用户名: 密码: 验证码:
典型草原草畜系统甲烷排放的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷(CH4)是一种主要的温室气体,其在空气中含量的增加会导致全球气候变暖。很多研究表明草地放牧系统对全球温室气体的量有重要的贡献。典型草原放牧系统中,反刍动物是一个重要的CH4源而草原一定程度上是一个CH4汇。为了研究典型草原放牧生态系统CH4的交换特征,本试验于2011年-2012年在沽源国家草地生态系统野外观测研究站对草地甲烷吸收和家畜甲烷排放开展了研究。主要研究内容有:(1)放牧季节典型草原CH4交换的日动态和季节动态,着重研究土壤温湿度日变化及月份间的变化对草地甲烷交换的影响;(2)放牧及家畜的粪尿对典型草原CH4交换的影响;(3)采用IPCC方法2估算夏季放牧羊和冬季舍饲羊肠道发酵CH4的产量。其研究结果如下:
     于7月初-9月底分四个阶段采用ICOS快速CH4分析仪对8:00am-18:00pm典型草原土壤CH4排放通量进行监测。结果显示,8:00am-18:00pm草地甲烷通量为负,草地土壤吸收甲烷。8月初8:00am-18:00pm草地甲烷动态变化大,其他测定时期草地甲烷排放通量受土壤温湿度日变化影响不大。另外试验还发现土壤对CH4吸收具有明显的季节动态,最高值出现在9月底。
     在春季不放牧的草地SG1,SG2和整个放牧季不放牧的草地UG处理中,土壤温度与草地CH4的吸收呈正相关,土壤湿度与草地CH4的吸收呈负相关。而持续放牧(SG3,SG5,和UG)和动物的粪尿会使土壤温度与湿度与草地CH4吸收的相关关系不显著。持续适度放牧草地CH4吸收能力最高,2011和2012年放牧季节甲烷吸收量分别为2.91和3.84kg/hm2。重度放牧会使草地甲烷吸收的能力下降,其甲烷年吸收量仅为持续适度放牧草地的40-49%。但是短时间内降低放牧压对草地CH4吸收的增加没有显著作用。试验中所有的放牧草地土壤都吸收甲烷。
     放牧家畜在草地上排放的粪和尿会使所在草地的CH4排放通量出现短暂的升高现象。在粪斑和尿斑形成后的前4个小时内草地CH4排放量出现峰值,此后草地上的粪尿斑块CH4的排放与无粪尿草地无显著差异。在草地土壤湿度较为恒定的条件下,粪尿斑中粪斑对草地CH4通量的影响大于尿斑。粪使得CH4排放通量的增加主要出现在0.5-8小时内,之后粪斑与对照草地无显著的差异。
     通过冬季舍饲试验研究发现,三组母羊中越冬体重范围为46.0-54.8kg的母羊肠道发酵产生的CH4最高,平均甲烷的日排放量为92.6g/d。三组不同体重的公羔肠道发酵产生的CH4没有显著差异。通过放牧试验研究,不同放牧季节不同放牧压处理条件下羊肠道发酵CH4日排放量没有差异。草地生长期放牧羊单位体重和单位采食量肠道发酵CH4排放量最大。舍饲羊比放牧羊释放更多的CH4,而舍饲母羊比公羔肠道发酵产生的CH4多。
Methane (CH4) is one of the main greenhouse gases (GHGs), the increasing of what affected global climate change. In typical steppe ecosystem, animal released CH4and grassland soil was reported to be a sink for CH4. To evaluate the contribution of sheep to greenhouse gas emissions in typical grassland ecosystem, experiment was designed in2010-2012. In this study, relying on the experimental platform of the Guyuan State Key Monitoring and Research Station of Grassland Ecosystem (China), the effect of grazing, dung, urine and environment factor on the of grassland CH4fluxes were studied, and the CH4emissions from enteric fermentation of sheep from grazing grassland and winter sheepfolds were measured using IPCC "Tier2". Results are as follows:
     CH4flux of typical grassland soil at8:00am-18:00pm was monitored using ICOS-CH4analyzer in2012. Typical grassland soil was net CH4sink at8:00am-18:00pm. There was most CH4uptake at the end of September.
     A significantly positive correlation (P<0.05) was found between soil temperature and CH4uptake, and a negative correlation (P<0.01) was found between soil moisture and CH4uptake in SG1, SG2and UG. But no significantly correlation (P<0.05) was found between soil environment factor and CH4fluxes in SG3, SG4and SG5. Moderately grazing stocking grassland has high CH4uptake (2.91kg/hm2in201land3.84kg/hm2in2012). CH4uptake in heavy grazing stocking typical grassland was40-49%of that in moderately grazing stocking treatment.
