Assoc. Univ. Press, Boulder, Colorado, 1980. p. 341
    
    
    [36] Watanabe, T. , T. Kosugi, A. C. Sterling, Observational Plasma Astrophysics: Five years of Yohkoh and Beyond, Dordrecht-Kluwer Academic, Boston, 1998
    [37] B. Aschenbach, X-ray telescopes, Rep. Prog. Phys. , 1985(48): 579-629
    [38] L. ACTON, M. BRUNER, J. LEMEN et al. , The soft X-ray telescope for the Solar-A mission, Solar Physics, 1991 (136): 37-67
    [39] J. P. Delaboudiniere, G. E. Artzner, J. Brunaud et al. , EIT: extreme -ultraviolet imaging telescope for the SOHO mission, solar physics, 1995(162): 291-312
    [40] http: //vestige. lmsal. com/TRACE/
    [41] Phase A Concept Study Report solar-B XRT.
    [42] Richard C. Canfield, Hugh S. Hudson, David E. McKenzie, sigmoidal morphology and eruptive solar activity, geophysical research letters, 1999, Vol. 26, No. 6, pp. 627-630,
    [43] Alphonse C. Sterling, sigmoid CME source at the Sun: som recent results, Journal of Atmospheric and Solar-terrestrial Physics, 2000 (62): 1427-1435
    [44] E. Barouch, M. Gros, P. Masse, the solar longitude dependence of proton event delay time, Solar Physics, 1971 (19): 483-490
    [45] M. A. I. Van Hollebecke, L. S. Ma Sung, E. B. McDonald, the variation of solar proton energy spectra and size distribution with heliolongitude, Solar Physics, 1975(41): 189-193
    [46] H. V. Cane, D. V. Reames, an Dt. t. von Ronsenvinge, the role of interplanetary shocks in the longitude distribution of solar energy partics, J. Geophys. Res. , 1988, 93, No. A9, pp. 9555-9567
    [47] Blach, C. C. , SEC proton prediction model: verification and analysis, Radiation measurement, 1999(30): 231-250
    [48] N. R. Sheeley, Jr. , R. A. Howard, M. J. Koomen et al. , associations between coronal mass ejections and soft x-ray events, the Astrophysical Journal, 1983(272): 349-354
    [49] Hudson, H. S. , Lemen, J. R. , St. Cyr, O. C. et al. , X-ray coronal changes during halo CMEs, Geophysical research letters, 1998(25) 2481-2484
    [50] Zirker, J. B. (ed), coronal holes and high speed wind streams, Colorado Assc. Univ. Press, Boulder, 1977
    [51] Hara, H. , temperatures of coronal holes observed with the yohkoh SXT, PASJ, 1994(46): 493-496
    [52] P. L. Bornmarm, D. Speich, J. Hirman et al. , the GOES solar X-ray imager: overview
    
    and operational goals, 1996(2813): 309-319
    [53] D. Moses, F. Clette, J. P. Delaboudiniere et al. , EIT observations of the extreme ultraviolet Sun, Solar Physics, 1997(175): 571-599
    [54] R. A. Harrison, P. Bryans, G. M. Simnett et al. , coronal dimming and coronal mass ejection onset, A&A, 2003(400): 1071-1083
    [55] J. P. Delaboudiniere, G. E. Artzner, J. Branuad et al. , EIT: extreme-ultraviolet imaging telescope for the SOHO mission, Solar Physics, 1995(162): 291-312
    [56] D. A. Biesecker, D. C. Myers, B. J. Thompson et al. , solar phenomena associated with"EIT waves", The astrophysical journal, 2002(569): 1009-1015
    [57] Uchida, Y. , Propagation of hydromagnetic disturbances in the solar corona and Moreton's wave phenomenon. Solar Physics, 1968(4): 30-44
    [58] Uchida, Y. , Altschuler, M. D. , Newkirk, G. , Flare-produced coronal MHD-fast-mode wavefronts and Moreton's wave phenomenon. Solar Physics, 1973(28): 495-516
    [59] Uchida, Y. , Behavior of the are produced coronal MHD wavefront and the occurrence of type Ⅱ radio bursts. Solar Physics, 1974(39): 431-449.
    [60] S. P. Plunketta, B. J. Thompsonb, O. C. St. Cyrc, R. A. Howardd, Solar source regions of coronal mass ejections and their geomagnetic effects, Journal of Atmospheric and Solar-Terrestrial Physics, 2001(63) : 389-402
    [61] R. Mewe, J. R. Lemen and G. H. J. van den Oord, calculated X-radiation from optically thin plasmas. Ⅵ, improved calculations for continuum emission and approximation formulae for nonrelativistic average Gaunt factors. Astron. Astrophys. Suppl. Ser. , 1986(65): 511-536
    [62] R. Mewe, E. H. B. M. GRonenschild and G. H. J. van den Oord, calculated X-radiation from optically thin plasmas. V. Astron. Astrophys. Suppl. Ser. , 1985(62): 197-254
    [63] Elwert, G. , Z. Naturf. , 1954, 99, 637
    [64] J. L. Culhane, Sandford, EW. et al. A study of the solar soft X-ray spectrum, M. N. R. A. S. 1969 (145): 435-455
    [65] Culhane, J. L. , Phillips, K. J. H. , Iron ion line emission at 1. 9 during the solar flare. Ap. J. 1970(160): 309-313
    [66] Raymond, J. C. , Smith, B. W. Soft X-ray spectrum of a hot plasma, Astrophys. J. Suppl. 1977(35): 419-439.
    [67] Gronenschild, E. H. B. M. , Mewe, R. , Astrophys. J. Suppl. Ser. 1978(32): 283.
    
    
    [68] K. T. Strong, L. W. Acton, W. A. Brown et al. , plasma diagnostic capabilities of the soft X-ray telescope on SOLAR-A, Space Res. 1991, Vol. 11, No. 5, pp(5)73-(5)76
    [69] Forbes. Powell, Ritva A. M. Keski-Kuha, Martin V. Zombeck et al. , Metalized polyimide filters for X-ray astronomy and other applications. SPIE, 2001 (3113): . 432-440
    [70] Kyoji Narijai, geometrical aberration of generalized Wolter type Ⅰ telescope, Applied Optics, 1987, Vol. 26, No. 20, pp. 4428-4432
    [71] Kyoji Narijai, geometrical aberration of generalized Wolter type Ⅰ telescope. 2: analytical study, Applied Optics, 1988, Vol. 27, No. 2, pp. 345-350
    [72] James E. Harvey, Andrey Krywonos et al. , grazing-incidence hyperboloid-hyperboloid designs for wide-field x-ray imaging applications, Applied Optics, 2001, Vol. 40, No. 1, pp. 136-144
    [73] R. C. Chase and L. P. Van Speybroeck, Wolter-Schwarzschild telescopes for x-ray astronomy, Applied Optics, 1973, Vol. 12, No. 5, pp. 1042-1044
    [74] James E. Harvey, Patrick L. Thompson et al. , grazing-incidence hyperboloid-hyperboloid designs for wide-field x-ray imaging applications, Proceedings of SPIE, 2000, (4012): 328-341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700