用户名: 密码: 验证码:
水稻航天诱变突变体变异分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用航天诱变籼型水稻材料H9808后代中获得的一株突变体材料,首先利用AFLP分子标记和全基因组重测序的方法,对突变体基因组的变化进行了分析,再通过SSR、 InDe、 CAPS等分子标记方法将橙红色突变性状进行了精细定位,并将突变体材料应用于水稻育种中,创制出带橙红色标记性状的水稻新不育系,组配出了系列杂交水稻新组合。主要研究结果如下:
     1.水稻航天诱变突变体性状变化与AFLP标记分析
     籼型水稻材料H9808的航天诱变突变体,在拔节后期植株节间、节底隔膜中心以及茎杆下部约1/3处为橙红色,幼穗分化期幼叶的叶脉呈橙红色,抽穗时颖壳也为橙红色,并保持到种子成熟。成熟后突变体实粒数减少,籽粒变窄变长,而其它性状无明显变化。利用132对AFLP标记比较突变体与野生型材料在基因组中的变化,发现突变体基因组出现52个多态性片段,表明了突变体无论是在外观性状和基因组均发生了变异。
     2.突变体与野生型材料全基因组重测序研究
     以籼型水稻9311序列为基础,利用二代测序技术对突变体和野生型材料基因组重测序,结果发现航天诱变因子对水稻基因组的诱变作用分布均匀,诱变率与各对染色体的大小呈正相关,突变类型主要有SNPs、 InDel、 SV的变化,诱变率分别为29.58%、7.49%、3.75%。在SNPs中碱基A的变异率为24.4%,而A突变为T、C、G的几率分别为12.30%、15.57%、72.13%;碱基T的变异率为24.2%, T突变为A、C、G的几率分别为15.70%、69.42%、14.88%;碱基C的变异率为25.5%, C突变为A、T、G的几率分别为17.26%、72.94%、9.80%;碱基G的变异率为25.9%, G突变为A、T、C的几率分别为75.29%、16.60%、8.11%,表明航天诱变因子对A、T、C、G碱基诱变几率一致,但发生突变的碱基中A、G互变、T、C互变的几率最高。利用生物信息学方法进一步分析,发现突变体基因组的变异引起了近2000个水稻功能基因的编码序列发生了变化,这些编码序列的变化是否会引起水稻性状的改变或对应哪些外观变化还需深入研究。
     3.突变体橙红色性状的遗传分析与基因定位
     利用突变体分别与川恢907、9311杂交的F2代群体进行遗传分析,发现突变体的橙红色性状受1对隐性基因控制。将突变体与9311杂交的F2代中表现为橙红色性状的植株作为定位群体,利用SSR标记将橙红色基因定位在2号染色体RM5350和RM12601标记之间,遗传距离分别为0.55cM和1.38cM,再利用InDel标记,进一步将该基因定位在S1和S2之间,遗传距离分别为0.41cM和0.25cM。在SSR和InDel标记定位的基础上,物理距离约为300kb的序列中,设计了具有多态性的8对CAPS标记,最后将控制橙红色性状的基因精细定位在9412bp区间内,生物信息学预测表明该区间内仅存在1个基因Osl_06158,编码Myb家族蛋白的R2-R3类型转录因子,在拟南芥和金鱼草的研究中表明R2-R3转录因子参与了花青素生物合成途径的调控。
     4.突变体在水稻育种中的应用
     田间调查发现突变体材料除带有的橙红色标记外,还有较好的农艺性状和经济性状,因此可作为水稻不育系选育的材料。在与不同遗传背景的不育系杂交时发现与宜香1A的杂交后代高度不育,将其与宜香1A连续多年杂交、回交,成功育成了带橙红色标记性状的杂交水稻新不育系花香A,并与川恢907、川恢4016、川恢1618等恢复系配组,组配出了花香7号、花香4016、花香优1618等杂交水稻新组合并通过了省级审定。
A mutant of Indica rice H9808with orange-red trait was obtained by space mutation technology. The variation of the mutant was analyzed by AFLP molecular markers and genome re-sequencing technology. The gene controls orange-red trait of the mutant was fine mapped by SSR, InDel and CAPS markers. We used the mutant in rice breeding and new CMS lines with orange-red trait were obtained.The main results are as follows:
     1. AFLP molecular marker. analysis of mutant of space-flight in rice
     Compared with the wild-type material planted in the field, we found that the mutant dispalys young leaves with orange-red veins at the stage of panicle initiation its internode and one third of the down part stem become orange-red by the end of booting stage, and the color of the mutant hull is also orange-red from heading to maturity. The full grains of mutant reduced significantlyand become more narrower and longer, while other traits did not change significantly. Comparing the changes of mutant and wild-type material in genomic DNA by132AFLP molecular markers, we found52polymorphic fragments in the genome of the mutant, which showed that the mutant had changed both in the phenotype and the genome.
