用户名: 密码: 验证码:
长距离平面转变带式输送机关键设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文结合实际工程项目,对长距离平面转弯带式输送机设计中的若干关键技术问题,包括输送机转弯段托辊组布置方法、动力学建模及仿真技术、多点驱动技术及转弯段物料和输送带相互作用的离散元分析等进行了研究,为长距离平面转弯带式输送机设计提供依据。
     论文建立了平面转弯带式输送机转弯段输送带力学模型,分析了平面转弯带式输送机转弯处力的平衡条件和外曲线应力限制条件,导出了平面转弯带式输送机转弯半径的计算公式。在此基础上,对给定转向半径的带式输送机,实现了转弯段托辊组结构参数的优化设计。对平面转弯带式输送机动态特性进行了研究,建立了输送带、驱动装置、拉紧装置等单元的力学和数学模型,提出建模所需考虑的等效转化问题以及输送机运行阻力计算方法,并给出定解所需的边界条件和初始条件。编制了平面转弯带式输送机的动力学分析仿真程序,该程序能够完成动态分析所必须的常规设计、转弯段托辊组参数的优化设计、转弯半径计算、横向稳定性分析、非稳定工况下的动态分析等,并实现分析结果的可视化。对多滚筒、多点驱动时功率配比方法进行了讨论,提出了有中间驱动时张力计算及中间驱动点位置和数量的确定方法,通过驱动电机功率测试试验,验证了带式输送机的功率分配和驱动单元配置的正确。基于离散元法对转弯段的物料运动和料流对输送带的作用力进行了初步研究,模拟了输送带单元上物料的动态特性和输送带各部位所受的力,为带式输送机设计提供必要的基础数据。
     论文的理论研究成果和工程实用软件已应用于长距离平面转弯带式输送机设计,提高了带式输送机的设计水平。
In the modern industrial enterprise, the belt-conveyor is the necessary subassembly which can form the rhythmic flow process transport line in the production process. New directions of the belt-conveyor are long-distance, high-power, high speed and high performance, also the conditions it working always is strict, many problems occur. The problems include that:①The engineer can’t adopt conventional design method of rigid body dynamics for design of long-distance belt conveyor. Viscoelastic properties of the belt and the kinetic tension should be considered when start-up and brake.②The direction has to change because the limit of landform. Lap joint or other special equipment used to be adopted,but they have much localization. In the past, using overlapping process and special redirection equipment lead to complex conveyor system and increased equipment; the impact of material caused by transshipment induces the acceleration of belt wear, the breakdown of conveyor in sever case and the tear of belt.③The excited frequency of the rollers is liable to lead to belt resonance in high speed belt conveyor. When the resonance happens,the avulsion or off tracking of belt must occur. So the design for avoiding resonance of the systerm should be executed.④To lower belt tension of long-distance conveyor, the driving power usually was distributed. Then the configuration and the number of intermediate driving point and the reasonable power ratio should be pay much attention to. Therefore, this thesis researched these problems in depth and meticulously. Our study combined the cooperation project with enterprise“Design of single 9.6km long-distance belt conveyor with horizontal curve”. This paper also began preliminary discussions on the application of the discrete element theory on the horizontal curve. This paper is as the following:
     1. Existing theories and methods of horizontal curve have been researched and analysed in-depth. Based on the pertinent theory such as the design process of the belt, the configuration of the curve and the limit of curve radial, the paper deduced the formula of the curve radial of belt conveyor with horizontal natural curve roundly under the conditions such as the geometry of the curve, mechanics analysis of the curve, force equilibrium of the curve and the stress and strain. And the comparison and analysis was made between the several existing formulas and this paper. To be able to choose reasonable structural parameters of the turning section, based on the new formula of turning radius, the optimization methods was established. The objective function is to minimize the difference between the initial radial and the calculated value. The optimization program was developed based on Matlab software and optimized process was achieved. The election of parameters was fast and convenient.
