用户名: 密码: 验证码:
菜地生态系统温室气体排放规律与碳收支估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蔬菜地复种指数高,以高度集约化种植和氮肥高量投入为特征,是温室气体的重要排放源。本研究以我国东南部集约化管理下具有四种不同轮作方式的菜地生态系统为研究对象,采用静态暗箱-气相色谱法于2009年11月28日~2010年11月26日田间原位监测N2O、CH4与C02气体的排放通量与土壤剖面中三种气体的浓度变化,研究菜地中温室气体排放规律、土壤剖面分布、周转速率及影响因素;在作物季节时间尺度上估算菜地中生态系统净碳收支(NECB)与温室气体强度(GHGI);同时通过盆栽模拟研究方法,探讨生物黑炭对菜地生态系统温室气体的减排效果。大田试验处理设置包括裸地和四种轮作方式;四种轮作方式包括芹菜-空心菜-小白菜-苋菜,菜心-芹菜-空心菜-大青菜,苘蒿-空心菜-大青菜,芹菜-菜心-生菜-大青菜。试验结果如下:
     1.菜地生态系统是重要的温室气体排放源。集约化管理下蔬菜地N20排放以高排放通量为特征,苘蒿-空心菜-大青菜、芹菜-空心菜-小白菜-苋菜、菜心-芹菜-空心菜-大青菜、芹菜-菜心-生菜-大青菜与裸地的累积N20排放量分别为237.7kg N ha-1、137.2kgNha-1、100.9kgNha-1、56.4kg N ha-1与29.2kg N ha-1。除了芹菜-菜心-生菜-大青菜轮作外,其他三种蔬菜轮作的累积N20排放量均显著的高于裸地。菜地生态系统对CH4排放无显著影响,裸地、芹菜-空心菜-小白菜-苋菜、菜心-芹菜-空心菜-大青菜、苘蒿-空心菜-大青菜与芹菜-菜心-生菜-大青菜轮作中累积CH4排放量分别为9.0kg Cha-1、13.9kg C ha-1、18.8kg C ha-1、12.1kg C ha-1与16.1kg C ha-1.四种轮作菜地中N20排放系数为1.2%-5.0%,平均为2.6%。总氮肥施用与N20排放之间呈显著的直线相关关系,氮肥用量能解释N20排放变异的35.5%。土壤温度与土壤湿度是影响N20排放的重要环境因子,而土壤硝态氮与铵态氮浓度与N20排放通量间无显著相关关系。为准确估算国家N20收支清单,需要周年动态与多频次的监测N20排放通量。
     2.菜地生态系统中土壤剖面N2O、CH4与CO2的浓度、扩散通量与周转速率呈现较大的剖面层次空间变异性。土壤剖面中N20浓度在0-30cm范围内呈随土壤深度增加而增加的趋势,在30~50cm土层出现增减不一的变化趋势(与15~30cm相比)。30~50cm土层以输出N20为主,0~7cm土层以输入N20为主。0~50cm范围内,CH4浓度呈随土壤深度增加而增加的趋势。30~50cm土层以输出CH4为主,0-15cm土层以输入cH4为主。土壤剖面中c02的浓度呈现上低下高的分布特征。15~50cm以输出C02为主,0~7cm土层以输入C02为主。氮肥施用与翻耕管理均影响着N20的土壤剖面分布,氮肥施用显著增加了土壤剖面中各土层的N20浓度,促进N20扩散通量,加速N20的周转速率,但施用氮肥对C02的土壤剖面分布特征影响不明显。与施肥相比,翻耕措施对C02的浓度分布、扩散通量与周转速率影响更大。与N20与C02相比,肥料施用与耕翻措施对CH4的土壤剖面分布特征与周转速率的影响均不明显。
     3.在作物季节时间尺度上,四种蔬菜轮作菜地的NECB与土壤有机碳变化量(δSOC)均表现为固碳效应。四种蔬菜轮作的6SOC为0.01~0.40t C ha-1。施用有机肥是增加菜地中碳库的重要措施。不同蔬菜轮作间与同一轮作中不同蔬菜间的综合温室效应(GWP)、净温室效应(net GWP)、GHGI以及计入农田管理与化学品投入碳排放的相应指标mGWP、net mGWP与mGHGI均表现出相似的变化趋势。四种蔬菜轮作的mGWP、net GWP与net mGWP分别为36~131Mg CO2eq. ha-1,26~109Mg CO2eq. ha-1,35~129Mg CO2eq. ha-1; GHGI与mGHGI的变化范围分别为0.17~0.42kgCO2equiv. kg-1veg与0.22~0.49kg CO2equiv. kg-1veg.。N2O排放引起的GWP主导了mGWP、net GWP、net mGWP、GHGI与mGHGI的变化。提高氮肥利用效率与采取合理的菜地管理是减缓菜地综合温室效应的重要措施。
     4.2011年3月3日~6月11日采集菜地土壤进行户外盆栽菜心和苋菜2季蔬菜的试验,研究施用生物黑炭对菜地温室气体的减排效果。试验设置8个处理,包括CK,不施肥,种植蔬菜和7个等氮量(400kg N ha-1)的处理,分别为Urea(施用尿素)、UM1(尿素与有机肥组合1)、UM2(尿素与有机肥组合2)、UB1(尿素与黑炭水平1)、UB2(尿素与黑炭水平2)、UM1B(尿素与有机肥组合1同时施用黑炭)、UM2B(尿素与有机肥组合2同时施用黑炭)。试验结果表明,与尿素相比,处理UB1、UB2、UMlB与UM2B显著降低N20排放量达77%~86%,UM1与UM2对N20排放的影响无显著不同。黑炭添加或有机肥施用对CH4排放无显著影响。UMlB与UM2B处理中蔬菜总产量分别比尿素、UM1/UM2与UB1/UB2勺产量平均高32%、48%与28%。添加黑炭处理的N20-N排放系数为0.4%~0.7%,而无添加黑炭处理为2.5%~3.2%。最佳黑炭施用量为30Mg ha-1,施用黑炭能在不降低蔬菜产量的基础上显著减少N20排放。
     因此,菜地生态系统温室气体排放与碳收支估算值得深入研究;同时如何减缓菜地生态系统综合温室效应和温室气体强度都是有益的探索。
Vegetable field is characterized by high harvest index, intensively plantated with high nitrogen fertilizer input, thus being an important source of greenhouse gases (GHGs) emissions. The study was performed in an intensive managed vegetable production region with four typical leafy vegetable rotations in southeast China from28December in2009to26December in2010. The main objectives were to simultaneously measure N2O, CH4and CO2fluxes and soil profile N2O, CH4and CO2concentrations, turnover rate and influence factors, to estimate the net ecosystem carbon budget (NECB) and greenhouse gases intensity (GHGI) on crop seasonal scale. In addition, the effect of biochar on greenhouse gas mitigations was also probed into through a pot experiment. The four consecutive rotations were established as follows:Celery-Tung choy-Baby bok choy-Amaranth (C-T-Bb-A), Choy sum-Celery-Tung choy-Bok choy (Cs-C-T-Bc), Garland chrysanthemum-Tung choy-Bok choy (G-T-Bc), Celery-Choy sum-Lettuce-Bok choy (C-Cs-L-Bc). The results were presented as follows:
     1. Vegetable field ecosystem is an important source of greenhouse gases emissions. N2O emissions from intensively managed vegetable fields were characterized by high fluxes that varied with cropping systems. Annual cumulative N2O emissions were237.7kg N ha-1from the G-T-Bc,137.2kg N ha-1from the C-T-Bb-A,100.9kg N ha-1from the Cs-C-T-Bc,56.4kg N ha-1from the C-Cs-L-Bc and29.2kg N ha-1from the bare fallow, respectively. Except for the C-Cs-L-Bc rotation, the cumulative N2O emissions from the rotation fields were significantly higher than that from the bare fallow. Vegetable field had no significant effect on CH4emissions. Annual cumulative CH4emissions were9.0kg C ha-1,13.9kg C ha-1,18.8kg C ha-1,12.1kg C ha-1and16.1kg C ha-1from the bare fallow, C-T-Bb-A, Cs-C-T-Bc, G-TBc and C-Cs-L-Bc, respectively. The annual N2O emission factor ranged from1.2%to5.0%, averaging with2.6%. N2O emissions were significantly linear correlated with total N input rates, and total N fertilizer application rate explained35.5%of annual N2O emissions. Soil temperature and soil moisture were crucial environment factors affecting N2O emissions, and soil NO3--N and NH4+-N had no significant correlations with N2O fluxes. Frequent year-round monitoring of N2O fluxes is essential for better constraint of the national N2O budget.