     2. Re-sequencing of the mutant and wild-type
     Taking the indica rice9311as the basic sequence, we re-sequenced genome of mutant and wild-type material and found that the mutagenic effects of space mutation factors for the rice genome were basically distributed evenly and the mutation rate was positively correlated with chromosome size. The mutagenesis types are SNPs, InDel and SV. Their mutation rates are29.58%,7.49%,3.75%respectively. The percent of Base A in SNPs Mutant is24.4%, and the percent of A into T, C and G is12.30%,15.57%,72.13%respectively; the percent of Base T in SNPs Mutant is24.2%, and the percent of T into A, C and G is15.70%,69.42%,14.88%respectively; the percent of Base C in SNPs Mutant is25.5%, and the percent of C into A, T and G is17.26%,72.94%,9.80%respectively; the percent of Base G in SNPs Mutant is25.9%, and the percent of G into A, T and C is75.29%,16.60%,8.11%respectively. These results showed that the space mutation factors had thesame effects on the mutation of the A, T, C and G base. The most found base change types are the interchange between A and G, and the interchange between T and C. After comparing the gene sequences oofmutant and wild-type, we found that the mutagenesis of SNPs, InDel and SV have made more than2000genes' encoding amino acid changed in mutant.
     3. Genetic analysis and mapping of the mutated gene conferring orange-re d leaves and hull
     We found that phenotype of Orange-red trait was controlled by a single recessive allele by comparing the F2plants of the mutant with Chuan Hui907and9311cross. F2population of the cross between mutant and9311was analyzed, and the gene was located on chromosome2, with the genetic distance of0.55cM and1.38cM from SSR marker RM5350and RM12601. Further study was conducted by InDel markers, and the target gene was narrowed down the locus to0.41cM and0.25cM from S1and S2, respectively. After analyzing the300KB sequence attained by the maping analyasis with above molecular markers, we found that there is no available SSR and InDel markers. Therefore, we designed8CAPS markers in this region based on the sequence of indica rice9311, and located the gene into the region of9412bp which only concluding a gene Osl_06158. Analysis showed that the gene Osl_06158encoding a R2R3-MYB protein is a regulatory factor,. The reported studies in Arabidopsis and Petunia have showed that R2R3-MYB protein, bHLH protein of MYC family and WD40repeat protein interact with each other to regulate the biosynthetic pathway of anthocyanin in plant.
     4. Application of mutants in rice breeding
     The mutant has good agronomic and economic traits, and specific Orange-red trait that facilitates the selection of rice hybrid plants, so it is a good donor in rice breeding. When hybridization with sterile lines or CMS LINES of different genetic background, we found that the offspring from mutant and Yixiang1A is highly sterile. After hybriding, backcrossing with Yixiang1A, and breeding for many years, we obtained a new hybrid rice CMS line HuaxiangA. Afer hybriding HuaxiangA with different rice restorer lines such as ChuangHui907, ChuangHui4016and ChuangHui1618, we have got new hybrid rice combinations of HuaXiang7, HuaXiang907, HuaXiang4016and HuaXiang1618, which have passed the provincial approval.
引文
1.Muller H J. X-ray induced mutation of drosophila virilis. Science,1927,66:84-87.
