用户名: 密码: 验证码:
循环流化床提升管气固两相流动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床提升管气固两相流体系具有复杂的动力学行为。提升管中宏观尺度上的气固两相分布特征及微观尺度上的颗粒并聚等行为一直是提升管气固两相流动力学研究的重要课题,对揭示气固两相复杂流动现象的内在机制、建立可靠的动力学预测模型以及提升管反应器的放大设计具有重要意义。
     本文以较宽操作条件范围内河沙和FCC两种颗粒分别在两套内径同为100mm,均采用喷管型气体分布器,高度分别为10.5m和15.1m的循环流化床实验装置上的系统实验数据为基础,详细对比分析了提升管内的轴向压力梯度分布和多个高度截面上的局部颗粒浓度分布及速度分布,深入研究了颗粒物性和提升管几何结构对循环流化床提升管内气固两相流动力学的影响规律,并进一步探讨了提升管内局部流动结构与整体流动结构的内在关系,从不同角度深层次地揭示了气固两相的流动结构。
     提升管高度对气固两相流轴向压力梯度分布的影响非常显著——在相同操作条件下,当提升管高度增加时,整个床层的颗粒浓度都随之降低,从而使得固体颗粒在提升管中的轴向分布更加均匀。鉴于以往多数基于单一提升管高度的实验结论或经验关联式都没能考虑提升管高度的影响,因此,建立气固两相流动力学模型和放大设计提升管反应器时尤其应当考虑提升管高度的影响。
     当采用粗重颗粒(河沙)操作时,在一定操作条件下,颗粒在分布器效应消失后会出现不同程度的减速。当操作气速较低(U_g<5.5m/s)时,由于颗粒的减速,河沙在提升管内轴、径向分布的不均匀程度比FCC要严重得多;但在操作气速较高(U_g>8.0m/s)时,粗重颗粒在径向的分布则比FCC颗粒更为均匀。
     基于对提升管内气固两相流各参数的系统测试和分析,发现在具有相同修正固气比G_s~(1.2)/G_g~(2.0)的操作条件下,提升管内的气固两相流具有非常相似的宏观和微观动力学特征,这对新建模型参数,更确切地概括和表征提升管内的气固
    
    两相流动行为具有重要参考价值。
     参照单相流体在圆管中的流动,在定量分析提升管内气固悬浮物与管壁间
    摩擦的基础上,并考虑气固物性、提升管几何参数和操作参数的影响,建立了
    充分发展段气固两相与管壁间摩擦压力降的预测模型。实验结果表明,模型预
    测值与实验值吻合良好,这对于通过压差法获取实际浓度、提升管反应器的模
    拟和设计都具有重要的实用价值。
     考虑气固悬浮物与管壁间摩擦、提升管高度及颗粒物性影响,提出了充分
    发展段颗粒浓度预测关联式。该式定量反映了操作参数、提升管高径比、颗粒
    物性、气固悬浮物与管壁间摩擦对充分发展段颗粒浓度的影响关系,解释了部
    分文献关联式在预测稀相段颗粒浓度时相互差异较大的原因,为循环流化床反
    应器的应用设计提供了新的实验关联式。
     局部颗粒浓度、颗粒速度和通量在无因次半径刀天二0.8附近与相应的截面
    平均值达到相等,由此提出以矛艰=0.8为核心区无因次半径,其特点是与颗粒
    种类、操作气速、颗粒循环速率和床层轴向位置基本无关。这为进一步建立和
    完善气固两相环核流动结构模型提供了新的思路和实验例证。
     大量数据的分析表明,边壁区内的气固流动对操作条件、颗粒物性变化的
    敏感程度显著大于核心区,边壁区内的气固两相流行为是提升管内总体流动随
    颗粒物性、操作条件和轴向位置产生变化的控制因素。因此进一步研究边壁区
    的流动行为对理解和描述整个提升管中的气固两相流动结构有重要意义。
     基于局部瞬时颗粒浓度的时间序列,深入研究了絮状物特性在提升管轴、
    径向的分布规律以及操作参数对絮状物特性及其分布的影响,揭示出提升管内
    气固两相流局部流动结构与整体流动结构之间存在的内在关系:颗粒浓度和速
    度在提升管轴、径向的整体不均匀分布是絮状物大小、形状、运动速度、内部
    颗粒浓度、存在时间及出现频率等瞬态特性参数在提升管轴、径向上不均匀分
    布的时均反映,气固两相流沿轴向逐渐加速直至充分发展的过程实际上是絮状
    物形态沿轴向逐渐发展变化过程的表现,气固两相流在径向的环核流动结构是
    絮状物在核心区和边壁区运动特性不同的表现,即提升管内整体流动结构与局
    部流动结构之间是宏观与微观、现象与本质的关系。
The gas-solid two-phase flow in circulating fluidized bed (CFB) risers presents very complicated hydrodynamic aspects. Although numerous research efforts have led to significant advances in the understanding of hydrodynamics from the macro-distributions of gas-solid flow structure to the micro-behaviors of particle clustering, further studies are still needed in order to make clear the inherent mechanisms of various phenomena exhibiting in gas-solid two-phase flow so that more reliable models and scale-up methods of CFB reactors can be developed.