     2. The paper discussed system modeling theory of belt conveyor with horizontal curve in two aspects: vertical vibration, longitudinal and transverse coupling vibration of the belt. For the vertical vibration, the author built the dynamic models of the belt elements, driving elements and take-up system respectively. The vogit model with creep characteristic is selected for belt elements. The driving equipments contain electromotor, hydrodynamic coupling, reducer, arrester, coupler, and so on. Its model was built by equivalent method. Take-up device includes two degrees of freedom rotation and motation. The dynamic equation of the straight line segment element, the curve segment element, driving device and take-up device was established by Lagrange equations. And the necessary boundary conditions and initial conditions for the definite solution were given. The resistance of the belt is the major factor influencing the dynamic characteristis of the system. It’s also the major operation in conventional design. Therefore, the author puts forward the method of calculation for conveyor running resistance. The dynamics model of belt conveyor system with horizontal curve by synthesizing the models of the units.
     For the horizontal and vertical coupling two-dimensional vibration, the author meshed the elements using beam elements. And then, the element stiffness matrix, element mass matrix, element damping matrix and force vector matrix were established, the element stiffness matrix, element mass matrix, element damping matrix and force vector matrix in the overall coordinate system were established by transformation matrix. Finally, the horizontal and vertical two-dimensional mathematical model of the belt conveyor with horizontal curve was established. The mathematical model is the basis of computer simulation.
     3. According to the model, the solution of the dynamic model was discussed and a belt conveyor dynamic simulation program which integrates the conventional design and dynamic analysis was developed using MatLab. The program can complete a conventional design, curvature radius calculation of the curve section, optimizing design of curve section, stability design, dynamic analysis of starting phase and so on. We can obtain kinetic parameters at different time and different units through dynamic analysis and visualize the kinetic parameters. The speed curve, acceleration curve, displacement curve and start-tension curve of the head unit, tail unit and tension roller of the starting phase were obtained from simulating the system. Moreover, there were similar results compared with foreign literatures. The simulation results of the systemⅡwere satisfactory. The dynamics simulation programs can well satisfy the requirements for dynamic analysis of the design of long-distance, large-scale belt conveyor.
     4. The method for confirming the power ratio of the belt conveyor with multi-pulleys and multi-driving points and the various factors that affect the power ratio were studied. Further more, the belt tension of conveyor with midway driving units and the position and quantity of midway driving point are discussed. The correctness of the power allocation algorithm of high-power belt conveyor are confirmed by the power testing on the systemⅡ. We can calculate starting maximum power, starting overload coefficient, power ratio and power unbalance of motor on no-load starting and full load starting and mean power, average power utilization and power ratio of motor on no-load operation and full load operation based on the results of power testing. It is proved that the selected driving motor is reasonable.
     5. Through the discrete element theory, the exploratory research has been carried on to material movement on curve section and the mechanism of material flow effecting on the boundary. Using 3D modeling software CATIA, the geometry model of the conveyor belt is built, it has been put into commercial software EDEM subsequently, and the discrete element models of belt conveyor with horizontal curves and the material it transported is set up. The relationship between force and displacement is built by non-linear Hertz Mindlin contact model. In the EDEM platform, the simulation of massive particles is use of combination of four basic ball units. It well simulated the macroscopic law of material flow. The average pressure and maximum pressures suffered by conveyor belt under the conditions of various parameters were simulated, and also a good method for predicting the pressure suffered by curve section is provided.
引文
[1]李光布.基于计算机仿真的带式输送机动态特性预测和控制[J].起重运输机械,2005(2):47-50.
    [2]国外长距离输送带输送机编写组.国外长距离输送带输送机[M].北京:煤炭工业出版社,1978,11-15.
    [3] [美]输送设备制造商协会联合会编.散装物料带式输送机[M].北京:机械工业出版社,1985,1-19.
    [4]张荣善.散料输送与贮存[M].北京:化学工业出版社,1994:29-59.
    [5]王鹰,孟文俊,黄霞云,等.长距离大运量带式输送机关键技术及国内发展现状[J].起重运输机械,2005(11):1-5.
    [6] Harrison A.Belt Conveyor Research 1980-2000 [J].Bulk solids handling, 2001,21(2):159-165.
    [7]杨达文,鲍师云.常用带式输送机的现状[J].起重运输机械,2003(1):4-6.