     Excretion of urine and dung onto typical steppe grassland from grazing sheep can cause short increases in CH4emission. The flux of CH4from excreta patches peaked within the first4hours after excretion. At constant soil moisture fresh dung mainly impacted CH4emissions. However, both of these occurred within a limited time scope (0.5-8h), after which there were no more distinctions between excreta patches and control grassland. It appears that the impacts of sheep excreta in a grassland system are transient, and therefore its global warming potential is short-term.
     During feeding experiment in winter, ewe expressed more enteric methane emissions than lamb. Group E3produced the most enteric methane emission. There were no significant differences in methane emissions in the three group lamb. Enteric methane emissions were not significantly different in the sheep in different grazing treatment. Sheep grazing from August to September produced more enteric methane emissions per DM I. Sheep fed in winter produced more methane than grazing in summer.
引文
蔡祖聪,徐华,卢维盛.冬季水分管理方式对稻田CH4排放量的影响.应用生态学报,1998a,9:171-175.
    蔡祖聪,沈光裕,颜晓元.土壤质地和温度对稻田甲烷排放的影响.土壤学报,1998b,35:145-155.
    陈卫卫.放牧对温带半干旱草原温室气体交换的影响:[博士学位论文].北京:中国科学院研究生院,2012.
    陈中云,阂航,陈美慈.不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究.土壤学报,2001,21:1501-1505.
    崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展.生态学报,2001,21(2):315-325.
    杜睿,陈冠雄.不同放牧强度对草原生态系统N20和CH4排放通量的影响.河南大学学报(自然科学版),1997,27:79-85.
    杜睿,陈冠雄,吕达仁,等.内蒙古草原生态系统-大气间N20和CH4排放通量研究的初步结果.气候与环境研究,1997,2(3):264-272.
    杜睿,吕达仁,王庚辰.天然温带典型草原氧化亚氮和甲烷通量的时间变化特征.自然科学进展,2005,3(15):313-320.
    杜睿,王庚辰,吕达仁,等.内蒙古大针茅草原的N20和CH4通量变化特征.中国环境科学,2001,21(4):289-292.
    董云社,章申,齐玉春,等.内蒙古典型草原C02、N20、CH4通量的同时观测及其日变化.科学通报,2000,3(48):318-322.
    冯亮明,刘伟平.森林碳排放权交易机制研究.北京:中国农业出版社,2012,2.
    高志岭,马文奇.反刍动物饲养中甲烷气体排放测定技术的研究进展.安徽农业科学,2010,38(21):11414-11418.
    郭雪峰.内蒙古白绒山羊甲烷产生量估测模型的建立及其影响因素的研究:[博士学位论文].内蒙古:内蒙古农业大学,2008.
    纪宝明,王艳芬,李香真,等.内蒙古锡林河流域主要类型原土壤中CH4和C02浓度的变化.植物生态学报,2001,25:116-119.
    减缓气候变化.IPCC第三次评估报告的主要结论和中国的对策/国家发展和改革委员会能源研究所编.北京:气象出版社,2004,6.
    蒋维楣.空气污染气象学.南京:南京大学出版社,2003,10.
    蒋静艳,黄耀,宗良纲.稻田土壤理化特性对排放的影响.土壤与环境,2001,10:27-29.
    靳晓霞,陈龙,周鑫,等.饲喂苜蓿干草对越冬母羊体质量增加及日粮消化率的影响.草业科学,2013,30(1):131-135.
    李博,雍世鹏,李忠厚.草原生态系统研究.北京:科学出版社,1988.
    李凌浩,李鑫,白文明,等.锡林河流域一个放牧羊草群落中碳素平衡的初步估计.植物生态学报,2004,28:312-317.
    李凌浩,刘先华,陈佐忠.内蒙古锡林河流域羊草草原生态系统碳素循环研究.植物学报,1998,40:955-961.
    李玉娥,林而达.天然草地利用方式改变对土壤排放C02和吸收CH4的影响.农业生态环境,2000,16(2):14-16,44.
    林而达,李玉娥.气候变化和温室气体清单的方法.北京:气象出版社,1998.
    齐玉春,董云社,杨小红,等.放牧对温带典型草原含碳温室气体C02、CH4通量特征的影响.资源科学,2005,27:103-109.
    孙景鑫.艾比湖地区生长季典型生态系统土壤甲烷排放通量分析:[博士学位论文].新疆:新疆大学,2012.
    仝川,郗风江,杨景荣,等.锡林河流域中游草原植被退化遥感监测及合理放牧强度的确定.草业学报,2003,12(4):78-83.
    王大力,尹澄清.植物根孔在土壤生态系统中的功能.生态学报,2000,20(5):869-874.
