用户名: 密码: 验证码:
透过率起伏相关频谱法水中污染物颗粒检测技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,无论是太湖的蓝藻,还是饮用水杂质超标,都引起人们对水处理问题的密切关注。现有的多参数水质检测仪可同时测量pH值、ORP(氧化还原电位)、TDS(溶解性总固体量)、溶解氧、温度、电导率、盐度等参数,但均未提及水中颗粒物的粒径和颗粒浓度的测量,而颗粒粒径和颗粒浓度是水质检测领域十分重要的参数。在水污染处理过程中,一个很重要的环节就是要对水污染物颗粒进行实时、在线检测,为水处理提供相应的参数。目前,国内外的水质检测方法和手段有很多,但主要依靠取样方式,实时、在线检测手段还很少。
     透过率起伏相关频谱法是一种新的光学颗粒测量方法,可同时测量颗粒粒径分布和浓度。因其光学测量装置简单、操作方便,可实现对水中污染物颗粒的实时、在线检测。本文中将一束激光经分光器分成两束光后照射水中颗粒系统,当水中存在污染物颗粒时,透射光由于颗粒的散射和吸收产生衰减并呈现脉动(起伏)特征。通过对两束光的透过率起伏信号的互相关处理,获得透过率起伏互相关频谱,由此得到颗粒系统的流速,以该流速作为已知参量应用到任何一束光的透过率起伏信号的自相关处理中,再利用反演算法可得到水中低浓度、微米级小颗粒的粒径和浓度的信息。本文共分六章对透过率起伏相关频谱法测量水中污染物颗粒技术进行详尽阐述:
     第一章主要对颗粒测量技术作了背景介绍,并对水中颗粒物做了简单介绍,还着重介绍了透过率起伏相关频谱法的发展过程及意义。
     第二章讲述了透过率起伏相关频谱法的一些基本概念和基础知识,为后文对透过率起伏相关频谱法的测量原理打下基础。
     第三章讨论了透过率起伏互相关频谱法和透过率起伏自相关频谱法的特点,给出数学模型、简单的理论推导和理论计算曲线,并提出本文采用的测量原理。当光束直径为20微米时,测量范围大于1微米,正好满足对水中污染物颗粒的测量要求。
     以第三章理论计算为基础,在第四章中给出模拟计算结果。首先研究了单层颗粒系统,颗粒之间不存在相互交叠,只考虑层结构效应;然后通过纯颗粒交叠和不同层数的模拟计算数据进行分析比较,此时颗粒浓度很低、层数很大,层结构效应被剔除,仅颗粒交叠效应存在;最后,对三维颗粒系统(即层结构效应和颗粒交叠效应同时存在的情况)进行模拟计算。
     第五章给出了水中污染物颗粒的测量结果。对实验装置设计做了简要介绍,根据测量原理,以水中加入的豆奶粉为例,得到透过率起伏互相关频谱曲线,从而得到颗粒系统的流速。该流速可在第六章反演计算中作为已知参量。最后,对水中加入的豆奶粉、藕粉和三种不同粒径珍珠粉的透过率起伏信号做自相关处理,得到透过率起伏自相关频谱特征函数曲线。
     第六章介绍了几种常用的反演算法,针对本课题的特点,采用改进的Chahine循环方法反演计算得到颗粒的粒径分布和浓度信息。本文对低浓度的微米级颗粒的实验数据进行反演、比较,从而得到合理的测量结果。
In recent years, whether cyanobacteria in Taihu Lake or drinking excessiveimpurities are causing people to play close attentions to water treatment. Theexisting multi-parameter water detectors can simultaneously measure pH, ORP(redox potential), TDS (the contents of total dissolved solids), dissolved oxygen,temperature, conductivity, salinity and so on, but don’t involve the measurementsof particle size and particle concentration, which are both the very importantparameters in the field of water quality inspection. In the process of the waterpollution treatment, an important part is the real-time and on-line measurement forthe water pollutant particles, which will provide corresponding parameters forwater treatment. Up to now, there are many methods of the water qualityinspection in the domestic and international literature, in which the samplingmethod are utilized mainly and the real-time and online detection methods areused rarely.