    [8]赵玉文,带式输送机的现状与发展趋势[J].煤矿机械,2004(4):1-3.
    [9]修泽久.国外带水平曲线的长距离输送带输送机[J].国外金属矿山,1993(1):65-72.
    [10]战悦晖.平面转弯带式输送机变坡转弯理论的研究[D].沈阳,东北大学,2006.
    [11]李煜.带式输送机和主要部件设计计算与产品技术参数资料及国内外标准规范实用手册[M].北方工业出版社,2006.
    [12]杨复兴.输送带输送机原理、结构与计算[M].北京,煤炭工业出版社,1983.
    [13]李光布.带式输送机动力学及设计[M].北京,机械工业出版社,1998,6.
    [14] [美]输送设备制造商协会联合会,散状物料带式输送机[M].北京,机械工业出版社,1985,10.
    [15]李光布.带式输送机动态特性研究[D].上海:上海交通大学,2003.
    [16]宋伟刚.通用带式输送机设计[M],北京,机械工业出版社,2006.
    [17]张国胜.大型可弯曲带式输送机静态设计理论研究[D].阜新,辽宁工程技术大学,2000.
    [18]孙可文.带式输送机的传动理论与设计计算[M].北京:煤炭工业出版社,1991:179-284.
    [19]刘宗林.弯曲输送带输送机的设计使用简介[J].矿山设计报导,1978(1)
    [20] Kessler F,Hinterholzer S,Grimmer K J.Non-Positive Guidance of Conveyor Belts Through Horizontal Curves [J].Bulk Solids Handling,1998,18(1):71-73.
    [21] Tooker G E.刘瑞珠译.在水平弯曲段采用悬挂托辊[J].连续输送技术,1989,(2):22-29.
    [22]魏效玲,胡进省.0~13°带式输送机平面弯曲装置在23°弯曲巷道中的应用[J].矿山机械,2000.9.
    [23]周晓明.于新峰.一种新型平面转弯输送带输送机的原理分析[J].煤炭技术,1998(1):26-28.
    [24]季益义,刘传令,朱兴民.DZ系列带式输送机转弯装置的研制[J].煤矿机械,2002(8):40-42.
    [25]宋伟刚,张尊敬,王鹰.带式输送机研究进展[J].起重运输机械,2004(2):1-4.
    [26] Suweken G, Van Horssen W T. On the transversal vibrations of a conveyor belt with a low and time-varying velocity. PartⅠ: the string-like case [J].Journal of Sound and Vibration,2003(264):117-133.
    [27]侯红伟,甲贝贝.输送带的横向振动分析[J].煤矿机电,2006(5):8-10.
    [28]刘英林,王彦凤.带式输送机振动问题研究[J].煤炭学报,1999,24(3):299-301.
    [29] Suweken G,Van Horssen W T. On the transversal vibrations of a conveyor belt with a low and time-varyingvelocity.PartⅡ.the beam-like case [J]. Journal of Sound and Vibration,2003(267):1007-1027.
    [30]王元元.带式输送机动力学分析模型若干问题的研究[D].沈阳:东北大学,2006.
    [31]李云海.带式输送机输送带的横向振动及其稳定性分析[J].连续输送技术,1989(3):9-13.
    [32]韩刚,黄松元,李英.带式输送机横向稳定性分析[J].太原重型机械学院学报,1997,18(4):355-361.
    [33]李光布.大型输送带运输机输送带横向振动分析[J].矿山机械,1992(8):14-17.
    [34]宋伟刚,邓永胜,刘兴文.带式输送机避免共振设计的研究[J].东北大学学报,2002,23(3):281-284.
    [35]梁兆正.带式输送机输送带的横向振动固有频率计算方法的探讨[J].连续输送技术,1994(2):28-34.
    [36]梁兆正.带式输送机输送带横向振动的理论分析、试验和应用[J].振动与冲击,1996,15(1):33-40.
    [37]毛君,解本铭.输送带横向弯曲振动的模态分析[J].阜新矿业学院学报(自然科学版),1993,12(2):73-77.
    [38] Kunihiko Ishihara.On abnormal vibration generated in flow dynamic conveyor[J].Journal of system design and dynamics,2008,2(2):550-560.