    王庚辰,杜睿,王艳芬.内蒙古草原N20和CH4排放通量及其季节变化特征研究.草地学报,1998,6:275-281.
    王明君,韩国栋,赵萌莉,等.草甸草原不同放牧强度对土壤有机碳含量的影响.草业科学,2007,24:6-10.
    王艳芬,汪诗平.不同放牧率对内蒙古典型草原地下生物量的影响.草地学报,1999,7,198-203.
    王跃思,纪宝明,黄耀,等.农垦与放牧对内蒙古草原N20、C02排放和CH4吸收的影响.环境科学,2001,22:7-13.
    王毅勇,郑循华,宋长春,等.三江平原湿地CH4、N2O的地—气交换特征.地理研究,2006,25(3):457-467.
    吴征镒.中国植被.北京:科学出版社,1980.
    叶勇,卢昌义,谭凤仪.红树林湿地土壤CH4产生率及其土壤理化因素影响的研究.土壤学报,2000a,37:77-84.
    叶勇,卢昌义,林鹏.海莲红树林土壤动态研究.土壤与环境,2000b,9:91-95.
    张爱忠,卢德勋,王立志,等.不同精粗比日粗条件下绒山羊瘤胃内环境和发酵指标动态变化的研究黑龙江畜牧兽医2005(12):23-25.
    章力建,刘帅.保护草原增强草原碳汇功能.中国草地学报,2010,32:1-5.
    张剑波.大气中甲烷的行为.环境科学研究,1996,9(4):10-15.
    周存宇.大气主要温室气体源汇及其研究进展.生态环境,2006,15(6):1397-1402.
    周广胜,王玉辉.陆地生态系统类型转变与碳循环.植物生态学报,2002,26(2):250-254.
    Adamsen APS, King GM. Methane consumption intemperate and subarctic forest soils:rate, vertical zonation, and responses to water and nitrogen. Applied and Environmental Microbiology,1993,59:485-490.
    Allard V, Soussana JF, Falcimagne R, et al. The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agriculture, Ecosystems and Environment,2007,121:47-58.
    Amaral JA, Ren T, Knowles R. Atmospheric methane are consumption by forest soils and extracted bacteria at different pH values. Applied and Environmental Microbiology,1998, 64:2397-2402.
    Amaral JA, Knowles R. Inhibition of methane concentration in forest soil and cultures of methanotrophs by aqueous forest soil extracts. Soil Biology and Biochemistry,1997, 29:1713-1720.
    Amon B, Amon T, Boxberger J, et al. Emissions of NH3, N2O and CH4 from dairy cows housed in a farmyard manure tying stall (housing, manure storage, manure spreading). Nutrient Cycling in Agroecosystems,2001,60:103-113.
    Bagchi S, Ritchie ME. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecology Letters,2010,13:959-968.
    Bender M, Conrad R. Kinetics of methane oxidation in oxic soils. Chemosphere,1993,26:687-696.
    Blaxter KL, Clapperton JL.Prediction of the amount of methane produced by ruminants. British Journal of Nutrition,1965,19:22.
    Blaxter, K. Energy Metabolism in Animals and Man. Cambridge, New York.1989.
    Boadida, DA, Wittenberg KM, Kennedy AD. Validation of the sulphur hexafluoride (SF6)tracer gas technique for measurement of methane and carbon dioxide production by cattle. Canadian Journal of AnmialScience,2002,82:125-131.
    Boadida DA, Wittenderg KM. Methaneproduction from dairyand beef heifers fed forages differing in nutrientdensityusing the sulphurhexafluoride (SF6) tracergas technique. Canadian Journal of Anmial Science,2004a,82:201-206.
    Boadida DA, Wittenderg KM, Scott SL, et al. Effectof low andhigh forage dieton enteric andmanure pack greenhouse gas emissions from a feedlot. Canadian Journal of Anmial Science,2004b,84:445-453.
    Bodelier PLE, Laanbroek HJ. Nitrogen regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology,2004,47:265-277.
    Bol R, Petersen SO, Christofides C, et al. Short-term N2O, CO2, NH3 fluxes, and N/C transfers in a Danish grass-clover pasture after simulated urine deposition in autumn. Journal of Plant Nutrition and Soil Science/Zeitschrift fur Pflanzenernahrung und Bodenkunde,2004,167:568-576.
    Borken W, Brumme R, Xu YJ. Effects of prolonged soil drought on CH4 oxidation in a temperate spruce forest. Journal of Geophysical Research-Atmospheres,2000, 105:7079-7088.
    Carran RA, Dewar D, Theobald PW. Methane and nitrous oxide emissions from sheep dung. Report prepared for the Ministry of Agriculture and Forestry by the New Zealand Pastoral Agricultural Research Institute,2003,1-29.