     2. Soil profile N2O, CH4and CO2concentration, diffusion fluxes and turnover rate showed greater spatial variability among profile layers in vegetable ecosystem. N2O concentration increased with soil depth in0-30cm profile, but its concentration showed increase or decrease in30-50cm profile and presented disaccord compared with15-30cm. N2O of30-50cm profile primly output, and0-7cm primly input. CH4concentrations increased with soil depth in0-50cm profile. CH4of30-50cm profile primly output, and0-15cm primly input. Lower CO2concentration in below soil profile and higher in upper soil profile. CO2of15-50cm profile primly output, and0-7cm primly input. N application and tillage managements all affected N2O profile distributions. N application significantly increased N2O concentrations in each soil profile, promoted N2O diffusion fluxes and accelerated N2O turnover rate, but those had no obvious effect on CO2soil profile distributions. In contrast with N fertilizer applications, the effect of tillage on CO2concentration, diffusion fluxes and turnover rate were greater. The effect of N application and tillage managements on CH4soil distributions and turnover rate were not obvious compared with that on N2O and CO2.
     3. NECB and δSOC from the four vegetable rotation fields all showed carbon sequestration at crop seasonal time scale. The δSOC from four vegetable rotations ranged from0.01t C ha-1to0.40t C ha-1. Application manure into vegetable field was important for increasing soil carbon stock. GWP, net GWP, GHGI and corresponding indexes of mGWP, net mGWP and mGHGI considering carbon emissions induced from field management and chemical material input all showed nearly consistent changes among the rotations and among the vegetables within each rotation. The global warming potential ranged from36~131Mg CO2eq. ha-1for mGWP,26~109Mg CO2eq. ha-1for net GWP and35~129Mg CO2eq. ha-1for net mGWP. Greenhouse gases intensity ranged from0.17~0.42kg CO2equiv. kg-1veg. for GHGI and0.22~0.49kg CO2equiv. kg-1veg. for mGHGI. The mGWP, net GWP, net mGWP, GHGI and mGHGI were dominated by the GWP resulting from N2O emissions. Increasing fertilizer use efficiency and adoption of best practices are effective measures for decreasing global warming potential in vegetable field management.
     4. A outside pot experiment with planting choy sum and amaranth was performed to estimate the effect of maize straw biochar application on greenhouse gas mitigations. Eight treatments included control (CK) with planting vegetable without fertilizer application and seven equal N rate treatments (400kg N ha-1) which were Urea(400kg N ha-1), UM1(combination urea with manure1), UM2(combination urea with manure2), UB1(combination urea with biochar1), UB2(combination urea with biochar2), UM1B (combination urea with manure1and biochar addition) and UM2B (combination urea with manure2and biochar addition). The results showed that UB1, UB2, UM1B and UM2B significantly decreased N2O emission by77%to86%, while the UM1and UM2did not show significant N2O emission difference in comparison with Urea. Biochar amendment or manure application had no significant effect on CH4emissions. On average, UM1B and UM2B significantly enhanced vegetable production by32%,48%and28%as compared to Urea, average UM1/UM2and average UB1/UB2, respectively. N2O-N emission factors with biochar application were0.4%-0.7%, while those without biochar being2.5%~3.2%. The most effective combination was biochar at30Mg ha-1. Biochar application can significantly reduce N2O emissions while maintaining vegetable production.
     Therfore, it is desired for further study on GHGs emissions and carbon budget from vegetable field ecosystems. It is also crucial for further studies on net GWP and GHGI from vegetable ecosystems.
引文
1. 曹兵,贺发云,徐秋明,等.露地种植大白菜的氮肥效应与氮素损失研究[J].植物营养与肥料学报,2007,13(6):1116-1122
    2. 陈书涛,朱大威,牛传坡,等.管理措施对农田生态系统土壤呼吸的影响[J].环境科学,2009,30(10):2858-2865
    3. 陈述悦,李俊,陆佩玲,等.华北平原麦田土壤呼吸特征[J].应用生态学报,2004,15(9):1522-1560
    4. 戴万宏,王益权,黄耀,等.土剖面C02浓度的动态变化及其受环境因素的影响[J].土壤学报,2004,41(5):827-831
    5. 刁一伟,郑循华,王跃思,等.开放式空气C02浓度增高条件下早地土壤气体CO2浓度廓线测定[J].应用生态学报,2002,13(10):1249-1252
    6. 刁一伟,郑循华,王跃思,等.土壤温度和湿度对冬小麦田土壤空气C02浓度的影响[J].气候与环境研究,2004,(9)4:584-590
    7. 丁洪,王跃思,项虹艳,等.菜田氮素反硝化损失与N20排放的定量评价[J].园艺学报,2004,31(6):762-766
    8. 方精云,唐艳鸿,Son Yowhan碳循环研究:东亚生态系统为什么重要[J].中国科学:生命科学,2010,(40)7:561-565
    9. 封克,殷士学.影响氧化亚氮形成与排放的土壤因素[J].土壤学进展,1995,23(6):35-41
    10.高程达,孙向阳,张林,等.北温带干旱地区土壤剖面C02通量的变化特征[J].北京林业大学学报,2010,(32)2:6-13
    11.耿瑞霖,郁红艳,丁维新,等.有机无机肥长期施用对潮土团聚体及其有机碳含量的影响[J].土壤,2010,42(6):908-914
    12.龚伟,颜晓元,蔡祖聪,等.长期施肥对小麦-玉米作物系统土壤颗粒有机碳和氮的影响[J].应用生态学报,2008,19(11):2375-2381
    13.侯爱新,陈冠雄.不同种类氮肥对土壤释放N2O的影响[J].应用生态学报,1998,9(2)176-180
    14.黄国宏,陈冠雄,张志明,等.玉米田N20排放及减排措施研究[J].环境科学学报,1998,18(4):344-349
    15.黄国宏,陈冠雄.土壤含水量与N2O产生途径研究[J].应用生态学报,1999,10(1):53-56
    16.黄丽华,沈根祥,顾海蓉,等.肥水管理方式对蔬菜田N20释放影响的模拟研究[J].农业环境科学学报,2009,28(6):1319-1324
    17.黄树辉,吕军.农田土壤N20排放研究进展[J].土壤通报.2004,35(4):516-522
    18.黄剑,张庆忠,杜章留,等.施用生物炭对农田生态系统影响的研究进展[J].中国农业气象,2012,33(2):232-239
    19.黄耀.中国的温室气体排放、减排措施与对策[J].第四纪研究,2006-(26)5:722-732
    20.黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势[J].科学通报,2006b,51(7):750-763
    21.胡学玉,易卿,禹红红.土壤生态系统中黑碳研究的几个关键问题[J].生态环境学报,2012,21(1):153-158