    [39] Katica (Stevanovi′c) Hedrih.Transversal vibrations of the axially moving sandwich belts[J].Arch Appl Mech,2007(77):523-539.
    [40] Andrianov V.Van Horssen.On the transversal vibration of a conveyor belt:Applicability of simplified models[J].Journal of Sound and Vibration,2008(313):822-829.
    [41] Harrison A.Determination of Natural Frequencies of Transverse Vibration for Conveyor Belts with Orthotropic properties[J].Journal of Sound and Vibration,1986,110(3):483-493.
    [42] Andrianov I V,Van Horssen W T.On the transversal vibrations of a conveyor belt:Apllicability of simplified models[J].Journal of sound and vibration,2008(313):822-829.
    [43] Suweken G,Van Horssen W T.On the weakly nonlinear,Transversal vibrations of a conveyor belt with a low and time-varying velocity[J].Nonlinear Dynamics,2003(31):197-223.
    [44] Won Jin K,Tae Geon P,Shin_Sup L.Transient Dynamic Analysis of Belt Conveyor System Using the Lumped Parameter Method [J]. Bulk Solids handling,1995,15(4):573-576.
    [45] Lodewijks G.The Two-Dimensional Dynamic Behavior of Conveyor Belts[EB/OL]. http://scholar.google.cn/scholar?start=10&q=The+Two-Dimensional+Dynamic+Behavior+of+Conveyor+Belts&hl=zh-CN&as_sdt=2000.
    [46] Harrison A.Non-linear belt Transient Analysis by Numerical Simulation[J/OL]. http://www.conveyorscience.com/images/Non-Linear_Belt_Paper_for_pdf.pdf.
    [47] Beavers D,Morrison D,Rea D.Non-Linear model for dynamic analysis of conveyors[C].9th ICBMH 2007,Newcastle,Australia,Oct.2007:9-11.
    [48] Li Guangbu.Study on conveyor non-linear dynamics ans its effect on dynamic behavior[J].Journal of Southeast University,2004,20(1):70-74.
    [49]王丹.平面转弯带式输送机动态设计方法的研究[D].沈阳:东北大学,2004.
    [50]侯友夫.带式输送机动态特性及控制策略研究[D].北京,中国矿业大学,2001.
    [51] Schulz G.Analysis of Belt Dynamics in Horizontal curves of Long Belt Conveyor[J].Bulk Solids handling,1995,15(1):25-30.
    [52]宋伟刚,邓永胜,郭立新.基于功率跟踪控制策略的带式输送机动态设计方法[J].东北大学学报(自然科学版),2002,23(9):900-903.
    [53]董大仟.大型带式输送机动态特性研究及其应用[D].上海,华北电力大学,2008.
    [54]裴文喜,李秀琴.带式输送机变向运行的应用[J].同煤科技,2000,83(1):1-2.
    [55]宋伟刚.散状物料带式输送机设计[M].沈阳:东北大学出版社,2000,273-281.
    [56] Page J L,Hamilton R S,Short G G,et al.Design of a long overland conveyor with Tight horizontal curves[J].Bulk Solids Handling,1994,14(1):21-29.
    [57] Tooker G E.Using Horizontal Curves to Opitimize the Alignment of Belt Conveyors[J].Bulk Solids Handling,1984,4(4):855-864.
    [58] Grimmer K J , Kessler F.The Dessign of Belt Conveyors with Horizontal Curves[J].Bulk Solids Handling,1992,12(4):557-563.
    [59] Kessler F,Grabner K,Grimmer K J.“bico-Tec”-a new type of belt conveyor with horizontal curves [J].Bulk Solids Handing,1993,13(4):741-747.
    [60] Schulz G,Schneider F.Further Investigations on Belt Dynamics in Horizontal Curves of Belt Conveyous[J].Bulk Solids Handling,1996,16(2):183-186.
    [61] Funke B.Transfer-free belt conveying also around curves [J].Bulk Solids Handing,1996,16(2): 203-208.
    [62] Ralph M , Horak.New Calculation and Design Methods for Belt Conveyor Curves[J].Bulk Solids Handling,1998,18(3):429-441.