     The transmission fluctuation spectrometry with correlation is a new opticalmethod developed in recent years, in which both the particle size distribution andparticle concentration can be measured simultaneously. Due to the simple opticalsetup, the transmission fluctuation spectrometry with correlation can be used asreal-time, online technique for measuring the pollutant particles in water. Twobeams of light produced by a laser through optical beam splitter irradiate thepollutant particles in water. Due to the absorption and the scattering of thepollutant particles in water, the transmitted lights produce attenuations and showfluctuating characteristics. The transmission fluctuation spectrum may be obtainedwith correlation techniques. One of correlation techniques is the spatialcorrelation (transmission fluctuation spectrometry with spatial correlation,TFS-SC), in which two parallel beams with a separation between each other areemployed and the expectancy of the transmission product (ETP) is measured as afunction of the beam separation, which includes the information on the flowvelocity. This velocity is regarded as known parameter in the transmissionfluctuation spectrometry with temporal correlation or auto-correlation (shortlyTFS-TC or TFS-AC). The particle size distributions and concentrations are extracted from the experimental data with the modified Chahine iterations. Sixparts will be given for the transmission fluctuation spectrometry with thecorrelation.
     In the first part of this thesis, the background of particle measurements, theparticle in water, and the development of the transmission fluctuationspectrometry are introduced.In the second part, concepts and knowledges on the transmission fluctuationspectrometry with correlation are introduced, which are the basis of the latterdepictions.
     The third to sixth chapters are the core parts of this thesis. In the third chapter, onthe basis of the transmission fluctuation spectrometry with spatial correlation, thefeatures of TFS-SC and TFS-AC, the theoretical model, the theoretical derivationand the theoretical calculation curves are given. And the measurement principle ofthe transmission fluctuation spectrometry with correlation is presented. As thebeam diameter is20μm, the particle size is more than1μm, just meeting therequirement for measuring the pollutant particles in water.On the basis of the third chapter, the numerical simulatuins on transmissionfluctuation spectrometry with correlation are given in the fourth chapter. Firstly,the monolayer particle system is discussed. The numerical simulation on themonolayer is performed only with the monolayer structure and without theparticle overlapping. Alternatively, this may be simulated either by assuming alarge number of layers, each layer containing very few particles only, or byassuming a single, dense monolayer containing non-interacting particles, wherebyparticles are allowed to interpenetrate with each other. The dense monolayercontaining N non-interacting particles is equivalent to a3-dimensional particlesuspension containing N layers, each layer containing one particle only. At the last,the numerical simulatuins of3-dimensional particle system is given (i.e. theparticle overlapping and the monolayer structure exsit simultaneously).
     The fifth chapter presents the measurment results of the pollution particles inwater. The experimental device design is introduced briefly and the samples arethe soybean milk powders, the lotus root powders and three kinds of pearlpowders dispersed in water. The flow velocity of the particle system is obtainedby the transmission fluctuation spectrometry with spatial correlation, which will be taken as a known parameter in the TFS-AC. Finally, the transition functioncurves based on the soybean milk powder, the lotus root powder and the pearlpowders in water are obtained.
     In the sixth chapter, inversion algorithms are introduced. Considering thecharacteristics of this subject, the particle size distributions and concentrations areextracted with the modified Chahine iterations from the experimental data.Reasonable results are obtained for particles in the range of microns and at lowconcentrations.
引文
[1].蔡小舒,苏明旭,沈建琪等.颗粒粒度测量技术及应用.北京:化学工业出版社,2010.
    [2].中国科学技术协会,中国颗粒学会.颗粒学学科发展报告.中国科学技术出版社,2010.
    [3]. D W Cooper. Monitoring contaminant particles in gases and liquids: areview. In Mittal ed. Particles in gases and Liquids (1). New York: PlenumPress,1989.
    [4]. B Scarlett.25Years of particle size conferences, Particle Size Analysis.New York: Plenum Press,1991.
    [5]. M. Polke, Process control engineering, VCH, Weinheim,1994.
    [6]. D. J. Holve; T. L. Harvill, In-process particle size distributionmeasurements and control,6th European Symposium, ParticleCharacterization, Nurnberg,21-23March1995, Preprints,291-300.
    [7]. Federal Standard No.209E,1992. Federal Standard Clean Room andWorkstation Requirements, Controlled Environment. Washington D C:General Services Administration,1992.
    [8].中华人民共和国建设部. GBJ73-84,洁净厂房设计规范.北京:建筑工业出版社,1984.