    22.金峰,杨浩,蔡祖聪,等.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,(38)4:522-528
    23.金雪霞,范晓晖,蔡贵信,等.菜地土壤N20排放及其氮素反硝化损失[J].农业环境科学学报,2004,23(5):861-865
    24.李长生.土壤碳储量减少:中国农业之隐患:中美农业生态系统碳循环对比研究[J].第四纪研究,2000,20(4):345-350
    25.李香兰,徐华,蔡祖聪.水分管理影响稻田氧化亚氮排放研究进展[J].土壤,2009,41(1):1-7
    26.李艳花,赵景波.西安南郊不同人工植被下土壤C02浓度研究[J].中国沙漠,2006a,26(6):910-914
    27.李艳花,赵景波.西安南郊不同深度土壤C02浓度变化研究[J].干旱区资源与环境,2006b,20(2):124-128
    28.李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学D辑,2003,33(1):72-80
    29.李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环[J].地学前缘,2002,9(20):355-357
    30.梁东丽,吴庆强,李生秀,等.黄土性土壤剖面不同层次N20浓度的原位监测[J].生态学报,2009,(29)3:1421-1427
    31.梁东丽,同延安,Ove Emterdy,等.菜地不同施氮量下N20逸出量的研究[J].西北农林科技大学学报(自然科学版),2002a,(30)2:73-77
    32.梁东丽,同延安,Ove Emterdy,等.黄土性土壤剖面中N20排放的研究初报[J].土壤学报,2002b,(39)6:802-809
    33.梁东丽,吴庆强,李生秀,等.填土土壤剖面中N20浓度的时间和空间变异[J].生态学报,2003,23(4):731-737
    34.梁福源,宋林华,王静.土壤C02浓度昼夜变化及其对土壤CO2排放量的影响[J].地理科学进展,2003(22)2:170-176
    35.梁战备,史奕,王琛瑞,等.长白山阔叶红松林不同深度森林土壤氧化CH4研究[J].中国科学院研究生院学报,2004,21(1):71-77
    36.刘芳,刘丛强,王仕禄,等.喀斯特地区土壤剖面CO2、CH4和N20浓度的相关关系[J].生态学杂志,2010(4):717-723
    37.刘平丽,张啸林,熊正琴,等.不同水旱轮作体系稻田土壤剖面N2O的分布特征[J].应用生态学报,2011,22(9):2363-2369
    38.鲁如坤.土壤农化分析.中国农业科学技术出版社,北京.2000
    39.鲁耀,段宗颜,胡万里,等.保护性耕作及种植模式对蔬菜地耕层土壤CO2含量的影响[J].西南农业学报,2011,24(4):1404-1408
    40.卢昌艾,孔令明,胡万里,等.滇池流域集约化西芹地的N2O排放[J].农业环境科学学报,2008,27(5):1870-1875
    41.倪柳芳,崔立明,刘心中,等.生物黑碳研究[J].实验室科学,2011,14(6):265-269
    42.马成泽,周勤,何方.不同肥料配合施用土壤有机碳盈亏分布[J].土壤学报,1994(1):34-40
    43.孟凡乔,关桂红,张庆忠,等.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律[J].环境科学学报,2006,26(6):992-999
    44.孟磊,丁维新,蔡祖聪,等.长期定量施肥对土壤有机碳储量和土壤呼吸影响[J].地球科学进展,2005,20(6):687-692
    45.潘根兴,李恋卿,郑聚锋,等.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J].土壤学报,2008(45)5:901-914
    46.潘根兴,张阿凤,邹建文,等.农业废弃物生物黑炭转化还田作为低碳农业途径的探讨[J].生态与农村环境学报,2010,26(4):394-400
    47.潘根兴,赵其国,蔡祖聪.《京都议定书》生效后我国耕地土壤碳循环研究若干问题[J].中国基础科学,2005,7(2):12-18
    48.裴志永,欧阳华,周才平.青藏高原高寒草原碳排放及其迁移过程研究[J].生态学报,2003,23(2):231-236
    49.彭世彰,杨士红,丁加丽,等.农田土壤N2O排放的主要影响因素及减排措施研究进展[J].河海大学学报(自然科学版),2009,37(1):1-6
    50.彭华,纪雄辉,吴家梅,等.生物黑炭还田对晚稻CH4和N2O综合减排影响研究[J].生态环境学报,2011,20(11):1620-1625
    51.邱炜红,刘金山,胡承孝,等.不同施氮水平对菜地土壤N20排放的影响[J].农业环境科学学报,2010a,29(11):2238-2243
    52.邱炜红,刘金山,胡承孝,等.种植蔬菜地与裸地氧化亚氮排放差异比较研究[J].生态环境学报,2010b,19(12):2982-2985
    53.邵学新,杨文英,吴明,等.杭州湾滨海湿地土壤有机碳含量及其分布格局[J].应用生态学报,2011,22(3):658-664
    54.上官行健,王明星,陈德章,等.稻田CH4的传输[J].地球科学进展,1993a,8(5):13-23
    55.上官行健,王明星,陈德章,等.稻田土壤中的CH4的产生[J].地球科学进展,1993b,8(5):1-12
    56.唐光木,葛春辉,徐万里,等.施用生物黑炭对新疆灰漠土肥力与玉米生长的影响[J].农业环境科学学报,2011,30(9):1797-1802
    57.王超,杨智杰,陈光水,等.土壤垂直剖面的C02通量研究[J].亚热带资源与环境学报,2010,(5):85-92
    58.王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报,2003,14(5):797-802
    59.王朝辉,宗志强,李生秀.菜地和一般农田土壤主要养分累积的差异[J].应用生态学报,2002,13(9):191-194
    60.吴乐知,蔡祖聪.基于长期试验资料对中国农田表土有机碳含量变化的估算[J].生态环境,2007,16(6):1768-1774
    61.谢军飞,李玉娥.土壤温度对旱地农田N20排放的影响[J].中国农业气象,2005,26(1):7-10
    62.徐华,刑光熹,蔡祖聪,等.土壤水分状况和质地对稻田N20排放的影响[J].土壤学报,2000,37(4):499-504
    63.徐文彬,刘维屏,刘广深.温度对旱田土壤N20排放的影响研究[J].土壤学报,2002,39(1):1-8
    64.颜晓元,蔡祖聪.稻土中CH4氧化的研究[J].应用生态学报,1997,8(6):589-594
    65.杨云,黄耀,姜纪峰.土壤理化特性对冬季菜地N2O排放的影响[J].农村生态环境,2005,21(2):7-12
    66.于克伟,陈冠雄,杨思河,等.几种旱地农作物在N20释放中的作用及环境因素的影响[J].应用生态学报,1995,6(4):387-391
    67.袁金华,徐仁扣.生物质炭的性质及其对土壤环境功能影响的研究进展[J].生态环境学报,2011,20(4):779-785
    68.叶丽丽,王翠红,周虎,等.添加生物质黑炭对红壤结构稳定性的影响[J].土壤,2012,44(1):62-66
    69.叶欣,李俊,王迎红,等.华北平原典型农田土壤氧化亚氮的排放特征[J].农业环境科学学报,2005,24(6):1186-1191
    70.于亚军,朱波,荆光军.成都平原土壤—蔬菜系统N20排放特征[J].中国环境科学,2008,28(4):313-318
    71.曾江海,王智平,张玉铭,等.小麦-玉米轮作期土壤排放N20通量及总量估算[J].环境科学,1995,16(1):32-35
    72.张阿凤,程琨,潘根兴,等.秸秆生物黑炭农业应用的固碳减排计量方法学探讨[J].农业环境科学学报,2011,30(9):1811-1815
    73.张春林,赵景波,杨晓东.草地不同深度土壤CO2浓度变化特征研究[J].陕西师范大学学报(自然科学版),2008,36(6):90-95
    74.张旭东,梁超,诸葛玉平,等.黑碳在土壤有机碳生物地球化学循环中的作用[J].土壤通报,2003,34:349-355
    75.张智才,刘峻杉,朱锴,等.内蒙古典型草原土壤不同剖面深度CO2通量格局及其驱动因子[J].生态环境,2008,17(5):2024-2030
    76.赵拥华,赵林,武天云,等.冬春季青藏高原北麓河多年冻土活动层中气体CO2浓度分布特征[J].冰川冻土,2006,(28)2:183-190
    77.郑循华,王明星,王跃思,等.华东稻田CH4和N20排放[J].大气科学,1997a,21(2):231-237
    78.郑循华,王明星,王跃思,等.温度对农田N20产生与排放的影响[J].环境科学,1997b,18(5):1-5
    79.祝华明,王美琴,吴樟梅.施肥对红砂田有机质及土壤养分演变与作物产量的影响研究[J]土壤通报,1995(2):76-77
    80.中国产业经济信息网Chinese vegetable yield accounted for 49% of world in 2009. http://www.cinic.org.cn/site951/tjsj/2010-04-12/410619.shtml(2010年4月)
    81.中国农业统计年鉴.中国统计局,1990-2009.中国统计局出版,北京,2009
    82. Ammann C, Leifeld J, Calanca P, et al. Conversion of cropland to grassland:increasing or decreasing soil organic carbon? [J]. Geophysical Research Abstracts,2010,12:EGU 11043
    83. Anderson I C, Levine J S. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respires [J]. Applied and Environmental Microbiology,1986,51:938-945
    84. Arah J R M, Smith K A, Crichton I J, et al. Nitrous oxide production and denitrification in Scottish arable soils [J]. Journal of Soil Science,1991,42:351-367
    85. Ball B C, Crichton I, Horgan G W. Dynamics of upward and downward N2O and CO2 fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence [J]. Soil & Tillage Research,2008,101:20-30
    86. Benckiser G, Eilts R, Linn A, et al. N2O emissions from different cropping systems and from aerated, nitrifying and denitrifying tanks of a municipal water treatment plant [J]. Biology and Fertility of Soils,1996,23:257-265