    2.StadlerL J. Mutations in barley induced by X-rays and radium. Science,1928,68:186-187.
    3.TRINKAUS JP. Properties of the surface coat in embryos of fundulus heteroclitus.Biol bull,1948,95(2):271-276.
    4.夏英武,吴殿星,舒庆尧,等.植物诱变育种技术的研究进展及其新的领域.核农学通报,1995,1:5-9.
    5.M. J.Murray, W.Todd.Registration of todd's mitcham peppermint. Crop science,1972,12:101-106.
    6.李鹏,李新华,张锋,等.植物辐射诱变的分子机理研究进展.核农学报,2008,5:626-629.
    7.Madigan, M,T Martinko J,M, Parker.微生物生物学.北京,科学出版社,2001:390.
    8.Wangfu Zhuan,Liang Qiuxia,Li Zhongwei,et al. Applications of mutation and screening in microbiology breeding. Transaction of Luoyang Normal College,2002,(2):95-99.
    9.Najafi N, Ramin Hosseini, Ahmadi AR. Impact of gamma rays on the Phaffia rhodozyma genome revealed by RAPD-PCR. Iranian journal of microbiolgy,2011,3 (4):216-221.
    10.李万云,李韬.激光诱变育种技术的研究与开发应用前景.新疆农业科学,2006,S1(1):57-60.
    11.贾红华,周华,韦萍,等.微波诱变育种研究及应用进展.工业微生物,2003,33(2):15-17.
    12.余增亮,邱励剑,霍裕平.离子注入生物效应及育种研究进展.安徽农学院学报,1991,18(、4):251-257.
    13.陈宇,林梓鑫,张峰,等.离子注入微生物的生物效应研究.中国抗生素杂志,1998,23(6):415-419.
    14.朱保葛,路子显,谷爱秋,等.烷化剂EMS诱发花生性状变异的效果及高产突变系的选育.中国农业科学,1997,30(6):87-89.
    15.马惠平,赵永亮,杨光宇.诱变技术在农作物育种中的应用.遗传,1998,20(6):41-43.
    16. Kiichi,Fukui. DNA碱基类似物对水稻农艺性状的诱变效应.JARQ,1955,19(3):153-155.
    17.柳学余.叠氮化物诱变处理的方法、效果与应用前景.核农学通报,1987,4:3-5.
    18.刘志勇,孙其信,黄铁诚.抗生素诱变小麦雄性不育研究.中国农业大学学报,1996,1(5):1-7.
    19.许耀奎,朴铁夫,原亚萍,包和平.平阳霉素对几种作物诱变效应的研究.吉林农业大学学报,1994,16(4):1-6.
    20.密士军,郝再彬.航天诱变育种研究的新进展.黑龙江农业科学,2002,(4):31-33.
    21.温贤芳,张龙,戴维序,等.天地结合开展我国空间诱变育种研究.核农学报,2004,18(4):241-246.
    22.郑伟,郭泰,王志新,等.不同熟期大豆对航天诱变的反应.中国种业,2008,7:41-42.
    23.孙焕,马浩波.航天育种发展概况及其在烟草上的应用展望.中国种业,2009,10:21-23.
    24.李源祥,华育坚,戴迪生,等.水稻空间诱变性状变异多样性与遗传多向性的研究.航天医学与医学工程,2001,14(4):33-35.
    25.李源祥,HoUey WR. Biochcmlcal mechanisms and clusters of damage forhight-LET radiation. Advspace Res,1992,12(2):35-93.
    26.Motoaki S, Mari N, Hiroshi A, et al. Application of nitrifying and denitrifying processes to waste management of aquatic life support in space. Biological sciences in space,2001(13)4:351-360.
    27. Kostina L N,Anileeva I D, Vanlina E N. The influence of space flight on viability and mutability of plants. Advances in Space Research,1984,4(10):65-67.
    28.蒋兴邮,李金国,杨存以,等.“8885"返地卫星搭载对水稻种子遗传性状的影响.科学通报,1991,36(23):1820-1824.