    [9].国家技术监督局. GB11446.9-89,电子级水中微粒的仪器测量方法.北京:中国电子技术标准化研究所,1990.
    [10].杨艳玲,李星,李圭白.水中颗粒物的检测及应用.北京:化学工业出版社,2007.
    [11].高乃云,李富生,汤浅晶,乐林生,周云.原水及常规处理出水的SS粒径分布.中国给水排水,2001,17:70-73.
    [12].(美)Allen T著(第三版).赖华璞等译.颗粒大小测定.北京:中国建筑工业出版社,1984.
    [13]. Allen T. Particle Size Measurement.5th ed. Chapman&Hall,1997.
    [14].王乃宁等.颗粒粒径的光学测量技术及应用.北京:原子能出版社,2000.
    [15].[日]三轮茂雄,日高重助著.杨伦,谢涉娴译.分体工程实验手册,北京:中国建筑工业出版社,1987.
    [16].童钴嵩编著.颗粒粒度与表面测量原理.上海:上海科学技术文献出版社,1989.
    [17].彭昌盛,宋少先,谷庆宝编著.扫描探针纤维技术理论与应用.北京:化学工业出版社,2007.
    [18]. Refael C. Gonzalez, Tichard E. Woods.阮秋琦等译.数字图像处理(第二版),电子工业出版社,北京,2005.
    [19]. Refael C. Gonzalez, Tichard E. Woods.阮秋琦等译.数字图像处理(MATLAB版),电子工业出版社,北京,2005.
    [20]. Scarlett B. Theoretical Derivation of the Response of a Coulter Counter.Preprint of2nd European Symposium on Particle CharacterizationPARTEC. Nuernberg,1979.
    [21]. Lines R W. The Electrical Sensing Zone Method, The Coulter Principle. In:Liquid-and Surface-borne Particle Measurement Hand Book. New York:Maecel Dekker, Inc.,1996.
    [22].王乃宁,张宏建. A study of the accuracy of optical Fraunhofer diffractionsize analyzer. Particulate Science and Technology,1986,4(4):403-408.
    [23].张宏建. FDAMS激光微粒测量技术的理论及其应用研究.上海机械学院博士论文,1988.
    [24].沈建琪,蔡小舒,王乃宁.小角前向散射激光粒度仪中折射率对测量结果的影响.中国激光,1999,26:312-316.
    [25].沈建琪,王乃宁.小角前向散射激光粒度仪光电探测原件的对中问题.上海理工大学学报,1998,20(1):30-34.
    [26].沈建琪.延伸小角前向散射法测量下限的研究.上海:上海理工大学,1999.
    [27]. SALD Series, Laser Diffraction Particle Size Analyzer. ShimadzuInstruments (产品说明书).
    [28].王乃宁. Nassemessung in Nederdrckturbinen mit Lichtsonden.Dissortation der Universetat. Stuttgart,1982.
    [29].王乃宁.光学全散射微粒测量方法的改进和发展.上海机械学院学报,1987,9(4):7-16.
    [30].蔡小舒.光学全散射法测粒技术及其在水蒸气测量中应用的研究.上海机械学院博士论文,1991.
    [31].蔡小舒.光全散射法测量微粒尺寸分布的研究.光学学报,1991,11(11):49-53.
    [32].蔡小舒. Using the light extinction method to measure the particle sizedistribution. Proceedings of the2nd World Congress on ParticleTechnology, Part1,378-385, Sept.19-22,1990, Kyoto, Japan.
    [33]. U Feller, B Wessely and S Ripperger. Particle Size DistributionMeasurement by Statistical Evaluation of Light Extinction Signals.7thEuropean Symposium Particle Characterization. Nurnberg, Germany,1998.
    [34]. J S Wyler. Moisture measurements in a low-pressure steam turbine usingLaser Light Scattering probe. Trans. ASME J. Eng. for Power, Oct.,1978.
    [35]. F Kreitmeier. An investigation of flow in a low-pressure wet steam modelturbine and its use for determining wetness losses. IME,1979.
    [36]. P T Walters. Optical measurement of water droplets in wet steam flows.Instn. Mech. Engrs. Conf. Publ.3,1973.
    [37].卫敬明,蔡小舒,张志伟等.全散射法测量颗粒粒径分布技术的进展.上海机械学院学报,1992,14(3):11-19.
    [38].屠琅琦.应用激光技术测量微粒的原理和方法.上海机械学院硕士研究生论文,1987.