    87. Bouwman A F. Direct emission of nitrous oxide from agricultural soils [J]. Nutrient Cycling in Agroecosystems,1996,46:53-70
    88. Bouwman A F, Boumans L J M, Batjes N H. Modeling global annual N2O and NO emissions from fertilized fields [J]. Global biogeochemical cycles,2002,16, DOI 10.1029/2001GB001812
    89. Breitenbeck G A, Bremner J M. Effects of rate and depth of fertilizer application on emission of nitrous oxide from soil fertilized with anhydrous ammonia [J]. Biology and Fertility of Soils,1986, 2:201-204
    90. Burton D L, Beauchamp E G. Profile nitrous oxide and carbon dioxide concentrations in a soil subject to freezing [J]. Soil Science Society of America Journal,1994,58:115-122
    91. Cao B, He F Y, Xu Q M, et al. Denitrification losses and N2O Emissions from nitrogen fertilizer applied to a vegetable field [J]. Pedosphere,2006,16:390-397
    92. Cai G, White R E, Chen D, et al. Gaseous nitrogen losses from urea applied to maize on a calcareous fluvo-aquic soil in the North China Plain [J]. Australian Journal of Soil Research,2002, 40:737-748
    93. Cai Z C, Xing G X, Yan X Y, et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management [J]. Plant and Soil,1997,196:7-14
    94. Chan K Y, Van Zwieten L, Meszaros I, et al. Agronomic values of greenwaste biochar as a soil amendment [J]. Australian Journal of Soil Research,2007,45:629-634
    95. Chen Q, Zhang X, Zhang H, et al. Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region [J]. Nutrient Cycling in Agroecosystems,2004,69 (1):51-58
    96. Cheng W, Nakajima Y, Sudo S, et al. N2O and NO emissions from a field of Chinese cabbage as influenced by band application of urea or controlled-release urea fertilizers [J]. Nutrient Cycling in Agroecosystems,2002,63:231-238
    97. Ciais P, Wattenbach M, Vuichard N, et al. The European carbon balance. Part 2:croplands. Global Change Biology,2010,16:1409-1428
    98. Clough T, Bertram J, Ray J, et al. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil [J]. Soil Science Society of America Journal,2010,74: 852-860
    99. Clough T, Sherlock R, Rolston D. A review of the movement and fate of N2O in the subsoil [J]. Nutrient Cycling in Agroecosystems,2005,72,3-11
    100. Cole C V, Duxbury J, Freney J, et al. Global estimates of potential mitigation of greenhouse gas emissions by agriculture [J]. Nutrient Cycling in Agroecosystems,1997,49:221-228
    101. Conrad R, Rothfuss F. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium [J]. Biology and Fertility of Soils,1991,12,28-32
    102. Conrad R. Quantification of methanogenic pathways using stable carbon isotopic signatures:a review and a proposal [J]. Organic geochemistry,2005,36,739-752
    103. Corre M D, van Kessel C, Pennock D J. Landscape and seasonal patterns of nitrous oxide emissions in a semiarid region [J]. Soil Science Society of America Journal,1996,60:1806-181
    104. Davidson E A, Trumbore S E. Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus,1995,47B:550-565
    105. DeLuca T H, MacKenzie M D, Gundale M J, et al. Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests [J]. Soil Science Society of America Journal,2006,70: 448-453
    106. Denier van der Gon H, Bleeker A, Indirect N2O emission due to atmospheric N deposition for the Netherlands [J]. Atmospheric Environment,2005,39,5827-5838
    107. Ding W X, Cai Y, Cai, Z C, et al. Nitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China Plain [J]. Science of the Total Environment,2007a, 373:501-511
    108. Ding W X, Meng L, Yin Y F, et al. CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer [J]. Soil Biology and Biochemistry, 2007b,39:669-679
    109. Ding W X, Cai Y, Cai Z C, et al. Nitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China Plain [J]. Science of The Total Environment,2007, 373:501-511
    110. Don A, Scholten T, Schulze E D. Conversion of cropland into grassland:Implications for soil organic-carbon stocks in two soils with different texture [J]. Journal of Plant Nutrition and Soil Science,2009,172:53-62
    111. Dowdell R J, Smith K A, Crees R, et al. Field studies of ethylene in the soil atmosphere equipment and preliminary results [J]. Soil Biology & Biochemistry,1972,4:325-331
    112. Duiker S W, Lal R. Carbon budget study using CO2 flux measurements from a no till system in central Ohio [J]. Soil & Tillage Research,2000,54:21-30
    113. Elmi A A, Madramootoo C, Hamel C, et al. Denitrification and nitrous oxide to nitrous oxide plus dinitrogen ratios in the soil profile under three tillage systems [J]. Biology and Fertility of Soils, 2003,38:340-348
    114. Ermolieva T, Winiwarter W, Fischer G, et al. Integrated nitrogen management in China [R].2009, Interim Report, International Institute for Applied Systems Analysis. http://www.iiasa.ac.at/
    115. Eswarran H, Van Den B E V, et al. Organic carbon in soil of the world [J]. Soil Science Society of America Journal,1993 (57):192-194
    116. Fernandez I J, Son Y, Kraske C R. Soil carbon dioxide characteristics under different forest types and after harvest[J]. Soil Science Society of America Journal,1993,57:1115-1121
    117. Fierer N, Chadwick O A, Trumbore S E. Production of CO2 in soil profiles of a California annual grassland [J]. Ecosystems,2005,8,412-429