    [63] Hinterholzer S,Kessler F,Garbner K.Garland station to run through horizontal curves[J].Bulk Solids Handling,2001,21(4):424-430.
    [64] Valcalda F S. Deep semi-circular trough with automatic load-dependent variation ofthe troughing angle [J].Bulk Solids Handing,2002, 22(1):34-41.
    [65]孙可文.输送带输送机凹曲线曲率半径计算[J].起重运输机械,1985,(10).
    [66]孙可文.输送带输送机凸曲线处尺寸的确定[J].煤矿机电,1985(8):16-19
    [67]李永堂,吴厚昌,李铁民.输送带输送机凹曲线运行曲率计算[J].江苏煤炭,2000(4):23-25.
    [68]王学军.输送带输送机弧形段的几何尺寸计算方法[J].湖南冶金,1998(4):28-30.
    [69]孙可文.普通输送带输送机作定坡转弯运行的理论分析[J].煤炭学报,1989(2).
    [70]于岩,朱路群,梁兆正.井下弯曲带式输送机的设计与应用[J].煤矿机电,1992,71(4):9-11.
    [71]李光布.弯曲输送带输送机曲率半径的理论分析和应用[J].连续输送技术,1992(1):15-20.
    [72]肖林京,于岩,周满山.凹变坡转弯带式输送机的设计[J].冶金矿山设计与建设,1997,29(1):10-26.
    [73]孙可文,史策昭.输送带输送机转弯运行的设计计算[J].煤炭科学技术,1982(9):1-10.
    [74]徐文娟,周广林,李广录.普通输送带输送机平面转弯运行设计[J].黑龙江矿业学院学报,1996,6(1):35-41.
    [75]张志威.长距离水平转弯带式输送机的设计[J].起重运输机械,2005(12):24-27.
    [76]尹新斌,张跃敏.非强制平面转弯带式输送机曲率半径影响因素分析[J].煤矿机电,2007(3):57-58
    [77]包继华,张建武,于岩.大角度平面转弯带式输送机的设计理论[J].起重运输机械,2001(12).
    [78]朱博.大型皮带机空间弯曲运行理论研究[D].阜新,辽宁工程技术大学,2002.
    [79]朴香兰,王国强,张英爽.平面转弯带式输送机曲率半径的求法[J].煤矿机械,2007,28(3):5-7.
    [80]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社,2004.
    [81]褚洪生,杜增吉,阎金华. MATLAB7.2优化设计实例指导教程[M].北京:机械工业出版社,2007.
    [82]飞思科技产品研发中心. MATLAB6.5辅助优化计算与设计[M].北京:电子工业出版社,2003.
    [83]郭仁生.机械工程设计分析和MATLAB应用[M].北京:机械工业出版社,2006.
    [84] ISO5048 Continuous Mechanical Handling Equipment ; Belt Conveyors with Carrying Idlers;Calculation of Operating Power and Tensile Forces [S].1989.
    [85] Rubber belt Conveyors with Carrying idlers—Calculation of Operating power and Tensile Forces [S].1992.
    [86]徐晶,董雁.带式输送机纵向振动分析[J].机械,2002,29(2):26-28.
    [87]宋伟刚,赵琛.带式输送机阻力随带速变化规律性的实验研究[J].2001(3):16-18.
    [88]胡宗武,乐晓斌.机械结构概率设计[M].上海,上海交通大学出版社,1995.
    [89]康晓明.电机与拖动[M].北京:国防工业出版社,2005,8.第一版.
    [90]席平原,李耀明,申屠留芳.具有反馈环节的带式输送机动力学仿真[J].农业机械学报,2007,38(10):207-210.
    [91]杨复兴编译.输送带输送机结构、原理与计算[M].北京:煤炭工业出版社,1983.
    [92] Lodewijks G. On the Application of Beam Elements in Finite Element Models of Belt Conveyors,PartⅠ[J].Bulk Solids Handling,1994,14(4):729-737.
    [93] Lodewijks G. On the Application of Beam Elements in Finite Element Models of Belt Conveyors,PartⅡ[J].Bulk Solids Handling,1995,15(4):587-591.