    Castaldi S, Fierro A. Soil-atmosphere methane exchange in undisturbed and burned mediterranean shrubland of southern Italy. Ecosystems,2005,8:182-190.
    Castro MS, Peterjohn WT, Melillo J M, et al. Effects of nitrogen fertilization on the fluxes of N2O, CH4, and CO2from soils in a Florida slash pine plantation. Canadian Journal of Forest Research,1994,24:9-13.
    Castro MS, Steudler PA, Melillo JM, et al. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles,1995,9:1-10.
    Chadwick DR, Pain BF, Brookman SKE. Nitrous Oxide And Methane Emissions Following Application of Animal Manures to Grassland. Journal of environmental quality,2000, 29:277-287.
    Chapman SJ, Kanda KI, Tsuruta H. Minami Influence of temperature and oxygen availability on the flux of methane and carbon dioxide from wetlands:a comparison of peat and paddy soils. Soil Science and Plant Nutrition,1996,42(2):269-277.
    Chen W, Wolf B, Bruggemann N, et al.Annual emissions of greenhouse gases from sheepfolds in Inner Mongolia. Plant and Soil,2011a,340:291-301.
    Chen W, Wolf B, Zheng X, et al. Annual methane uptake by temperate steppes as regulated by stocking rates, aboveground biomass and topsoil air permeability. Global Biology Change, 2011b,17:2803-2816.
    Cicerone RJ, Shetter D. Source of atmospheric methane:Measurement in rice oaddies and a discussion. Journal of Geophysical Research,1981,86:7203.
    Cicerone RJ, Shetter JD, Delwiche CC. Seasonal variation of methane flux from a California rice paddy. Journal of Geophysical Research,1983,88(C):11022-11024.
    Clemens J, Ahlgrimm HJ. Greenhouse gases from animal husbandry:mitigation options. Nutrient Cycling in Agroecosystems,2001,60:287-300.
    Conrad R. Soil microorganisms as controllers of atmospheric trace gases(H2, CO2, CH4, OCS, N2O and NO). Microbiological Reviews,1996,60:609-640.
    Crill P. Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Global Biogeochemistry Cycles,1991,5:19-334.
    Czepiel PM, Crill PM, Harriss RC. Environmental-factors influencing the variability of methane oxidation in temperate zone soil. Journal of Geophysical Research-Atmospheres,1995, 100:9359-9364.
    Davidson EA, Sehimel JP. Microbial Processes of production and consumption of nitric oxide, nitrous oxide and methane. Methods in Ecology:Trace Gases,1995,327-357.
    Demeyer D, Van Nevel C, Teller E, et al. Manipulation of rumen digestion in relation to the level of production in ruminants. Archives of Animal Nutrition,1986,36(213):132-143.
    Denmead OT, Leuning R, Griffith DWT, et al. Verifying inventory predictions of animal methane emissions with meteorological measurements. Boundary-Layer Meteorology,2000,96:187-209.
    Derner JD, Schuman GE. Carbon sequestration and rangelands:A synthesis of land management and precipitation effects. Journal of Soil and Water Conservation,2007,62:77-85.
    Dittert K, Lampe C, Gasche R, et al. Short-term effects of single or combined application of mineral N fertilizer and cattle slurry on the fluxes of radioactively active trace gases from grassland soil. Soil Biology and Biochemistry,2005,37:1665-1674.
    Du R, Lu D, Wang GC. Diurnal, seasonal, and inter-annual variations of N2O fluxes from native semi-arid grassland soils of Inner Mongolia. Soil Biology and Biochemistry,2006,38: 3474-3482.
    Dunfield P, Knowles R. Kinetics of methane oxidation by nitrate, nitrite and ammonium in a humisol. Applied and Environmental Microbiology,1995,61:3129-3135.
    Dunfield P, Knowles R, Dumont R, et al. Methane production and consumption in temperate and subarctic peat soils:Response to temperature and pH. Soil Biology and Biochemistry,1993, 25:321-326.
    Epstein HE, Burke IC, Mosier AR, et al. Plant functional type effects on trace gas fluxes in the shortgrass steppe. Biogeochemistry,1998,42:145-168.
    Fernandes SAP, Bernoux M, Cerri CC, et al. Seasonal variation of soil chemical properties and CO2 and CH4 fluxes in unfertilized and P-fertilized pastures in an Ultisol of the Brazilian Amazon. Geoderma,2002,107:227-241.
    Flessa H, Dorsch P, Beese F, et al. Influence of cattle wastes on nitrous oxide and methane fluxes in pasture land. Journal of Environmental Quality,1996,25:1366-1370.