    118. Food and Agricultural Organization (FAO),2002:World Agricultural Towards 2015/2030. An FAO Perspective. FAO, Rome.
    119. Gallardo A, Schlesinger W H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm temperate forest [J]. Soil Biology & Biochemistry,1994,26 (10):1409-1415
    120. Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions [J]. Science,2008,320,889-892
    121. Gaudinski J B, Trumbore S E, Davidson E A, et al. Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes [J]. Biogeochemistry,2000,51:33-69
    122. Gaunt J L, Lehmann J. Energy balance and missions associated With biochar sequestration and pyrolysis bioenergy production [J]. Environmental Science & Technology,2008,42 (11):4152-4158
    123. Gaskin J W, Steiner C, Harris K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J]. Transactions of the ASABE,2008,51:2061-2069
    124. Goldberg S D, Gebauer G Drought turns a Central European Norway spruce forest soil from an N2O source to a transient N2O sink [J]. Global Change Biology,2009,15,850-860
    125. Goldberg S D, Knorr K H, Gebauer G. N2O concentration and isotope signature along profiles provide deeper insight into the fate of N2O in soils [J]. Isotopes in Environmental Health Studies, 2008,44,377-391
    126. Goodroad L L, Keeney D R. Nitrous oxide emissions from soil during thawing [J]. Canadian Journal of Soil Sciencem,1984,64:187-194
    127. Gregorich E G, Rochette P, VandenBygaart A J, et al. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada [J]. Soil and Tillage Research,2005,83 (1):53-72
    128. Gregory P J. Roots, rhizosphere and soil:the route to a better understanding of soil science? European Journal of Soil Science,2006,57,2-12
    129. Groenigen J W, Georgius P J, Kessel C, et al. Subsoil 15 N N2O concentrations in a sandy soil profile after application of 15N-fertilizer [J]. Nutrient Cycling in Agroecosystems,2005,72 (1): 13-25
    130. Hanson R S, Hanson T E, Methanotrophic bacteria [J]. Microbiology and Molecular Biology Reviews.1996,60,439
    131. Hashimoto S, Tanaka Ni, Kume T, et al. Seasonality of vertically partitioned soil CO2 production in temperate and tropical forest [J]. Journal of Forest Research,2007,12:209-221
    132. Hayatsu R, Winans R E, Scott R G, et al. Investigation of aqueous sodium dichromate oxidationfor coal structure studies [J] Fuel,1981,60:7-82
    133. He F F, Jiang R F, Chen Q, et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China [J]. Environmental Pollution,2009,157:1666-1672
    134. Heffer P. Assessment of fertilizer use by crop at the global level:2006/07-2007/08. International Fertilizer Industry Association,2009, pp:8, Paris, France
    135. Heincke M, Kaupenjohann M. Effects of soil solution on the dynamics of N2O emissions:a review [J]. Nutrient Cycling in Agroecosystems,1999,55:133-157
    136. Hellebrand H J, Scholz V, Kern J. Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils [J]. Atmospheric Environment,2008,42 (36):8403-8411
    137. Hillier J, Hawes C, Squire G, et al. The carbon footprints of food crop production [J]. International Journal of Agricultural Sustainability,2009,7:107-118
    138. Hopkins D W, Waite I S, Mcnicol J W, et al. Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades [J]. Global Change Biology,2009,15:1739-1754
    139. Huang Y, Sass R L, Fisher F M. Model estimates of methane emission from irrigated rice cultivation of China [J]. Global Change Biology,1998,4:809-821
    140. Huang Y, Sun W J. Changes in topsoil organic carbon of croplands in mainland China over the last two decades [J]. Chinese Science Bulletin,2006,51:1785-1803
    141. Huang Y, Sun W J, Zhang W, et al. Changes in soil organic carbon of terrestrial ecosystems in China:A mini-review [J]. Science China Life Sciences,2010,53:766-775.
    142. Huang Y, Zou J W, Zheng X H, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios [J]. Soil Biology & Biochemistry,2004,36:973-981
    143. Hosen Y, Tsuruta H, Minami K Effects of the depth of NO and N2O productions in soil on their emission rates to the atmosphere:analysis by a simulation model [J]. Nutrient Cycling in Agroecosystems,2000,57 (1):83-98
    144. Inubushi K, Umebayashi M, Wada H. Methane emission from paddy fields [C], Paper presented at 14th International Congress of Soil Science.1990, Volume Ⅱ, pp.249-254
    145. IPCC 2007:Changes in atmospheric constituents and in radiative forcing. In:Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M et al.), pp:15, Cambridge University Press, Cambridge, UK and New York, NY, USA.