    This work conducted systematic experiments and studies on the radial distributions of local solids concentration and particle velocities as well as the axial distributions of pressure gradients. The experiments were carried out using FCC and sand and under wide operation conditions. Two CFB riser ser-ups used in the experiment have the same diameter of 100mm, but different heights of 15.1m and 10.5m, respectively. Based on the measured data, the effects of particle properties and geometric structure on hydrodynamics of gas-solid flow in risers and the inherent relationship between local and overall flow structure were intensively investigated.
    Significant effects of riser height on the distribution of axial pressure gradients were found. Under the same operating condition, the concentrations in whole riser decrease with increasing the height of column, and consequently leading to more uniform distribution of particles in risers. This suggests the effects of riser height must be taken into account when developing of the gas-solid two-phase flow hydrodynamic model and the scale-up method of
    
    
    the CFB reactors, because the most of past experimental conclusions and correlations were based on single height of riser and did not consider the influences of riser height.
    Under certain operating conditions, sand particles (belonging to group B of Geldart's classification) will decelerate to some degree after the effect of gas distributor disappears. Under low gas velocity conditions (?g<5.5m/s), the axial and radial distributions of FCC are much more uniform than those of sand; while under high gas velocity conditions (?>8.0m/s), the axial and radial distributions of sand, however, are much more uniform than those of FCC.
    Based upon the systematical experimental data obtained in this study and from other literatures, it is found that under the operating conditions with the same modified solids-to-air flow ratio Gs'2/G^? the gas-solid two-phase flows in risers show a very similar macro distribution and micro behaviors. This gives way to develop new model parameters so that the behaviors of gas-solid two-phase flows in CDB riser reactors can be described more exactly.
    By referring to the flow of fluid in circular pipe, the pressure drop due to the friction between the gas-solid suspension and the wall was quantitatively analyzed, and a model was proposed to predict the pressure drop of gas-solid flow in fully developed section of risers. This model includes particle and gas properties, riser structure parameters, and operating parameters and is in good agreement with the experimental data.
    Taken into account of the effect of riser height, particle properties, and the friction between the gas-solid suspension and the wall on the solids holdups, a correlation was proposed to predict the solids holdup in fully developed region of CFB risers. The correlation explains the differences among the predicated values of other authors and delineates more clearly the variations of solids holdup in fully developed region with operation parameters, ratio of height to diameter of riser, particle properties, the friction between the gas-solid suspension and the wall.
    Local solids concentrations, particle velocities, and solids fluxes reach the corresponding
    
    cross-sectional average values always at r/R ~ 0.8, and consequently the dimensionless radius of the core region can be defined at r/R=0.8. Preliminary studies show that this dimensionless radius is independent of particle pro
引文
[1] Adanez, J., Gayan, P., Garcia-Labiano, F., and de Diego, L. F., Axial Voidage Profiles in Fast Fluidized Beds, Powder Technol., 1994, 81, 259-268.
    [2] Arena, U., Cammarota, A., Marzocchella, L. A., and Massimilla, L., Hydrodynamics of Circulating Fluidized Bed with Secondary Air Injection, Proc. 12th Int. Conf. on Fluidized Bed Combustion, (ed. by L. N. Rubow), ASME, San Diego, California, 1993, pp.899-905.
    [3] Arena, U., Cammarota, A., Massimilla, L., and Pirozzi, D., The Hydrodynamic Behaviour of Two Different Circulating Fluidized Bed Units of Different Sizes, Circulating Fluidized Bed Technology II, (eds. by P. Basu and J.F. Large), Pergamon, Oxford, 1988, pp.223-230.
    [4] Arena, U., Cammarota, A., and Pistone, L., High Velocity Fluidization Behavior of Solids in a Laboratory Scale Circulating Fluidized Bed, Circulating Fluidized Bed Technology, (ed. by P. Basu), Pergamon Press, Toronto, 1986, pp.119-125.
    [5] Avidan, A. A., and Shinnar, R., Development of Catalyst Cracking Technology--A Lesson in Chemical Reactor Design, Ind. Eng. Chem. Res., 1990, 29, 931-942.
    [6] Avidan, A. A., Edwards, M., and Owen, H., Innovative Improvements Highlight FCC's Past and Future, Oil Gas J., 1990, 8, 33-58.
    [7] Azzi, M., Turlier, P., and Bernard, J. R., Mapping Solids Concentration in a Circulating Fluidized Bed Using Gammametry, Powder Technol., 1991, 67, 27-36.
    [8] Azzi, M., Turlier, P., Large, J. F., and Bernard, J. R., Use of a Momentum Probe and Gamma Densitometry to Study Local Properties of Fast Fluidized Beds, Circulating Fluidized Bed Technology III (eds. by P. Basu, M. Horio, and M. Hasatani), Pergamon Press, Oxford, 1991, pp. 189-194.
    [9] Bader, R., Findlay, J., and Knowlton, T. M., Gas/solids Flow Patterns In a 30. 5cm-Diameter Circulating Fluidized Bed, Circulating Fluidized Bed Technology II (eds. by P. Basu, and J. F. Large), Pergamon Press, Oxford, 1988, pp. 123-137.