    Geng YB, Luo GQ, Yuan GF. CH4 uptake flux of Leymus chinensis steppe during rapid growth season in Inner Mongolia, China. Science China Earth Sciences,2010,53:977-983.
    Glatzel S, Stahr K. Methane and nitrous oxide exchange in differently fertilized grassland in southern Germany. Plant and Soil,2001,231:21-35.
    Granli T, Bockman OC. Nitrous oxide from agriculture, concluding discussion:N2O emissions from agriculture and ways to decrease them through good agricultural practice. Norway Journal of Agricultural Science (Suppl.),1994,12:78-84.
    Han GD, Willms WD, Zhao M, et al. Effect of stocking rate on a stipa breviflore desert steppe community of Inner Mongolia, www.paper.edu.cn.2000.
    Harper LA, Denmead OT, Freney JR, et al. Direct measurements of methane emissions from grazing and feedlot cattle. Journal of Animal Science,1999,77:1392-1402.
    Hassink J. Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization. Soil Biology and Biochemistry,1995,27:1099-1108.
    Hellebrand HJ, Kalk WD. Emission of methane, nitrous oxide, and ammonia from dung windrows. Nutrient Cycling in Agroecosystems,2001,60:83-87.
    Henderson C. The effects of fatty acids on pure cultures of rumen bacteria. Journal of Agricultural Science (Cambrige),.1973,81:107-112.
    Hoist J, Liu C, Bruggemann N, et al. Microbial N turnover and N-oxide (N2O/NO/NO2) fluxes in semi-arid grassland of Inner Mongolia. Ecosystems,2007a,10:623-634.
    Hoist J, Liu C, Yao Z, et al. Importance of point sources on regional nitrous oxide fluxes in semi-arid steppe of Inner Mongolia, China. Plant and Soil,2007b,296,209-226.
    Hoist J, Liu C, Yao Z, et al. Fluxes of nitrous oxide, methane and carbon dioxide during freezing-thawing cycles in an Inner Mongolian steppe. Plant and Soil,2008,308:105-117.
    Houghton RA. Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences,2007,35:313-347.
    IPCC. Climate Change 2001:The ScientificBasis. Paris, France.2001.
    IPCC.2006 IPCC Guidelines for National Greenhouse Gas Inventories.Japan.2006.
    IPCC. Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.2007.
    Jakobsen P, Patrick WHJR, Williams BG. Sulfide and methane formation in soils and sediments. Soil science,1981,132:279-287.
    Jarvis SC, Pain BF. Greenhouse gas emissions from intensive livestock systems:their estimation and technologies for reduction. Climatic Change,1995,27:27-38.
    Jiang CM, Yu GR, Fang HJ, et al. Short-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmospheric Environment,2010,44:2920-2926.
    Jiang YY, Tang SM, Wang CJ, et al. Contribution of urine and dung patches from grazing sheep to methane and carbon dioxide fluxes in an Inner Mongolian desert grassland. Asian-Australasian Journal of Animal Sciences,2012,25:207-212.
    Johnson KA, Huyler MT, Westberg HH, et al. Measurment of methane emission from ruminant livestock using SF6 tracer technique. Envirn Sci Technol,1994,28:359-362.
    Johnson KA, Johnson DE. Methane emissions from cattle. Journal of Animal Science,199573: 2483-2492.
    Jones SK, Rees RM, Skiba UM, et al. Greenhouse gas emissions from a managed grassland. Global and Planetary Change,2005,47:201-211.
    Kammann C, Grunhage L, Jager HJ, et al. Methane fluxes from differentially managed grassland study plots:the important role of CH4 oxidation in grassland with a high potential for CH4 production. Environmental Pollution,2001,115:261-273.
    Kang L, Han XG, Zhang ZB, et al. Grassland ecosystems in China:review of current knowledge and research advancement. Philosophical transactions of the royal society B:biological sciences,2007,362:997-1008.
    King GM, Schnell S. Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soils. Applied and Environmental Microbiology,1998,64:253-257.
    Knight TW, Molano G, Clark H, et al. Methane emissions from weaned lambs measured at 13, 17,25 and 35 weeks of age compared with mature ewes consuming a fresh forage diet. Australian Journal of Experimental Agriculture,2008,48:240-243.
    Kulling DR., Menzi H., Sutter F, et al. Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived from grass-and hay-based rations. Nutrient Cycling in Agroecosystems,2003,65:13-22.
    Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004,304,1623-1627.
    Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils:A review. European Journal of Soil Biology,2001,37:25-50.
    Le Mer J, Escoffier S, Chessel C, et al. Microbiological aspects of methane emission by a ricefield soil from Camargue (France)2.Methanotrophy and relate microflora. European Journal of Soil Biology,1996,32:71-80.