    146. Jacinthe P A, Lal R, Kimble J M. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment [J]. Soil & Tillage Research,2002, 67,147-157
    147. Jassal R, Black A, Novak M, et al. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes [J]. Agricultural and Forest Meteorology,130 (2005) 176-192
    148. Joseph S D, Camps-Arbestain M, Lin Y, et al. An investigation into the reactions of biochar in soil [J]. Australian Journal of Soil Research,2010,48:501-515
    149. Jong E, Schappert H. Calculation of soil respiration and activity from CO2 profiles in the soil [J]. Soil Science,1972,113:328
    150. Ju X T, Liu X J, Zhang F S, et al. Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China [J]. Ambio:A Journal of the Human Environment,2004,33 (6):300-305
    151. Jury W A, Gardner W R, Gardner W H.1991. Soil physics. John Wiley & Sons Inc, New York
    152. Kammann C, Hepp S, Lenhart K, et al. Stimulation of methane consumption by endogenous CH4 production in aerobic grassland soil [J]. Soil Biology and Biochemistry,2009,41 (3):622-629
    153. Knoblauch C, Maarifat A, Pfeiffer E, et al. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils [J]. Soil Biology & Biochemistry,2011,43: 1768-1778
    154. Komada, Takeuchi. Nitrous oxide emission from rotting process of vegetable leaves[J]. Japanese Journal of Soil Science and Plant Nutrition,2003,74:445-451
    155. Kroeze C, Mosier A, Bouwman L. Closing the global N2O budget:A retrospective analysis 1500-1994[J]. Global Biogeochem Cycles,1999,13,1-8
    156. Kusa K, Sawamoto T, Hu R G, et al. Comparison of N2O and CO2 concentrations and fluxes in the soil profile between a Gray Lowland soil and an Andosol[J].Soil Science & Plant Nutrition,2010, 56(1):186-199
    157. Kuzyakon Y, Subbootina I, Chen H, et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling [J]. Soil Biology & Biochemistry,2009,41:210-219
    158. Laird D, Fleming P, Wang B Q, et al. Biochar impact on nutrient leaching from a Midwestern agricultural soil [J]. Geoderma,2010,158:436-442
    159. Lal R. Carbon emission from farm operations [J]. Environment International,2004,30:981-990
    160. Lal R (eds). Soil processes and greenhouse effect. Methods for Assessment of Soil Degradation. Boca Raton, Florida:CRC Press,1998:119-212
    161. Lal R, Follett R F, Stewart B A, et al. Soil carbon sequestration to mitigate climate change and advance food security [J]. Soil Science,2007,172:943-956
    162. Lauren J G, Pettygrove G S, Duxbury J M. Methane emissions associated with green manure amendment to flooded rice in California [J]. Biochemistry,1994,24:53-65
    163. Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota-A review [J]. Soil Biology & Biochemistry,2011,43:1812-1836
    164. Lesschen J P, Velthof G L, Vries W D, et al. Differentiation of nitrous oxide emission factors for agricultural soils [J]. Environmental Pollution, doi:10.1016/j.envpol.2011.04.001
    165. Li C S. Modeling trace gas emissions from agricultural ecosystems [J]. Nutrient Cycling in Agroecosystems,2000,58 (1):259-276
    166. Li C S, Mosier A, Wassmann R, et al. Modeling greenhouse gas emissions from rice-based production systems:Sensitivity and upscaling [J]. Global biogeochemical cycles,2004,18:GB1043
    167. Li C S, Salas W, DeAngelo B, et al. Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years [J]. Journal of Environmental Quality-Abstract,2006,35:1554-1565
    168. Li D J, Wang X M. Nitric oxide emission from a typical vegetable field in the Pearl River Delta, China [J]. Atmospheric Environment,2007,41:9498-9505
    169. Li X, Inubushi K, Sakamoto K, et al. Nitrous oxide concentrations in an Andisol profile and emissions to the atmosphere as influenced by the application of nitrogen fertilizers and manure [J]. Biology and Fertility of Soils,2002,35 (2):108-113
    170. Liang B, Lehmann J, Sohi S P, et al. Black carbon affects the cycling of non-black carbon in soil [J]. Organic Geochemistry,2010,41:206-213
    171. Liang B,Lehmann J, Solomon D, et al. Black carbon increases cation exchanges capacity in soils [J]. Soil Science Society of America Journal,2006,70:1719-1730
    172. Liao Q L, Zhang X H, Li Z P, et al. Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province [J]. Global Change Biology,2009,15,861-875
    173. Liu Q H, Shi X Z, Weindorf D C, et al. Soil organic carbon storage of paddy soils in China using the 1:1,000,000 soil database and their implications for C sequestration [J]. Global biogeochemical cycles,2006,20:GB3024
    174. Lin S, Iqbal J, Hu RG, et al. N2O emissions from different land uses in mid-subtropical China [J]. Agriculture, Ecosystems and Environment,2010,136:40-48
    175. Liu C Y, Zheng X H, Zhou Z X, et al. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China [J]. Plant Soil,2010,332:123-134
    176. Liu S W, Qin Y M, Zou J W, et al. Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice-winter wheat rotation system in southeast China [J]. Science of the Total Environment,2010,408:906-913
    177. Liu Y X, Yang M, Wu Y M, et al. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar [J]. Journal of Soils and Sediments,2011,11:930-939
    178. Lu F, Wang X K, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland [J]. Global Change Biology,2009,15:281-305
    179. Lu Y Y, Huang Y, Zou J W, et al. An inventory of N2O emissions from agriculture in China using precipitation-rectified emission factor and background emission [J]. Chemosphere,2006,65: 1915-192
    180. Ludwig B, Geisseler D, Michel K, et al. Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review [J]. Agronomy for Sustainable Development,2011,31: 361-372
    181. Luyssaert S, Inglima I, Jung M, et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database [J]. Global Change Biology,2007,13:2509-2537
    182. Massman, W. A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP [J]. Atmospheric Environment,1998,32:1111-1127
    183. McCarty G W, Ritchie J C. Impact of soil movement on carbon sequestration in agricultural ecosystems [J]. Environmental Pollution,2002,116:423-430
    184. Meng L, Ding W X, Cai Z C. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil [J]. Soil Biology & Biochemistry,2005,37:2037-2045
    185. Mitra S, Wassmann R, Jain M C, et al. Properties of rice soils affecting methane production potentials:2. Differences in topsoil and subsoil [J]. Nutrient Cycling in Agroecosystems,2002,64 (1):183-191
    186. Mogge B, Kaiser, E A, Munch J C. Nitrous oxide emissions and denitrification N-losses from agricultural soils in the Bornhoved Lake region:influence of organic fertilizers and land-use [J]. Soil Biology and Biochemistry,1999,31:1245-1252
    187. Mosier A R, Duxbury J M, Freney J R, et al. Mitigating agricultural emissions of methane [J]. Climatic Change,1998a,40:39-80
    188. Mosier A R, Halvorson A D, Peterson G A, et al. Measurement of net global warming potential in three agroecosystems [J]. Nutrient Cycling in Agroecosystems,2005,72:67-76
    189. Mosier A R, Halvorson A D, Reule C A, et al. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado [J]. Journal of Environmental Quality,2006,35:1584-1598
    190. Mosier A R, Kroeze C. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands [J]. Chemosphere-Global Change Science,2000,2:465-473
    191. Mosier A R, Kroeze C, Nevison C, et al. Closing the global N2O budget:nitrous oxide emissions through the agricultural nitrogen cycle [J]. Nutrient Cycling in Agroecosystems,1998b,52: 225-248
    192. Nie J, Zhou J M, Wang H Y, et al. Effect of Long-Term Rice Straw Return on Soil Glomalin, Carbon and Nitrogen [J]. Pedosphere,2007,17:295-302
    193. Novak J M, Busscher W J, Laird D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil [J]. Soil Science,2009,174:105-112