    [10] Bai, D., Jin, Y., and Yu, Z. Q., Flow Regimes in Circulating Fluidized Beds, Chem. Eng. Technol., 1993,16,307-313.
    [11] Bai, D., and Kato, K., Generalized Correlations of Solids Holdups at Dense and Dilute Regions of Circulating Fluidized Beds, Proc. 7th Symp. on CFB, Tokyo, Japan, 1994, pp. 137-144.
    [12] Bai, D., Jin, Y, and Yu, Z., Acceleration of Particles and Momentum Exchange between Gas and Solids in Fast Fluidized Beds, Fluidization'9I-Science and Technology, (eds. by Kwauk, M. and Hasatani, M.), Science Press, Beijing, 1991, pp.46-55.
    [13] Bai, D., Shibuya, E., Masuda, Y., Nakagawa, N., and Kato, K., Flow Structure in a Fast Fluidized Bed, Chem. Eng. Sci., 1996, 51, 957-966.
    [14] Bai, D. R., Jin, Y, and Yu, Z. Q., Cluster Observation in a Two-Dimensional Fast Fluidized Bed, Fluidization'91-Science and Technology, (eds. M. Kwauk, and M. Hasatani), Science press, Beijing, 1991, pp.110-115.
    [15] Bai, D. R., Jin, Y, Yu, Z. Q., and Zhu, J. X., The Axial Distribution of the Cross-Sectionally Averaged Voidage in Fast Fluidized Beds, Powder Technol., 1992, 71, 51-58.
    
    
    [16] Berruti, F., Chaouki, J., Godfroy, L., Pugsley, R. S., and Patience, G. S., Hydrodynamics of Circulating Fluidized Ved Risers: a Review. Can. J. Chem. Eng., 1995, 73: 579-602.
    [17] Bi, H. T, Grace, J. R., and Zhu, J. X., Regime Transitions Affecting Gas-Solids Suspensions and Fluidized Beds, Chem. Eng. Res. Des., 1995, 73, 154-161.
    [18] Bi, H. T., and Zhu, J. X., Static Instability Analysis of Circulating Fluidized Beds and Concept of High Density Risers, AIChE J., 1993, 39, 1272-1280.
    [19] Bi, H. T., Zhu, J. X., Jin, Y. and Yu, Z. Q., Forms of Particle Aggregations in CFB, Proc. 6th Chinese National Conf. on Fluidization, Wuhan, China, 1993, pp. 162-167.
    [20] Blackadder, W., Morris, M, Rensfelt, E., and Waldheim, L., Development of an Integrated Gasification and Hot Gas Cleaning Process Using Circulating Fluidized Bed Technology. Circulating Fluidized Bed Technology III, (eds. Basu, P., Horio, M., and Hasatani, M.), Pergamon Press. Oxford, 1991, pp.511-518.
    [21] Bolton, L. W., and Davidson, J. F., Recirculation of Particles in Fast Fluidized Risers, Circulating Fluidized Bed Technology II, (eds. by P. Basu, and J. F. Large), Pergamon, Oxford, 1988, pp. 139-146.
    [22] Bouillard, J. X., and Miller, A., Identifying Hydrodynamic Attractors in Circulating Fluidized Beds, Circulating Fluidized Bed Technology IV, (ed. A. A. Avidan), 1994, pp. 70-76, AIChE, New York.
    [23] Brereton, C. M. H. and Grace, J. R. End Effects in Circulating Fluidized Bed Hydrodynamics, Circulating Fluidized Bed Technology IV, (ed. by A. A. Avidan), AIChE, New York, 1994, pp. 137-144.
    [24] Brereton, C. M. H., and Grace, J. R., Microstructural Aspects of the Behaviour of Circulating Fluidized Beds, Chem. Eng. Sci., 1993, 48, 2565-2572.
    [25] Brereton, C. M. H., and Stromeberg, L., Some Aspects of the Fluid Behavior of Fast Fluidized Beds, Circulating Fluidized Bed Technology (ed. by P. Basu), Pergamon Press, Toronto, 1986, pp. 133-143.
    [26] Bu, J. J., and Zhu, J. X., Influence of Ring-Type Internals on Axial Pressure Distribution in Circulating Fluidized Bed, Can. J. of Chem. Eng., 1999, 77(1) , 26-34.
    [27] Dry, R. J., Radial Concentration Profiles in a Fast Fluidized Bed, Powder Technol, 1986, 49, 37-44.
    [28] Geldart, D., and Rhodes, M. J., From Minimum Fluidization to Pneumatic Transport-a Critical Review of the Hydrodynamics, Circulating Fluidized Bed Technology, (ed. by P. Basu), Pergamon Press, Toronto, 1986, pp.21-31.
    [29] Grace, J. R., Issangya, A. S., Bai, D., Bi, H. T, and Zhu, J. X., Situating the High-Density Circulating Fluidized Bed, AIChE J., 1999,45,2108-2116.
    [30] Grace, J. R., High Velocity Fluidized Bed Reactors, Chem. Eng. Sci., 1990, 45, 1953-1966.
    [31] Grace, J. R., and Tuot, J., A Theory for Cluster Formation in Vertically Conveyed Suspension of Intermediate Density, Trans. IChemE, 1979, 57, pp.49-54.