    Leuning R, Baker SK, Jamie IM, et al. Methane emission from free-ranging sheep:a comparison of two measurement methods. Atmospheric Environment,1999,33:1357-1365.
    Levine JS, Curtis PR, Geoffrey MT. The photochemistry of methane and carbon monoxide in the troposphere in 1950 and 1985. Nature,1985,318:254-275.
    Liebig MA, Gross JR, Kronberg SL, et al. Grazing management contributions to net global warming potential:a long-term evaluation in the Northern Great Plains. Journal of environmental quality,2010,39:799-809.
    Lin XW, Wang SP, Ma XZ, et al. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biology and Biogeochemistry,2009,41:718-725.
    Liu C, Holst J, Bruggemann N, et al. Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmospheric Environment,2007,41:5948-5958.
    Liu C, Holst J, Bruggemann N, et al. Effects of Irrigation on Nitrous Oxide, Methane and Carbon Dioxide Fluxes in an Inner Mongolian Steppe. Advances in Atmospheric Sciences(大气科学进展:英文版),2008,25:748-756.
    Liu C, Holst J, Yao Z, et al. Growing season methane budget of an Inner Mongolia steppe. Atmospheric Environment,2009,43:3086-3095.
    Lu Y, Zhuang Q, Zhou G, et al. Possible decline of the carbon sink in the Mongolian Plateau during the 21st century. Environmental Research Letters,2009,4:1-8.
    Ma X, Wang S, Wang Y, et al. Short-term effects of sheep excrement on carbon dioxide, nitrous oxide and methane fluxes in typical grassland of Inner Mongolia. New Zealand Journal of Agricultural Research,2006,49:285-297.
    McGinn SM, Flesch TK, Harper LA, et al. An Approach for Measuring Methane Emissions from Whole Farms. Journal of Environmental Quality,2006,35:14-20.
    Mariko S, Urano T, Asanuma J. Effects of irrigation on CO2 and CH4 fluxes from Mongolian steppe soil. Journal of Hydrology,2007,333:118-123.
    Merino A, Perez-Batallon P, Macias F. Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperature region of southern Europe. Soil Biology and Biogeochemistry,2004,36:917-925.
    Moe PW, Tyrrell HF. Methane Production in Dairy Cows. Journal of Dairy Science,1979, 62:1583.
    Monteny GJ, Groenestein CM, Hilhorst MA. Interactions and coupling between emissions of methane and nitrous oxide from animal husbandry. Nutrient Cycling in Agroecosystems, 2001,60:123-132.
    Mori A, Hojito M, Kondo H, et al. Effects of plant species on CH4 and N2O fluxes from a volcanic grassland soil in Nasu, Japan. Soil Science and Plant Nutrition,2005,51:19-27.
    Mosier AR, Bronson K, Schimel D, et al. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature,1991,350:330-332.
    Mosier AR, Klemedttson LK, Sommerfeld RA, et al. Methane and nitrous oxide flux in a Wyoming subalpine meadow. Global Biogeochemical Cycles,1993a,7:771-784.
    Mosier AR, Valentine DW, Schimel D, et al. Methane oxidation in the Colorado short grass steppe. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft,1993b,69:219-226.
    Mosier AR, Parton WJ, Valentine DW, et al. CH4 and N2O fluxes in the Colorado shortgrass steppe:1. Impact of landscape and nitrogen addition. Global Biogeochemical Cycles,1996, 10:387-399.
    Mosier AR, Deigado JA. Methane and nitrous oxide fluxes in grasslands in western Puerto Rico. Chemosphere,1997a,35:2050-2082.
    Mosier AR, Parton WJ, Valentine DW, et al. CH4 andN2O fluxes in the Colorado shortgrass steppe 2. Long-term impact of land use change. Global Biogeochemical Cycles,1997b 11(1):29-42.
    Mosier AR, Parton WJ, Phongpan S. Long-term large N and immediate small N addition effects on trace gas fluxes in the Colorado shortgrass steppe. Biology and Fertility of Soils,1998, 28:44-50.
    Moss AR, Jouany JP. Newbold J. Methane production by ruminants:contribution to global warming. Annales De Zootechnie,2000,49:231-253.
    Muhammad Fl, Cheng YF, Zhu WY, et al. Mitigation of ruminant methane production:current strategies, constraints and future options. World Journal of Microbiology and Biotechnology, 2008,24:2747-2755.
    Nesbit SP, Breitenbeck GA. A laboratory study of factors influencing methane uptake by soils. Agriculture, Ecosystems and Environment,1992,41:39-54.
    Ngwabie NM, Jeppsson KH, Gustafsson G, et al. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows. Atmospheric Environment,2012,45:6760-6768.