    [94] Pritchard S M,Hesterman D C.Elastic Dynamics in An Overland Belt Conveyor Modeled by Receptances [J].Bulk Solids Handling,2000,20(4),451-457.
    [95]徐荣桥.结构分析的有限元法与MATLAB程序设计[M].北京:人民交通出版社,2006,36-84.
    [96] Lodewijks G.Two Decades Dynamics of Belt Conveyor Systems[J].Bulk Solid Handling,2002,22(2):124-132.
    [97] Surtees A J.Longitudinal stresses Occurring in Long Conveyor Belts during Starting and Stopping [J].1986,6(4):737-741.
    [98]李光布,李儒琼,韦家增.基于几何非线性大型带式输送机动力学仿真[J].中国机械工程,2007,18(1):23-26.
    [99] Morrison W R B .Computer Graphics Techniques For visualizing belt stress waves–An essential aid in The understanding of the stop-start behaviour of Longconveyours [J].Bulk Solids Handling,1988,8(2):221-227.
    [100]张义民.机械振动力学[M].长春:吉林科学技术出版社,2000,第一版.
    [101]尚涛.工程计算可视化与MATLAB实现[M].武汉:武汉大学出版社,2002.
    [102]周金萍,王冉,吴斌.MATLAB 6实践与提高[M].北京:中国电力出版社,2001,.288-322.
    [103]董振海.精通MATLAB7编程与数据库应用[M].北京:电子工业出版社,2007,9
    [104]张振文.带式输送机安全系数的确定[J].煤炭工程,2007,F(10):28-30.
    [105] Funke H ,K?o? nneker F H .Experimental Investigations and Theory for the Desifgn of a Long-Distance Belt Conveyor System [J].Bulk Solids Handling,1988,8(5):567-579.
    [106]王礼立.应力波基础[M].北京:国防工业出版社,2005,8.
    [107]侯友夫,刘肖健,张永忠.矿用钢丝绳芯带式输送机动态特性仿真研究[J].煤炭科学技术,2000,28(1):32-36.
    [108] Ashley J G N,Lodewijks G.Dynamics of Multiple drive belt conveyor systems [J].Part.Part.Syst.Charact.2007(24):365-369
    [109]王广丰.分立传动多滚筒输送带输送机功率配比分析[J].矿山机械,1990(12):21-24.
    [110]马士龙.带式输送机多电机驱动功率平衡问题的研究[D].济南:山东科技大学,2007.
    [111]杨忠林.带式输送机多滚筒驱动的特性研究[D].沈阳:辽宁工程技术大学,2003.
    [112]郑时声,潘广慈.带式输送机运行特性参数的测试方法[J].起重运输机械,1987(6):29-34.
    [113]王世清.双滚筒驱动长距离输送带输送机电动机的功率平衡[J].起重运输机械,1982(5):20-26.
    [114]朱立平,吴明龙.大运量、长运距带式输送机中间驱动技术的研究[J].煤炭学报,2001,26(S10):151-157.
    [115]马兰,鹿志坚,王永谊.转载式多点驱动带式输送机设计计算[J].起重运输机械,2000(9):4-8.
    [116]郑朝科,唐顺华.电力拖动基础[M].上海:同济大学出版社,1996,5.
    [117]邵明亮,贾建章,贾贵忱,等.多机拖动的大型带式输送机功率测试[J].起重运输机械,1994(11):14-19.
    [118]中国工业电器网.三相有功功率变送器/三相无功功率变送器[EB/OL].2010.3. http://www.cnelc.com/ProductShop/.
    [119] Xiang Zhang,Loc Vu-Quoc.Simulation of chute flow of soybeans an using improved tangential force-displacement model [J].Mechanics of Materials 2000(32):115-129.
    [120] Vu-Quoc L,Zhang X,Walton O R.A 3-D discrete-element method for dry granular flows of ellipsoidal particles [J].Comput.Methods Appl.Mech.Engrg,2000(187): 483-528.
    [121] Cundall P A. A computer model for simulating progressive large scale movements in blocky system [C] // Muller Led Proc Symp Int Soc Rock Mechanics.Rotterdam:Balkama A A,1971(1):8-12.