    [32] Grace, J. R., Influence of Riser Geometry on Particle and Fluid Dynamics in Circulating Fluidized Bed Risers, Circulating Fluidized Bed V(eds. by M. Kwauk, and J. Li), Science Press, Beijing, 1997, pp. 16-28.
    [33] Hallstrom, C., and Karlsson, R., Waste Incineration in Circulating Fluidized Bed Boilers, Text Results and Operating Experiences. Circulating Fluidized Bed TechnologyIII, (ed.
    
    Basu, P.). Pergamon Press. New York, 1991, pp.63-81.
    [34] Harris, B. J., and Davidson, J. F., A Core/Annulus Deposition Model for Circulating Fluidized Beds, Circulating Fluidized Bed Technology IV, (ed. by A. A. Avidan), AIChE, New York, 1994, pp.32-39.
    [35] Harris, B. J., and Davidson, J. R, Velocity Profiles, Gas and Solids, in Fast Fluidized Beds, Fluidization VII, (eds. by O. E. Potter and D. J. Nicklin), Engineering Foundation, New York, 1992, pp.219-226.
    [36] Harris, B. J., Davidson, J. R and Xue, Y., Axial and Radial Variation of Flow in Circulating Fluidized Bed Risers, Circulating Fluidized Bed Technology IV (ed. by A. A. Avidan), AIChE, New York, 1994, pp. 103-110.
    [37] Hartge, E. U., Rensner, D., and Werther, J., Solids Concentration and Velocity Patterns in Circulating Fluidized Beds. Circulating Fluidized Bed Technology II, (eds. by Basu, P. and Large J. R), Pergamon Press, Oxford, 1988, pp. 165-180.
    [38] Hartge, E. U., Li, Y, and Werther, J., Flow Structures in Fast Fluidized Beds, Fluidization V, (eds. by K. stergaard and A. Srensen), Engineering Foundation, New York, 1986, pp.345-352.
    [39] Hatano, H., Matsuda, S., Takeuchi, H., Pyatenko, A. T., and Tsuchiya, K., Local Interactive Patterns of Dispersed and Swarm Particles in a Circulating Fluidized-Bed Riser, Ind. Eng. Chem. Res., 1996, 35, 4360-4365.
    [40] Herb, B., Dou, S., Tuzla, K., and Chen, J. C., Solid Mass Flux in Circulating Fluidized Beds, Powder Technol., 1992, 70, 197-205.
    [41] Herb, B., Tuzla, K., and Chen, J. C., Distribution of Solid Concentrations in Circulating Fluidized Bed, Fluidization VI, (eds. by J. R. Grace, L. W. Shemilt, and M. A. Bergougnou), Engineering Foundation, New York, 1989, pp.65-72.
    [42] Hirama, M., Takeuchi, H., and Chiba, T., On the Definition of Fast Fluidization in a Circulating Fluidized-Bed Riser, Fluidization VII, (eds. by O. E. Potter and D. J. Nicklin), Engineering Foundation, New York, 1992, pp.313-320.
    [43] Horio, M., Hydrodynamics of Circulating Fluidization-Present Status and Research Needs. Circulating Fluidized Bed Technology III, (eds. By Basu, P., Horio, M., and Hasatani, M.), Pergamon Press. Oxford, 1991, pp.3-14.
    [44] Horio, M. and Kuroki, H., Three-Dimensional Flow Visualization of Dilutely Dispersed Solids in Bubbling and Circulating Fluidized Bed, Chem. Eng. Sci., 1994, 49,2413-2421.
    [45] Horio, M., Morishita, K., Tachibana, O., and Murata, M., Solid Distribution and Movement in Circulating Fluidized Beds, Circulating Fluidized Bed Technology II (eds. by P. Basu, and J. F. Large), Pergamon Press, Oxford, 1988, pp. 147-154.
    [46] Huang, W. X., and Zhu, J. X., An Experimental Investigation on Solids Acceleration Length in the Riser of a Long Circulating Fluidized Bed. Chinese J. of Chem. Eng., 2001, 9(1) , 70-76.
    [47] Issangya, A. S., Bai, D. R., Grace, J. R., and Zhu, J. X., Solids Flux Profiles in a High-Density Circulating Fluidized Bed Riser, Fluidization IX, (eds. by L. S. Fan, and T. M. Knowlton), Engineering Foundation, New York, 1998, pp. 197-204.
    [48] Issangya, A. S., Grace, J. R., Bai, D. R., and Zhu, J. X., Radial Voidage Variation in CFB Risers. Can. J. of Chem. Eng., 2001,79,279-286
    [49] Issangya, A. S., Bai, D. R., Bi, H. T., Lim, K. S., Zhu, J. X., and Grace, J. R., Axial Solids
    
    Holdup Profiles in a High-Density Circulating Fluidized Bed Riser, Circulating Fluidized Bed Technology V, (eds. by M. Kwauk, and J. Li), Science Press, Beijing, 1997, pp.60-65.
    [50] Issangya, A. S., Bai, D. R., Bi, H. T., Lim, K. S., Zhu, J. X., and Grace, J. R., Suspension Densities in a High-Density Circulating Fluidized Bed Riser, Chem. Eng. Sci., 1999, 54,5451-5460.