    Ojima DS, Valentine DW, Mosier AR, et al. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere,1993,26:1~4,675~685.
    Okine EK, Mathison GW, Hardin RT. Effects of Changes in Frequency of Reticular Contractions on Fluid and Particulate Passage Rates in Cattle. Journal of Animal Science,1989,67:3388.
    Parashar DC, Gupta PK, Rai J, et al. Effect of soil temperature on methane emission from paddy fields. Chemosphere,1993,26:247-250.
    Paustian K, Elliott ET, Collins HP, et al. Use of a network of long-term experiments for analysis of soil carbon dynamics and global change:The North America model. Australian Journal of Experimental Agriculture,1995,35:929-939.
    Phan NT, Kim KH, Parker D, et al. Effect of beef cattle manure application rate on CH4 and CO2 emissions. Atmospheric Environment,2012,63:327-336.
    Philip EL, Jonathan MW, Richard JS, et al. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology,2002, 148:3521-3530.
    Piao SL, Fang JY, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009,458:1009-1014.
    Potter CS, Davidson EA, Verchot LV. Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere,1996,32:2219-2246.
    Reay DS, Radajewski S, Murrell JC, et al. Effects of land-use on the activity and diversity of methane oxidizing bacteria in forest soils. Soil Biology and Biochemistry,2001,34:1613-1623.
    Ridgwell AJ, Marshall SJ, Gregson K. Consumption of atmospheric methane by soils:A process-based model. Global Biogeochemical Cycles,1999,13:59-70.
    Roland B, Soren OP, Calliopi C, et al. Short-term N2O, CO2, NH3 fluxes, and N/C transfers in a Danish grass-clover pasture after simulated urine deposition in autumn. Journal of Plant Nutrition and Soil Science,2004,167:568-576.
    Russell, JB, Wallace, RJ. Energy consuming and yielding mechanisms. The Rumen Microbial Ecosystem,1997,246-282.
    Saggar S, Bolan NS, Bhandral R, et al. A review of emissions of methane, ammonia, and nitrous oxide from animal excreta deposition and farm effluent application in grazed pastures. New Zealand Journal of Agricultural Research,2004,47:513-544.
    Schimel JP, Gulledge J. Microbial community structure and global trace gases. Global Change Biology,1998(4):745-758.
    Schnell S, King GM. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Applied and Environmental Microbiology,1994,60:3514-3521.
    Schnell S, King GM. Responses of methanotrophic activity in soils and cultures to water stress. Applied and Environmental Microbiology,1996,62:3203-3209.
    Schuman GE, Janzen HH, Herrick JE. Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution,2002,116:391-396.
    Sedorovich DM, Rotz CA, Richard TL. Greenhouse Gas Emissions on Dairy farms. Michigan: American Society of Agricultural and Biological Engineers.2008.
    Seiler W. Contribution of biological processes to the global budget of CH4 in the atmosphere. Current perspective in Microlial Ecology. Kluq UJ and Reddy CA,1984:468-477.
    Shand CA, Williams BL, Dawson LA, et al. Sheep urine affects soil solution nutrient composition and roots:Differences between field and sward box soils and the effects of synthetic and natural sheep urine. Soil Biology and Biochemistry,2002,34:163-171.
    Silver WL, Ryals R, Eviner V. Soil carbon pools in California's annual grassland ecosystems. Rangeland Ecology and Management,2010,63:128-136.
    Simona C, Ariangelo DR, John G, et al. Nitrous oxide and methane fluxes from soils of the Orinoco savanna under different land uses. Global Change Biology,2004,10:1947-1960.
    Smith KA, Dobbie K.E, Ball BC, et al. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biology,2000,6:791-803.
    Sommerfeld RA, Mosier AR, Musselman RC. CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature,1993,361:140-142.
    Steinkamp R, Butterbach-Ball H, Papen H. Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany. Soil Biology and Biochemistry,2001, 33:145-153.
    Steudler PA, Bowden RD, Melillo JM, et al. Influence on nitrogen fertilization on methane uptake in temperate forest soils. Nature,1989,341:314-315.
    Stolaski RS, Ciceron RJ. Stratospheric Chlorine; A possible sink for Ozone. Canadian Journal of Chemistry,1974,52:1610-1615.
    Striegl RG. Diffusional limits to the consumption of atmospheric methane by soils. Chemosphere, 1993,26:1-4.
    Striegl RG, McConnaughey TA, Thorstenson DC, et al. Consumption of atmospheric methane by desert soils. Nature,1992,357,145-147.
    Tieszen LL, Detling J. Productivity of grassland and tundra. In:Lange OL, et al. ed. Physiological plant ecology IV. Ecosystem processes:mineral cycling, productivity and man's influence. In: Encyclopedia of plant physiology. Vol.13D. Berlin, Springer-Verlag.1983,173-203.