    194. Novak J M, Busscher W J, Watts D W, et al. Short-term CO2 mineralization after additions of biochar and switchgrassto a Typic Kandiudult [J]. Geoderma,2010,154:281-288
    195. Ogle SM, Breidt F J, Paust ian K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions[J].Biogeochemistry,2005, 72(1):87-121
    196. Pan G X, LI L Q, Wu L S, et al. Storage and sequestration potential of topsoil organic carbon in China' paddy soils [J]. Global Change Biology,2003,10:79-92
    197. Pan G X, Li L Q, Zhang Q, et al. Organ ic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration [J]. Journal of Environmental Sciences,2005,17 (1):1-7
    198. Pan G X, Smith P, Pan W N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China [J]. Agriculture, Ecosystems and Environment.2009,129: 344-348
    199. Pan G X, Xu X, Smith P, et al. An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring [J]. Agriculture, Ecosystems & Environment,2010,136(1-2): 133-138
    200. Pang X B, Mu Y J, Lee X Q, et al. Nitric oxides and nitrous oxide fluxes from typical vegetables cropland in China:Effects of canopy, soil properties and field management [J]. Atmospheric Environment,2009,43,2571-2578
    201.Paustian K, Cole C V, Dieter S, et al. CO2 mitigation by agriculture:an overview [J]. Climatic Change,1998,40,135-162
    202. Paustian K, Collins H P, Paul E A. Management controls on soil carbon. In:Paul E A, Paustian K, Elliot E T, Cole C V (Eds.). Soil Organic Matter in Temperate Agroecosystems:Long-term Experiments in North America. CRC Press, Boca Raton, FL,1997, pp:15-49
    203. Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China [J]. Nature, 2009,458:1009-1013
    204. Qin Y M, Liu S W, Guo Y Q, et al. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China [J]. Biology and Fertility of Soils,2010,46: 825-834
    205. Qiu J J, Li C S, Wang L G, et al. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China [J]. Global biogeochemical cycles,2009,23,1-16
    206. Raich J W, Schlesinge W H. The global carbon dioxide flux in soil respiration and its relation to vegetation and climates. Tellus,1992,44B:81-99
    207. Regina K, Silvola J, Martikainen P J. Mechanisms of N2O and NO production in the soil profile of a drained and forested peatland, as studied with acetylene, nitrapyrin and dimethyl ether [J]. Biology and Fertility of Soils,1998,27 (2):205-210
    208. Reicosky D C. Tillage-induced CO2 emission from soil [J]. Nutrient Cycling in Agroecosystems, 1997,49:273-285
    209. Reicosky D C, Archer D W. Moldboard plow tillage depth and short-term carbon dioxide release [J]. Soil & Tillage Research,2007,94:109-121
    210. Renner R. Rethinking biochar [J]. Environmental Science & Technology,2007,41:5932-5933
    211. Risk D, Kellman L, Beltrami H. Carbon dioxide in soil profiles:production and temperature dependence [J]. Geophysical Research Letters,2002,29 (6):1087
    212. Robertson G P, Grace P R. Greenhouse gas fluxes in tropical and temperate agriculture:the need for a full-cost accounting of global warming potentials [J]. Environment, Development and Sustainability,2004,6,51-63
    213. Robertson G P, Paul E A, Harwood R R. Greenhouse gases in intensive agriculture:contributions of individual gases to the radiative forcing of the atmosphere [J]. Science,2000,289:1922-1925
    214. Rock L, Ellert B H, Mayer B, et al. Isotopic composition of tropospheric and soil N2O from successive depths of agricultural plots with contrasting crops and nitrogen amendments [J]. Journal of Geophysical Research,2007,112:D18303
    215. Rodriguez-Murillo J C, Almendros G., Knicker H. Wetland soil organic matter composition in a Mediterranean semiarid wetland (Las Tablas de Daimiel, Central Spain):Insight into different carbon sequestration pathways [J]. Organic Geochemistry,2011,42:762-773
    216. Rondon M, Lehmann J, Ramirez J, et al. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions [J]. Biology and Fertility of Soils,2007,43:699-708
    217. Rondon M A, Molina D, Hurtado M, et al. Enhancing the productivity of crops and grasses while reducing greenhouse gas emissions through bio-char amendments to unfertile tropical soils. In: Proceedings of the 18th World Congress of Soil Science,2006, July 9-15, Philadelphia, PA, USA, pp 138-168
    218. Rolston D E, Sharpley A N, Toy D W, et al. Field measurement of denitrification:Ⅲ. Rates during irrigation cycles [J]. Soil Science Society of America Journal,1982,46:289-296
    219. Russow R, Knappe S, Neue H U. The N2O content of soil air at different depths as well as its related content in and transport by seepage in lysimeter soils. In:Van Ham J, Baede A P M, Guicherit R, Williams-Jacobse J G FM (eds), Non-CO2 Greenhouse Gases:Scientific Understanding, Control Options and Policy Aspects. Millpress, Rotterdam, the Netherlands,2002, pp:151-152
    220. Rustad L E, Huntington T G, Boone R D. Controls on soil respiration:Implications for climate change [J]. Biogeochemistry,2000,48:1-6
    221. Schlesinger W H. An overview of the carbon cycle//Lal R, Kimble JM, Levine E, eds. Soil and Global Change. BocaRaton, Florida:CRC Press,1995:9-25
    222. Scheer C, Grace P R, Rowlings D W, et al. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia [J]. Plant and Soil,2011,345 (1-2):47-58
    223. Schmidt M W I, Skjemstad J O, JAGER C. Carbon isotope geochemistry and nanomorphology of soil black carbon:Black chernozemic soils in central Europe originate from ancient biomass burning [J]. Global Biogeochemical Cycles,2002,16 (4):1123
    224. Schulp C J E, Nabuurs G J, Verburg P H, et al. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories [J]. Forest Ecology and Management, 2008,256:482-490
    225. Schulze E D, Wirth C, Heimana M. Climate Change:Managing Forests After Kyoto [J]. Science, 2000,289:2058-2059
    226. Segers R. Methane production and methane consumption:a review of processes underlying wetland methane fluxes [J]. Biogeochemistry,1998,41,23-51
    227. Shang Q Y, Yang X X, Gao C M, et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems:a 3-year field measurement in long-term fertilizer experiments [J]. Global Change Biology,2010,17,2196-2210
    228. She D L,Wang K R, Xie X L, et al. Impact of incorporation of rice straw into the soil on soil fertility and yield [J]. Chinese Journal of Eco-Agriculture,2008,1:100-104
    229. Shearer R, Millington R, Quirk J. Oxygen diffusion through sands in relation to capillary hysteresis: 2. Quasi-steady-state diffusion of oxygen through partly saturated sands [J]. Soil Science,1966,101: 432
    230. Sevilla M, Macia-Agullo J A, Fuertes A B. Hydrothermal carbonization of biomass as a route for the sequestration of CO2:Chemical and structural properties of the carbonized products [J]. Biomass and Bioenergy,2011,35:3152-3159
    231. Smith P, Lanigan G, Kutsch W L, et al. Measurements necessary for assessing the net ecosystem carbon budget of croplands [J]. Agriculture, Ecosystems and Environment,2010,139:302-315
    232. Smith P, Martino D, Cai Z C, et al. Greenhouse gas mitigation in agriculture [J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2008,363:789-813
    233. Sohi S, Lopez-Capel E, Krull E, et al. Biochar, climate change and soil:a review to guide future research [R]. CSIRO Land and Water Science Report,2009,5 (09):17-31,64
    234. Song G H, Li L Q, Pan G X. Topsoil organic carbon storage of China and its loss by cultivation[J]. Biogeochemistry,2005,74:47-62 Song G H, Li L Q, Pan G X. Topsoil organic carbon storage of China and its loss by cultivation [J]. Biogeochemistry,2005,74:47-62
    235. Spokas K A, Koskinen WC, Baker JM, et al. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil [J]. Chemosphere,2009,77:574-581
    236. Stefanson R C. Denitrification from nitrogen fertilizer placed at various depths in the soil-plant system [J]. Soil Science,1976,121:353-363