    [51] Issangya, A. S., Bai, D. R., Grace, J. R., Lim, K. S., and Zhu, J. X., Flow Behavior in the Riser of a High-Density Circulating Fluidized Bed, AIChE Symp. Ser., 1997, 93 (317) , 25-30.
    [52] Issangya, A. S., Grace, J. R., Bai, D. R., and Zhu, J. X., Further Measurements of Flow Dynamics in a High-Density Circulating Fluidized Bed Riser, Powder Technol., 2000, 111,104-113.
    [53] Jiang, P. J., Bi, H. T., Jean, R. H., and Fan, L. S., Baffle Effects on Performance of Catalytic Circulating Fluidized Bed Reactor, AIChE J., 1991, 37, 1392-1400.
    [54] Jiang, P. J., Cai, P., and Fan, L. S., Transient Flow Behavior in Fast Fluidized Bed, Circulating Fluidized Bed Technology IV, (ed. by A. A. Avidan), AIChE, New York, 1994, pp.111-117.
    [55] Jin, Y., Yu, Z. Q., Qi, C. M., and Bai, D. R., The Influence of Exit Structure on the Axial Distribution of Voidage in Fast Fluidized Bed, Fluidization'88, Science and Technology, (eds. by M. Kwauk, and D. Kunii), Science Press, Beijing, 1988, pp. 165-173.
    [56] Johnsson, F., Svensson, A., and Leckner, B., Fluidization Regimes in Circulating Fluidized Bed Boilers, Fluidization VII, (eds. O. E. Potter and D. J. Nicklin), Engineering Foundation, New York, 1992, pp.471-478.
    [57] Kato, K., Takarada, T., Tamura, T., and Nishino, K., Particle Holdup Distribution in A Circulating Fluidized Bed, Circulating Fluidized Bed Technology III (eds. by P. Basu, M. Horio and M. Hasatani), Pergamon Press, Oxford, 1991, pp. 145-150.
    [58] Kullendorff, A., and Andersson, S., A General Review of Combustion in Circulating Fluidized Beds, Circulating Fluidized Bed Technology, (ed. by P. Basu), Pergamon Press, Toronto, 1986, pp.83-96.
    [59] Kunii, D., and Levenspiel, O., Fluidization Engineering (2nd), Butterworth-Heinemann, New York, 1991.
    [60] Kuroki, H., and Horio, M., The Flow Structure of a Three-Dimensional Circulating Fluidized Bed Observed by the Laser Sheet Technique, Circulating Fluidized Bed Technology IV, (ed. by A. A. Avidan), AIChE, New York, 1994, pp.77-84.
    [61] Lackermeier, U., Hartge, E. U., and Werther, J., Influence of the Exit on Gas and Solids Flow in the CFB Top Region, Circulating Fluidized Bed Technology VII, (eds. by Grace, J. R., Zhu, J. X.), Pergamon Press. Niagara Fall, 2002, pp.193-200.
    [62] Lewis, W. K., Gilil, E. R., and Bauer, W. C., Characteristics of Fluidized Particles, Ind. Eng. Chem., 1949,41, 1104-1170.
    [63] Li, H., Xia, Y, Tung, Y. and Kwauk, M., Micro-Visualization of Clusters in a Fast Fluidized Bed, Powder Technol, 1991, 66,231-235.
    [64] Li, H., Xia, Y., Tung, Y. and Kwauk, M., Micro-Visualization of Two Phase Structure in a Fast Fluidized Bed, Circulating Fluidized Bed Technology III, (eds. by P. Basu, M. Horio and M. Hasatani), Pergamon Press, Toronto, 1991, pp. 183-188.
    [65] Li, J., Ren, L., and Kwauk, M., The Application of the Principle of Energy Minimization to the Fluid Dynamics of Circulating Fluidized Beds, Circulating Fluidized Bed
    
    Technology III, (eds. by P. Basu, M. Horio and M. Hasatani), Pergamon Press, Toronto, 1991, pp.105-111.
    [66] Li, J., Tung, Y., and Kwauk, M., Axial Voidage Profile of Fluidized Beds in Different Operating Regions, Circulating Fluidized Bed Technology II, (eds. by P. Basu, and J. F. Large), Pergamon Press, Oxford, 1988, pp. 193-203.
    [67] Li, Y., and Kwauk, M., The Dynamics of Fast Fluidization, Fluidization, (eds. by J. R. Grace, and J. M. Matsen), Plenum Press, New York, 1980, pp.537-544.
    [68] Liang, W. G., Jin, Y, and Yu, Z. Q. Synthesis of Linear Alkylbenzene in a Liquid-Solid Circulating Fluidized Bed Reactor, J Chem. Tech. Biotech., 1994, 61, 4-8.
    [69] Liang, W. G, Wu, Q. W., Yu, Z. Q., Jin, Y, and Wang, Z. W., Hydrodynamics of Gas-Liquid-Solid Three-Phase Circulating Fluidized Bed, Fluidization'94: Science and Technology, (ed. Organizing Committe), Chemical Industry Press, Beijing, 1994, pp. 329-337.