    [122]杨洋,唐寿高.颗粒流的离散元法模拟及其进展[J].中国粉体技术,2006(5):38-43.
    [123] Cundall P A,Strack O D L.The Distinct Element Method as a Tool for Resear-ch in Granular Media:PartⅡ[R].Report to the National Science Foundation,Minnesota: University of M innesota,l979.
    [124] Strack O D L,Cundall P A.The Distinct Element Method as a Tool for Research in Granular Media:PartⅠ[R].Report to the National Science Foundation.Minnesota:University of Minnesota.1978
    [125] Grima M,Delalance A,Sidiroff F,et al .Superficial soils:An attempt to modeling breaching[A].Proceedings of the 8th European Conference of the International Society for Terrain-Vehicle Systems [C].Umea,Sweden,2000:17-24.
    [126] Carrillo A R,West J E,Horner D A,et al.Interactive large scale soil modeling using distributed high performance computing environments [J].The International Journal of High Performance Computing Applications,1999,13(1):33-48.
    [127] Tanaka H,Inooku K,Sunikaw O,et al.Simulation of soil behavior at subsoiling by the distinct element method.Proceedings of the 6th Asia Pacific Conference of the International Society for Terrain-Vehicle Systems [C]. Bangkok,Thailand,2001:194-200.
    [128] Momozu M,Oida A,Yamazaki M,et al .Simulation of a soil loosening process bymeans of the modified Distinct Element Method [J].Journal of Terramechanics,2003,39(4):207-220.
    [129]张锐,李建桥,周长海,等.推土板表面形态对土壤动态行为影响的离散元模拟[J].农业工程学报,2007,23(9):13-19.
    [130]赵永志,程易,金涌.颗粒移动床内不稳定运动的计算颗粒动力学模拟[J].化工学报,2007,58(9):2219-2227.
    [131]武锦涛.移动床中固体颗粒运动与传热的研究[D].浙江,浙江大学,2005.
    [132]何亮.超临速球磨机介质运动三维离散元数值模拟[D].昆明,昆明理工大学,2007.
    [133] Djordjevic N,Shi F N,Morrison R.Determination of lifter design,speed and filling effects in AG mills[J].Minerals Engineering,2004(17):1135-1142.
    [134]黎明.用离散单元法对密相栓流气力输送的数值模拟研究[D].北京,北京化工大学,2001.
    [135] Fralge F Y,Langston P A.Horizontal pneumatic conveying:a 3d distinct element model [J].Gramular Matter,2006(8):67-80.
    [136] M Alspaugh,G Dewick,E Quesenberry.Computer simulation Soves conveyor problems [J].Coal Age,2002(1):28-31.
    [137] Harald Kruggel-Emden,Erdem Simsek,Siegmar Wirtz,et al.A Comparative Numerical Study of particle mixing on Different grate designs through the discrete Element Method [J].Transactions of the ASME,2007,129(11):593-600.
    [138] Landry H,Lague C,Roverge M.Discrete element representation of manure products[J].Computers and Electronics in agriculture,2006(51):17-34.
    [139]海基科技.颗粒系统仿真软件EDEM[EB/OL].2008. http://www.hikeytech.com/p-detail.asp?id=50.
    [140]黄晚清,陆阳,何昌轩,等.球体颗粒随机堆积的三维动态模拟[J].可持续发展的中国交通——2005全国博士生学术论坛(交通运输工程学科)论文集(下册),2005,1454-1458.
    [141] DEM Solutions公司.EDEM 1.3 User Guide.2008.
    [142]刘安源,刘石,潘忠刚.振动给料机中固体颗粒物料运动规律的数值研究[J].中国科学院研究生院学报,2002,19(1):35-42.
    [143]武锦涛,陈纪忠,阳永荣.移动床中颗粒运动的微观分析[J].浙江大学学报(工学版),2006,40(5):864-868.
    [144]朴香兰,王国强,张占强,等.平面转弯颗粒流的离散元模拟[J].吉林大学学报(工学版),2010,40(1):98-102.
    [145]李媛华.基于离散元技术的球磨机参数优化研究[D].长春,吉林大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700