    237. Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity [J]. Soil Biology & Biochemistry,2009,41:1301-1310
    238. Tate III R L. Effect of flooding on microbial activities in organic soils:carbon metabolism [J]. Soil Science,1979,128:257-239
    239. Tian H Q, Xu X F, Lu C Q et al. Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming [J]. Journal of Geophysical Research,2011,116 (G2):G02011
    240. Van Groenigen J W, Zwart K B, Van Kessel C, et al. Vertical Natural Abundance Gradients of 15 N and O in Soil Atmospheric Nitrous Oxide-Temporal Dynamics in a Sandy Soil [J]. Rapid Commun. Mass Spectrom,2005,19:1289-1295
    241. Velthof G L, Brader A B, Oenema O. Seasonal variations in nitrous oxide losses from managed grasslands in the Netherlands [J]. Plant Soil,1996a,181:263-274
    242. Velthof G L, Oenema O, Postma R, et al. Effects of type and amount of applied nitrogen fertilizer on nitrous oxide fluxes from intensively managed grassland [J]. Nutrient Cycling in Agroecosystems,1996b,46:257-267
    243. Wagner-Riddle C, Thurtell G W, Kidd G K, et al. Estimates of nitrous oxide emissions from agricultural fields over 28 months [J]. Canadian Journal of Soil Science,1997,77:135-144
    244. Wang J Y, Jia J X, Xiong Z Q, et al. Water regime-nitrogen fertilizer-straw incorporation interaction: field study on nitrous oxide emissions from a rice agroecosystem in Nanjing, China [J]. Agriculture, Ecosystems and Environment,2011,141:437-446
    245. Wang J Y, Xiong Z Q, Yan X Y. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China [J]. Atmospheric Environment,2011a,45:6923-6929
    246. Wang J Y, Zhang M, Xiong Z Q, et al. Effects of biochar addition on N2O and CO2 emissions from two paddy soils [J]. Biology and Fertility of Soils,2011b,47:887-896
    247. Wardle d A, Nilsson M, Zackrisson O. Fire-derived charcoal causes loss of forest humus [J]. Science,2008,320:629
    248. Well R, Myrold D D. A proposed method for measuring subsoil denitrification in situ [J]. Soil Science Society of America Journal,2002,66,507-518
    249. West T O, Post W M. Soil organic carbon sequestration by tillage and crop rotation:A global data analysis [J]. Soil Science Society of America Journal,2002,66:1930-1946
    250. Whiting G J, Chanton J P. Primary production control of methane emission from wetlands [J]. Nature,1993:364,794-795
    251. Woolf D, Amonette E J, Street-Perrott F A, et al. Sustainable biochar to mitigate global climate change [J]. Nature communications,2010, DOI:10.1038/
    252. Wu H B, Guo Z T, Peng C H. Land use induced changes of organic carbon storage in soils of China [J]. Global Change Biology,2003,9 (3):305-315
    253. Xie Z B, Liu G, Bei Q C, et al. CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern [J]. Science China Life Sciences,2010,53,1351-1357
    254. Xie Z B, Zhu J P, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s [J]. Global Chang Biology,2007,13:1989-2007
    255. Xing G X, Shi S L, Shen G Y, et al. Nitrous oxide emissions from paddy soil in three rice-based cropping systems in China [J]. Nutrient Cycling in Agroecosystems,2002,64:135-143
    256. Xiong Z Q, Khalil M A K, Xing G X, et al. Isotopic signatures and concentration profiles of nitrous oxide in a rice-based ecosystem during the drained crop-growing season [J]. Journal of Geophysical Research,2009,114:G02012
    257. Xiong Z Q, Xie Y X, Xing G X, et al. Measurements of nitrous oxide emissions from vegetable production in China [J]. Atmospheric Environment,2006,40:2225-2234
    258. Xiong Z Q, Xing G X, Tsuruta H, et al. Field study on nitrous oxide emissions from upland cropping systems in China [J]. Soil Science and Plant Nutrition,2002a,48:539-546
    259. Xiong Z Q, Xing G X, Tsuruta H, et al. Measurement of nitrous oxide emissions from two rice-based cropping systems in China [J]. Nutrient Cycling in Agroecosystems,2002b,64:125-133
    260. Xu M Y, Wang K, Xie F. Effects of grassland management on soil organic carbon density in agro-pastoral zone of Northern China [J]. African Journal of Biotechnology,2011,10:4844-4850
    261. Yagi K, Minami K. Effect of organic matter application on methane emission from some Japanese paddy fields [J]. Soil Science and Plant Nutrition,1990,36:201-217
    262. Yan X, Akimoto H, Ohara T. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia [J]. Global Change Biology,2003,9,1-17
    263. Yan H M, Cao M K, Liu J Y, et al. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China [J]. Agriculture, Ecosystems and Environment,2007,121:325-335
    264. Yanai Y, Toyota K, Okazaki M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments [J]. Soil Science and Plant Nutrition,2007,53:181-188
    265. Yan X Y, Yagi K, Akiyama H, et al. Statistical analysis of the major variables controlling methane emission from rice fields [J]. Global Change Biology,2005,11:1131-1141
    266. Yang X M, Drury CF, Reynolds W D, et al. Interactive effects of composts and liquid pig manure with added nitrate on soil carbon dioxide and nitrous oxide emissions from soil under aerobic and anaerobic conditions [J]. Canadian Journal of Soil Science,2003,83:343-352
    267. Yang Y H, Fang J Y, Tang YH, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands [J]. Global Change Biology,2008,14:1592-1599
    268. Yoh M, Toda H, Kanda K, et al. Diffusion analysis of N2O cycling in a fertilized soil [J]. Nutrient Cycling in Agroecosystems,1997,49,29-33
    269. Zhang A F, Cui L Q, Pan G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China [J]. Agriculture, Ecosystems and Environment,2010,139:469-475
    270. Zhang L M, Yu DS, Shi XZ, et al. Simulation of global warming potential (GWP) from rice fields in the Tai-Lake region, China by coupling 1:50,000 soil database with DNDC model [J]. Atmospheric Environment,2009,43:2737-2746
    271. Zheng X H, Han H M, HuangY, et al. Re-quantifying the emission factors based on field measuremen ts and estimating the direct N2O emission from Chinese croplands [J]. Global biogeochemical cycles,2004,18:GB2018
    272. Zheng X H, Wang M X, Wang Y S, et al. Impacts of soil moisture on nitrous oxide emission from croplands:a case study on the rice-based agro-ecosystem in Southeast China [J]. Chemosphere-Global Change Science,2000,2:207-224
    273. Zheng X, Xie B, Liu C, et al. Quantifying net ecosystem carbon dioxide exchange of a short-plant cropland with intermittent chamber measurements [J]. Global biogeochemical cycles,2008,22: GB3031,doi:10.1029/2007GB003104
    274. Zheng X H, Zhou Z X, Wang Y S, et al. Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields [J]. Global Change Biology,2006,12:1717-1732
    275. Zhu R B, Liu YS, Ma J. Nitrous oxide flux to the atmosphere from two coastal tundra wetlands in eastern Antarctica [J]. Atmospheric Environment,2008,42 (10):2437-2447
    276. Zhu Z L. Fate and management of fertilizer nitrogen in agro-ecosystems. In:Zhu Z L, Wen Q X, Freney J R.(Eds.), Nitrogen in Soils of China [M]. Kluwer Academic Publishers, Dordrecht,1997, pp:239-279
    277. Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies [J]. Nutrient Cycling in Agroecosystems,2002,63: 117-127
    278. Zhu Z L, Xiong Z Q, Xing G X. Impacts of population growth and economic development on the nitrogen cycle in Asia [J]. Science in China Series C:Life Sciences,2005,48,729-737
    279. Zou J W, Huang Y, Jiang J Y. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:Effects of water regime, crop residue, and fertilizer application [J]. Global biogeochemical cycles,2005,9:1-9
    280. Zou J W, Huang Y, Zheng X H, et al. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China:Dependence on water regime [J]. Atmospheric Environment, 2007,41:8030-804
    281. Zwieten V L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility [J]. Plant Soil,2010,327:235-246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700