    [70] Lim, K. S., Zhu, J. X., and Grace, J. R., Hydrodynamics of Gas Fluidization. Int. J. Multiphase Flow, 1995, 21 (supplement), 141-193.
    [71] Lodes, A., and Mierka, O., The Velocity Field in a Vertical Gas-Solid Suspension Flow, Int. J. of Multiphase Flow, 1990, 16, 201-209.
    [72] Malcus, S., Chaplin, G, and Pugsley, T., The Hydrodynamics of the High-Density Bottom Zone in a CFB Riser Analyzed by Means of Electrical Capacitance Tomography (ECT), Chem. Eng. Sci., 2000, 55, 4129-4138.
    [73] Martin, M. P., Turlier, P., Bernard, J. R., and Wild, G, Gas and Solid Behavior in Cracking Circulating Fluidized Beds, Powder Technol., 1992,70, 249-258.
    [74] Mastellone, M. L., and Arena, U., The Effect of Particle Size and Density on Solids Distribution along the Riser of a Circulating Fluidized Bed, Chem. Eng. Sci., 1999, 54, 5383-5391.
    [75] Nakamura, K., and Capes, C. E., Vertical Pneumatic Conveying: A Theoretical Study of Uniform and Annular Particle Flow Models. Can. J. of Chem. Eng., 1973, 51, 39-46.
    [76] Ouyang, S., and Potter, O. E., Consistency of Circulating Fluidized Bed Experimental Data, Ind. Eng. Chem. Res., 1993, 32, 1041-1045.
    [77] Parssinen, J. H., and Zhu, J. X., Particle Velocity and Flow Development in a Long and High-Flux Circulating Fluidized Bed Riser, Chem. Eng. Sci., 2001, 56, 5295-5303.
    [78] Parssinen, J. H., and Zhu, J. X., Solids Concentration and Flow Development in a Long, High-Flux Circulating Fluidized Bed Riser, AIChEJ., 2001, 47,2197-2205.
    [79] Patience, G. S., and Chaouki, J., Solids Hydrodynamics in the Fully Developed Region of CFB Risers. Fluidization VIII, (eds. by Large, J. F., and Laguerie, C.), New York, Engineering Foundation, 1996, pp.33-40.
    [80] Pugsley, T., Lapointe, D., Hirschberg, B., and Werther, J., Exit Effects in Circulating Fluidized Bed Risers, Can. J. Chem. Eng., 1997, 75, 1001-1010.
    [81] Qin, S., and Liu, D., Application of Optical Fibers to Measurement and Display of Fluidized Systems, Fluidization'82, Science and Technology, (eds. by M. Kwauk, and D. Kunii), Science Press, Beijing, 1982, pp.258-266.
    [82] Reh, L., Fluidized Bed Processing. Chem. Eng. Prog., 1971, 67, 58-63.
    [83] Reh, L., New Efficient High-Temperature Processes with Circulating Fluid Bed Reactors, Chem, Eng, Technol., 1995,18, 75-89.
    
    
    [84] Reh, L., Challenges of Circulating Fluid-Bed Reactors in Energy and Raw Materials Industries, Chem. Eng. Sci., 1999, 54, 5359-5368.
    [85] Rhodes, M. J., Sollaart, M., and Wang, X. S., Flow Structure in a Fast Fluid Bed, Powder Technol., 1998,99,194-200.
    [86] Rhodes, M. J., Mineo, H., and Hirama, T., Particle Motion at the Wall of Circulating Fluidized Bed, Powder Technol., 1992, 70, 207-214.
    [87] Schlichthaerle P., Werther J., Axial pressure profiles and solids concentration distributions in the CFB bottom zone, Chemical Engineering Science, 1999, 54, 5485-5493.
    [88] Schlichthaerle, P., and Werther, J., Solids Mixing in the Bottom Zone of a Circulating Fluidized Bed, Powder Technol., 2001, 120, 21-33.
    [89] Schnitzlein, M. G, and Weinstein, H., Flow Characterization in High Velocity Fluidization Using Pressure Fluctuations, Chem. Eng. Sci., 1988, 43, 2605-2614.
    [90] Schouten, J. C., Zijerveld, R. C., and van den Bleek, C. M., Scale-up of Bottom-Bed Dynamics and Axial Solids-Distribution in Circulating Fluidized Beds of Geldart-B Particles, Chem. Eng. Sci., 1999, 54,2103-2112.
    [91] Shingles, T. M., and McDonald, A. F., Commercial Experience with Synthol CFB Reactors. Circulating Fluidized Bed Technology II, (eds. by P. Basu, and J. F. Large). Pergamon Press. Oxford, 1988, pp.43-50.
    [92] Squires, A. M., The Story of Fluid Catalystic Cranking: The First Circulating Fluid Bed. Circulating fluidized bed technology, (eds. by P. Basu), Pergamon Press, New York, 1986, pp.1-19.
    [93] Takeuchi, H., and Hirama, T., Flow Visualization in the Riser of a Circulating Fluidized Bed, Circulating Fluidized Bed Technology III (eds. by P. Basu, M. Horio, and M. Hasatani), Pergamon Press, Oxford, 1991, pp.177-182.
    [94] Tanner, H., Li, J., and Reh, L., Radial Profiles of Slip Velocity between Gas and Solids in Circulating Fluidized Beds, AIChE Symp. Ser., 1994, 90(301) , 105-113.