    29.Vanlina E N, Anileeva I D, Kostina L N,et al. Radiosensibility of higher plant seeds after space flight. Adv Space Res,1984,4(10):103-107.
    30.Planel H,GanbinY,Pianezzi B,et al. Space environmental factors affecting responses to radiation at the cellular level. Adv Space Res,1989,9(10):157-160.
    31.Thora W,Halstead F,Ronald Dutcher. Plant in space. Plant Biology,1987,38(7):317-345.
    32.潘光辉,尹贤贵,杨琦凤,等.农作物太空育种研究进展.西南园艺,2005,33(4):34-36.
    33.李源祥,蒋兴村.空间条件对水稻恢复系诱变作用的研究.杂交水稻,1995,5:27-30.
    34.李永辉,涂北根,焦长兴,等.植物空间诱变育种研究进展.江西农业学报,2008,20(1):21-25.
    35.李莉梅,欧阳乐军.我国水稻航天诱变育种的研究动态及展望.广西农业科学,2007,38(2):35-40.
    36.潘光辉,尹贤贵.农作物太空育种研究进展.西南园艺,2005,33(4):34-35.
    37.刘敏,鹿金颖,薛淮,等.送种子上太空一空间诱变育种漫谈.百科知识,2008,2:24-26.
    38.徐得泽,吴建平,陈宏伟.水稻航天诱变育种探析.现代农业科技.2009,19:66-67.
    39.朱昌兰,胡岳峰.作物空间诱变育种研究进展.江西农业大学学报,1999,21(3):435-437.
    40.王呈祥,白志良,王良群,等.航天育种一我国农业科技革命的新路.山西农业科学,2003,31(3):92-96.
    41.李桂花,张衍荣,曹健,等.农业空间诱变育种研究进展.农业空间诱变育种研究进展,2003.12:11-14.
    42.孙永成.航天育种和第六次产业革命.全国空间诱变育种与粮食安全论坛论文集.2008,201-207.
    43.张秀荣,李培武.利用航天育种技术培育芝麻新品种.全国作物生物技术与诱变技术学术研讨会论文集.2005,42-43.
    44.师维军,李雪源,徐利民,等.棉花品种航天诱变研究.新疆农业大学学报,1999,22(1):73-76.
    45.郑家团,谢华安,王乌齐,等.水稻航天诱变育种研究进展与应用前景.分子植物育种,2003,1(3):367-371.
    46.欧阳乐军,郭建夫.空间诱变水稻重要性状的遗传与变异.西北农林科技大学学报,200937(3):98-101.
    47.欧阳乐军,郭建夫.三系水稻保持系航天育种的研究.安徽农业科学,2008,36(27):11855-11858.
    48.郭建夫,欧阳乐军.三系水稻恢复系品种航天诱变后代恢复力变化的研究初报.中国农学通报,2010,26(4):75-79.
    49.郑家团,王乌齐.超级杂交稻Ⅱ优航1号的生物学特性.中国农学通报,2006,22(10):1218-1221.
    50.王慧,张建.航天育种优良水稻品种华航一号.中国稻米,2003,6(18):30-32.
    51.李源祥,蒋兴村,李金国,等.早籼"V5025"的选育研究.江西农业学报,2000,12(1):14-19.
    52.李金国,李源祥,华育坚,等.利用搭载卫星水稻干种子选育出“赣早籼47号”的研究.航天医学与医学工程,2001,14(4):78-82.
    53.徐建龙,林贻滋,奚永安,等.高产优质早熟晚糯航育1号的选育、特征特性及其栽培技术.浙江农业科学,1999,2:77-80.
    54.周汉钦,潘大建,范芝兰,等.水稻新品种“粤航1号”的选育.核农学报,2006,20(4):315-317.
    55.陈忠正,刘向东,陈志强,等.水稻空间诱变雄性不育新种质的细胞学研究.中国水稻科学,2002,16(3):199-205.
    56.吴敦肃,高小彦,陈一新,等.水平回转对水稻幼苗叶细胞的影响.植物学报,1994,36(5):364-369.