    Torn MS, Harte J. Methane consumption by mundane soils:Implications for positive and negative feedback with climate change. Biogeochemistry,1996,32:53-67.
    Tlustos P, Willison TW, Baker JC, et al. Short-term effects of nitrogen on methane oxidation in soils. Biology and Fertility of Soils,1998,28:64-70.
    Ulyatt MJ, Baker SK, McCrabb GJ, et al. Accuracy of SF6. Australian Journal of Agricultural Research,1999,50:34.
    Valentini R, Matteucci G, Dolman AJ, et al. Respiration as the main determinant of carbon balance in European forests. Nature,2000,404:861-865.
    van den Pol-van Dasselaar A, van Beusichem ML, Oenema O. Effects of soil moisture content and temperature on methane uptake by grassland on sandy soils. Plant and Soil,1998,204:213-222.
    van den Pol-van Dasselaar A, van Beusichem ML, Oenema O. Effects of nitrogen input and grazing on methane fluxes of extensively and intensively managed grasslands in the Netherlands. Biology and Fertility of Soils,1999,29:24-30.
    Van Groenigen JW, Kuikman PJ, De Groot WJM, et al. Nitrous oxide emission from urine-treated soil as influenced by urine composition and soil physical conditions. Soil Biology and Biochemistry,2005,37:463-473.
    Verchot LV, Davidson EA, Cattanio JH, et al. Land-use change and biogeochemical controls of methane fluxes in soils of Eastern Amazonia. Ecosystems,2000,3:41-56.
    Vinther FP, Eiland F, Lind AM, et al.Mcrobial biomass and numbers of denitrifiers related to macropore channels in agricultural and forest soils. Soil Biology and Biochemistry,1999, 31(4):603-611.
    Wagner D, Pfeiffer EM. Two temperature optima of methane production in a typical soil of the Elbe river marshland. FEMS Microbiology Ecology,1997,22:145-153.
    Wang CJ, Tang SM, Wilkes A, et al. Effect of Stocking Rate on Soil-Atmosphere CH4 Flux during Spring Freeze-Thaw Cycles in a Northern Desert Steppe, China. PLoS ONE,2012. 7:e36794.
    Wang CJ, Tas BM, Glindemann T, et al. Fecal crude protein content as an estimate for the digestibility of forage in grazing sheep. Animal Feed Science and Technology,2009, 149(3-4):199-208.
    Wang CJ, Wang SP, Zhou H, et al. Effects of forage composition and growing season on methane emission from sheep in the Inner Mongolia steppe of China. Ecological Research,2007,22: 41-48.
    Wang ZP, Delaune RD, Masscheleyn PH, et al. Soil Redox and Ph Effects on Methane Production in a Flooded Rice Soil. Soil science society of America Journal,1993,57:382-385
    Wang YS, Xue M, Zheng XH, et al. Effects of environmental factorson N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere,2005,58:205-215.
    Whalen SC, Recburgh WS, Kizer KS. Methane consumption and emission by taiga. Global Biogeochemical Cycles,1991,5:261-273.
    White RP, Murray S, Rohweder M. Pilot analysis of global ecosystem:grassland ecosystems. Washington DC, World Resource Institute.2000,12.
    Williams RT, Crawford RL. Methane production in Minnesota peatlands. Applied and environmental microbiology,1984,47:1266-1271.
    Yao Z, Wolf B, Chen W, et al. Spatial variability of N2O, CH4 and CO2 fluxes within the Xilin River catchment of Inner Mongolia, China-a soil core study. Plant and Soil,2010a, 327:315-330.
    Yao Z, Wu X, Wolf B, et al. Soil-atmosphere exchange potential of NO and N2O in different land use types of Inner Mongolia, as affected by soil temperature, soil moisture, freeze-thaw and drying-wetting events. Journal of Geophysical Research-Atmosphere,2010b,115:D17116.
    Yamulki S, Jarvis SC. Short-term effects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane and carbon dioxide fluxes from grassland. Biology and Fertility of Soils,2002,36:224-231.
    Yamulki S, Jarvis SC, Owen P. Methane emission and uptake from soils as influenced by excreta deposition from grazing animals. Journal of Environmental Quality,1999,28:676-682.
    Zeeman G. Mesophilic and psychrophilic digestion of liquid manure. [Ph.D. thesis]. Wageningen:Wageningen Agricultural University,1991.
    Zhou XQ, Wang YF, Huang XZ, et al. Effect of grazing intensities on the activity and community structure of methane-oxidizing bacteria of grassland soil in Inner Mongolia. Nutrient Cycling in Agroecosystems,2008,80:145-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700