    [95] Tung, Y., Li, J., and Kwauk, M., Radial Voidage Profile in a Fast Fluidized Bed. Fluidization, (eds. by Kwauk, M., and Kunii, D.), Science press, Beijing, 1988, pp. 139-145.
    [96] Van Breugel, J. W., Stein, J. M., and de Vries, R. J., Isokinetic Sampling in a Dense Gas-Solids Stream, Proc. Inst. Mech. Eng., 1970, 184, 18-23.
    [97] Van der Ham, A. G. J., Prins, W., and Van Swaaij, W. P. M., Hydrodynamics of a Pilot-Plant Scale Regularly Packed Circulating Fluidized Bed, AIChE Symp. Ser., 1993, 89(296) , 53-72.
    [98] Wang, Y,, Wei, F., Wang, Z. W., Jin, Y, and Yu, Z. Q., Radial Profiles of Solids Concentration and Velocity in a very Fine Particle (36um) Riser, Powder Technol, 1998, 96, 262-266.
    [99] Wang, X. S., and Gibbs, B. M., Hydrodynamics of Circulating Fluidized Bed with Secondary Air Injection, Circulating Fluidized Bed Technology HI, (eds. by P. Basu, M. Horio and M. Hasatani), Pergamon Press, Toronto, 1991, pp.225-230.
    [100] Wei, F., Lin, H. F., and Cheng. Y, Profiles of Particle Velocity and Solids Fraction in a High Density Riser. Powder Technol., 1998, 100, 183-189.
    [101] Wei, F., Jin, Y, and Yu, Z., The Visualization of Macro Structure of the Gas-Solids Suspension in High Density CFB, Circulating Fluidized Bed Technology IV (eds. by A. A.
    
    Avidan), AIChE, New York, 1994, pp.588-593.
    [102] Wei, F., Yang, G. Q., Jin, Y, and Yu, Z. Q., The Characteristics of Cluster in a High Density Circulating Fluidized Bed, Can. J. Chem. Eng., 1995,73,650-655.
    [103] Weinstein, H. and Li, J., An Evaluation of the Actual Density in the Acceleration Section of Vertical Risers, Powder Technol., 1989, 57, 77-79.
    [104] Weinstein, H., Graff, R. A., Meller, M., and Shao, M. J., The Influence of the Imposed Pressure Drop across a Fast Fluidized Bed, Fluidization IV (eds. by D. Kunii, and R. Toei), Engineering Foundation, New York, 1984, pp.299-306.
    [105] Weinstein, H., Meller, M., Shao, M. J. and Parisi R. J., The Effect of Particle Density on Holdup in a Fast Fluid Bed, AIChE Symp. Ser., 1984, 80(234) , 52-59.
    [106] Weinstein, H., Shao, M., and Schnitzlein, M., Radial Variation in Solid Density in High Velocity Fluidization, Circulating Fluidized Bed Technology, (ed. by P. Basu), Pergamon Press, Toronto, 1986, pp.201-206.
    [107] Weinstein, H., Shao, M., Schnitzlein, M., and Graff, R. A., Radial Variation in Void Fraction in a Fast Fluidized Bed, Fluidization V, (eds. by K. Stergaard, and A. Srenesen), Engineering Foundation, New York, 1986, pp.329-336.
    [108] Werther, J., Fluid Mechanics of Large-Scale CFB Units, Circulating Fluidized Bed Technology IV, (ed. by A. A. Avidan), AIChE, New York, 1994, pp. 1-14.
    [109] Wong, R., Pugsley, T., and Berruti, F., Modelling the Axial Voidage Profile and Flow Structure in Risers of Circulating Fluidized Beds, Chem. Eng. Sci., 1992, 47,2301-2306.
    [110] Yang, Y., Jin, Y, Yu, Z., Wang, Z., and Bai, D., The Radial Distribution of Local Particle Velocity in a Dilute Phase Circulating Fluidized Bed, Circulating Fluidized Bed Technology III, (eds. by P. Basu, Horio, and M. Hasatani), Pergamon Press, Oxford, 1991, pp.201-206.
    [111] Yang, Y, Jin, Y., Yu, Z., Zhu, J. X. and Bi, H. T., Local Slip Behaviour in the Circulating Fluidized Bed, AIChE Symp. Ser., 1993, 89(296) , 81-90.
    [112] Yang, Y. L., Jin, Y., Yu, Z. Q., and Wang, Z. W., Investigation on Slip Velocity Distributions in the Riser of Dilute Circulating Fluidized Bed, Powder Technol., 1992, 73, 67-73.
    [113] Yang, Y. L., Jin, Y, Yu, Z. Q., Wang, Z. W, and Bai, D. R., The Particle Velocity Distribution in a Riser of Dilute Circulating Fluidized Bed, J. Chem. Ind. and Eng. China (English Edition), 1991,6, 182-191.
    [114] Yerushalmi, J., Tuner, D. H., and Squires, A. M., Process Design Development, Ind. Eng. Chem., 1976, 15,47-53.