    57.李力.水稻空间诱变突变体性状变异及相关性分析研究.广州,2003,华南农业大学硕士论文.
    58. Halstead TW,Takayuki Hoson,Kouichi Soga,et al. Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant and Cell Physiology., 2002,43(9):1067-1071.
    59王彩莲,陈秋方,慎玫,等.水稻空间诱变效应的研究.中国农学通报,1998,14(5):21-23.
    60.郭涛,骆荣挺,张铭统,徐宝才.水稻半矮生突变体的非等位性与生理特性研究进展.浙江农业科学,1988(3):130-134.
    61.徐建龙,李春寿,王俊敏,等.空间环境诱发水稻多蘖.矮秆突变体的筛选与鉴定.核农学报,2003,17(2):90-94.
    62.王慧,刘永柱,张建国,等.空间诱变水稻矮秆突变体.CHA-1对赤霉素的反应及其遗传分析.中国水稻科学,2004,18(5):391-395.
    63.王慧,张书涛,郭涛,等.籼型矮秆突变体CHA-2的矮生性状遗传分析及基因初步定位. 分子植物育种,2006,4(6S):1-6.
    64.李常银,孙野青,杨谦,等.空间生物学研究进展.哈尔滨工业大学学报,2003,35(4):385-388.
    65.洪彦彬,杨祁云,林佩珍,等.水稻空间诱变稻瘟病抗性变异研究及抗性变异基因的分子标记.西北农林科技大学学报,2006,34(4):96-100.
    66.邢金鹏,陈受宜,朱立煌,等.水稻种子经卫星搭载后大粒突变系的分子生物学分析.航天医学与医学工程,1995,8(2):109-113.
    67.杨存义,陈芳远,王应祥,等.粳稻品种秋光空间诱变突变体的微卫星分析.西北植物学报,2003,23(9):1550-1555.
    68.易继财,庄楚雄,姚涓,等.空间搭载诱导水稻种子突变的分子标记多态性分析.生物物理学报,2002,18(4):478-483.
    69. Sweeney MT, Thomson MJ, Pfeil BE, McCouch S. Caught red-handed:Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell,2006,18:283-294.
    70. Konishi S, Ebana K, Izawa T. Inference of the japonica rice domestication process from the distribution of six functional nucleotide polymorphisms of domestication-related genes in various landraces and modern cultivars. Plant Cell Physiol,2008,49:1283-1293.
    71. Zhang K, Qian Q, Cheng Z, et al. Gold hull and internode-encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol,2006,140:9722-9983.
    72. Nagao S. Genetic analysis and linkage relationship of charac-ters in rice[J]. AdvGenet,1951,4; 181-212.
    73. Iwata N, Omura T. Linkage studies in rice plants(OryzasativaL.) on some mutants derived from chronic gamma irradiation[J]. JFac Agric Kyushu Univ,1977,21:117-127.
    74.李亮杰,周海鹏,占小登,楚宗丽,程式华,曹立勇.一个水稻金黄色颖壳和节间基因的遗传定位.中国水稻科学,2008,22(4):432-434.
    75.张玲.水稻紫黑颖壳Pbh基因的精细定位与遗传分析.北京,2011,中国农业科学院博士学位论文.
    76. Zhu BF, Si L, Han B, et al. Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiol, 2011,155:1301-1311.
    77. Cui J, Fan S, Cheng Z, et al. Characterization and fine mapping of the ibf mutant in rice. J Integr Plant Biol,2007,49:678-685.
    78.何颖红,邹国兴,钱前,等.水稻白条叶突变体的遗传分析与定位.分子植物育种,2011,9(2):136-142.
    79. Sainz MB, Grotewold E, Chandler VL. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell,1997,9:611-625.
    80. Hu J, Huang Y, Li Y,et al. The effects of natural flavonoids on lipoxygenase-mediated oxidation of compounds with a benzene ring structure-a new possible mechanism of flavonoid anti-chemical carcinogenesis and other toxicities. Int J Toxicol,2006,25:295-301.