    [115] Yerushalmi, J., and Avidan, A., High-Velocity Fluidization, Fluidization (eds. by J. F. Davidson, R. Clift, and D. Harrison), Academic Press, London, 1985, pp.225-291.
    [116] Yerushalmi, J., and Cankurt, N. T., Further Studies of the Regimes of Fluidization, Powder Technol., 1979,24, 187-205.
    [117] Zhang, H., Xie, Y. S., and Shang, Y. M., An Evaluation of Solids Behavior in the Acceleration Section of Fast Fluidized Beds, Fluidization'94-Science and Technol., (ed. by Organizing Committee), Chem. Ind. Press, Beijing, 1994, pp.113-120.
    [118] Zhang, W., Tung, Y., and Johnsson, J. E., Radial Voidage Profiles in Fast Fluidized Beds of Different Diameters. Chem. Eng. Sci., 1991,46, 3045-3052.
    [119] Zheng, C., Tung, Y., Li, H. and Kwauk, M., Characteristics of Fast Fluidized Beds with
    
    Internals, Fluidization Ⅶ(eds. by O. E. Potter, and D. J. Nicklin), Engineering Foundation, New York, 1992, pp.275-284.
    [120]Zhu, J. X., and Bi, H. T., Distinctions between Low Density and High Density Circulating Fluidized Beds, Can. J. Chem. Eng., 1995, 73,644-649.
    [121]Zhu, J. X., and Wei, F., Recent Developments of Downer Reactors and other Types of Short Contact Reactors, Fluidization Ⅷ, (eds. by J. F. Large, and C. Laguerie), Engineering Foundation, New York, 1996, pp.501-510.
    [122]Zhu, J. X., Salah, M, and Zhou, Y. M., Effect of Ring Type Internals to the Flow Structure inside a Circulating Fluidized Bed, J. Chem. Eng. Japan, 1997, 30, 928-937.
    [123]Zou, B., Li, H., Xia, Y. and Ma, X., Cluster Structure in a Circulating Fluidized Bed, Powder Technol., 1994, 78, 173-178.
    [124]白丁荣、金涌、俞芷青.化学反应工程与工艺,1991,7(4),422-431.
    [125]白丁荣、金涌、俞芷青.循环流态化(Ⅰ),化学反应工程与工艺,1991,7(2),202-206.
    [126]白丁荣、易江林、金涌、俞芷青.快速流化床入口结构对床层流动特性的影响,化工机械,1995,第22卷第2期,10-14.
    [127]白丁荣、蒋大洲、金涌、俞芷青.循环流化床颗粒内循环流动结构的实验研究,第六届全国流态化文集,1993,1-7页,武汉华中理工大学.
    [128]白丁荣、金涌、俞芷青.快速流化床内颗粒加速运动段长度,化学反应工程与工艺,1990,3(6),34-39.
    [129]白丁荣、金涌、俞芷青,循环流化床内颗粒的加速作用及气固两相间的动量交换,化学反应工程与工艺,1991,7(3),260-270.
    [130]白丁荣、金涌、俞芷青、杨启业.快速流化床中平均滑落速度及絮状物的特性,化学工程,1989,17(6),44-49.
    [131]白丁荣、金涌、俞芷青.循环流态化(Ⅱ),气—固流动规律,化学反应工程与工艺,1991,7(3),303-317.
    [132]甘宁俊、蒋大州、白丁荣、金涌、俞芷青.内置钝体对快速流化床中颗粒浓度分布的影响,高校化学工程学报,1990,第3卷第4期,273-277.
    [133]黄卫星、漆小波、潘永亮、祝京旭、石炎福.气固循环床提升管内的局部颗粒浓度及流动发展,高校化学工程学报,2002年12月,第16卷第6期.
    [134]黄卫星、石炎福、祝京旭.16m高提升管中FCC颗粒固含率的研究,石油化工,2001,30(3),354-357.
    [135]黄卫星、肖泽仪、石炎福、祝京旭.气固两相上行流动中颗粒加速行为的研究.化学反应工程与工艺,2001,17(2),101-106.
    [136]黄卫星、易彬、杨颖.循环床气固提升管中颗粒浓度的轴向分布,四川大学学报(工程科学版),2000,32(6),38-41.
    [137]金涌、祝京旭、汪展文、愈芷青.流态化工程原理,北京,清华大学出版社,2001年8月第1版.
    [138]漆小波、黄卫星、祝京旭、石炎福.循环流化床提升管中颗粒速度的径向分布及其沿轴向的发展,高校化学工程学报,2002年4月,第16卷第2期,168-173页.
    [139]魏飞、杨国强、金涌、俞芷青.高密度循环流化床中气固两相流动结构的一维成像
    
    分析,化工学报,1994,45(5),523-530.
    [140]夏亚沈、董元吉、郭慕孙.快速流化床进出口结构对流动的影响,化工冶金,1988,9(3),14-24.
    [141]杨勇林、金涌、俞芷青、汪展文、白丁荣.低密度循环流化床局部颗粒速度的轴径向分布的研究,高校化学工程学报,1991,5(2),122-128.
    [142]张斌.快速流化床反应器线流流动模型,硕士论文,1990,中国科学院化工冶金研究所,北京.
    [143]张瑞英等.化学反应工程与工艺,1985,1(2).25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700