    81.王彩霞.有色米的品质特性与种皮颜色性状的分子遗传学研究.浙江,2007,浙江农业大学博士学位论文.
    82.何立斌,曹立勇,钱前,程式华.稻壳颜色标记在杂交水稻制种中的应用初探.浙江农业学报,2001,13(6):357-360.
    83.方:宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京,科学出版社,2001.10-16.
    84.李爱丽,马峙英AFLP分子标记与作物改良.河北农业大学学报.2001,6(5):1-3.
    85.宣朴,徐利远,余桂容,等.植物DNA快速高效提取方法研究.西南农业学报.1998,11(2):111-114.
    86. Diffenbach C. W. PCR技术实验指南.北京:科学出版社,2000.111-113.
    87.Vos P, Hogers R, Blecker M, et al. AFLP:a new concept for DNA fingerprinting. Nucleic Acids Research,1995,23(21):4407-4414.
    88.Oliver Sartor.A. Progression of metastatic castrate-resistant prostate cancer:impact of therapeutic intervention in the post-docetaxel space. J Hematol Oncol,2011,3(23):3-7.
    89.Jianjun Xu, Qiang Zhao, Guohua Liang, et al. Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genomics,2010,11:2-14.
    90. Ruiqiang Li, Chang Yu, Jun Wang, et al. SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics,2009,25(15):1966-1967.
    91.祁鲁,刘晓,徐建龙,等.一个新的水稻温敏感叶色突变基因定位分析.核农学报,2010,24(22):220-224.
    92.Sugimoto H, Kusumi K, Tozawa Y. The virescent22 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol,2004,45(8):985-996.
    93.李红昌,钱前,李晓波,等.水稻白穗突变体基因的鉴定和染色体定位.科学通报,2003,48(3):268-270.
    94.李娜,储黄伟,文铁桥,等.水稻白色中脉Oswm突变体的遗传分析与基因定位.上海农业学报,2007,23(1):1-4.
    95.蒲志刚,向跃武,张志雄,等.航天诱变创制带标记水稻新材料及新品种选育上的应用.核农学报,2008,22(1):49-51.
    96.赵宁春,叶胜海,汪得凯,陆艳婷,陈萍萍,金庆生,张小明.晚粳稻品种浙粳22内稃突变体基因的遗传分析和基因定位.核农学报,2009,23(3):359-363.
    97.葛莘.高级植物分子生物学.北京:科学出版社.2004,201-218.
    98.Temnykh S,DeClerck G,Lukashovn A. Computational and experimental analysis of microsatellites in rice:frequency,length variation,transposon association,and genetic markerpotcetial.Genome Research,2001,11:1441-1452.
    99. Susan R. McCouch, Leonid Teytelman, Yunbi Xu,et al. Development and Mapping of 2240 New SSR Markers for Rice(Oryza sativa L.). DNA Research,2002(9):199-207.
    100.Takahashi M. Analysis of apiculus color genes essential to anthocyanin coloration in rice. J Fac Agric Hokkaido Univ,1957,50:266-362.
    101.Goff SA, Cone KC, Chandler VL. Functional analysis of the transcriptional activator encoded by the maize B gene:evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev,1992,6:864-875.
    102.Quattrocchio F, Wing JF, Leppen H, Mol J, Koes RE. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell,1993,5:1497-1512.
    103.Goodrich J, Garpenter R, Coen E S. A common gene regulates pigmentation pattern in diverse plant species. Cell,1992,68:955-964.
    104.Gong ZZ, Yamazaki M and Saito K. A light-inducible Myb-like gene that is specifically expressed in red Perilla frutescens and presumably acts as a determining factor of the anthocyanin forma. Mol Gen Genet,1999,262:65-72.
    105.Nathalie Nesi, Clarisse Jond, Isabelle Debeaujon, Michel Caboche and Loiic Lepiniec. The Arabidopsis TT2 gene encodes an R2R3-Myb domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell,2001,13:2099-2114.
    106.Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol,2001,4:447-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700