    [39]. H G Barth. Modern Methods of Particle Size Analysis. John Wiley&Sons,London,1984.
    [40]. Airborne Particle Counting Systems,美国Particle Scientifics HIACRoyco公司产品说明书.
    [41]. Don Holue and Sidvey A. self: Optical particle sizing for in situmeasurements. Applied Optics,1979,18(10).
    [42]. J. Gregory, Turbidity Fluctuations in Flowing Suspensions. Journal ofColloid and Interface Science, Vol.105, No.2,1985,357-371.
    [43]. U. Feller, B. Wessely and S. Ripperger, Particle Size DistributionMeasurement by Statistical Evaluation of Light Extinction Signals.7thEuropean Symposium on Particle Characterization.10-12March,1998,Nurnberg, Preprints1,367-376.
    [44]. B. Wessely, Extinktionsmessung von Licht zur Charakterisierumgdisperser Systeme. VDI-Verlag, Düsseldorf,1999.
    [45]. U. Riebel, An Estimate on Some Statistical Properties of ExtinctionSignals in Dilute and Concentrated Suspensions. Part. Part. Syst. Charact.8(1991),95-99.
    [46]. U, Kr uter, Grundlagen zur in-situ Partikelgr enanalys mit Licht undUltraschall in konzentrierten Partikelsystemen. Dissertation, Karlsruhe1995.
    [47]. M. Breitenstein, Grundlagnuntersuchung zur statistischenPartikelgr enspektrometriemittels Auswertung der Transmissionsfluktuation von Licht in dispersen Systemen. Dissertation, Cuttus2000.
    [48]. J. Shen, Particle size analysis by transmission fluctuation spectrometry:Fundamentals and case studies. Cuvillier Verlag G ttingen,2003.
    [49]. J. Shen, U. Riebel, and M. Breitenstein, et al, Fundamentals ofTransmission Fluctuation Spectrometry with Variable Spatial Averaging.China Particuology1(2003),242-246.
    [50].沈建琪,蔡小舒,于彬,许亚敏:基于消光起伏信号的颗粒测量技术,中国工程热物理学会多相流年会,2006年,重庆,808-816.
    [51]. Jianqi Shen, Bin Yu, Yamin Xu, Feng Xu and Jiaqi Shen. Particle sizing byspectral analysis on transmission fluctuations. Powder Technology, Volume166, Issue2,21August2006,91-99.
    [52].许亚敏,沈建琪.消光起伏光谱法高浓度效应的模拟计算,《中国激光》,2006,33(1):253-260.
    [53].许亚敏,于彬,刘蕾,沈建琪.基于二阶低通滤波器的消光起伏光谱测量结果,《光学学报》,2006,26:1495-1500.
    [54]. Xu Y, Shen J, Cai X, et al. Particle size analysis by transmissionfluctuation spectrometry with band-pass filters. Powder Technology,2008,184:291-297.
    [55]. Xu Y, Shen J, Reibel U, et al. Particle analysis on concentrated particlesuspensions by transmission fluctuation spectrometry with band-passfilters, part one: Simulation. Measurement Science and Technology.doi:10.1088/0957-0233/21/6/065105.
    [56]. Xu Y, Shen J, Reibel U, et al. Particle analysis on concentrated particlesuspensions by transmission fluctuation spectrometry with band-passfilters, part Two: Experimental Results. Measurement Science andTechnology. doi:10.1088/0957-0233/21/6/065106.
    [57].许亚敏,沈建琪,蔡小舒.基于带通滤波器的透过率起伏信号频谱特征,《光学学报》,2010,30(11).
    [58]. Shen J, Xu Y, Yu B, et al. Signal processing in transmission fluctuationspectrometry with band-pass filters. America Institute of PhysicsConference Proceeding,2007,914:226-231.
    [59]. Shen J, Xu Y, Yu B, et al. Transmission fluctuation method for particleanalysis in multiphase flow. International Journal of Multiphase Flow,2008,34:931-937.
    [60]. J. Shen, U. Riebel, X. Guo. Transmission Fluctuation Spectrometry withSpatial Correlation. Part. Part. Syst. Charact.22(2005):24-37.
    [61]. J. Shen, U. Riebel, and X. Guo. Measurements on Particle SizeDistribution and Concentration by Transmission Fluctuation Spectrometrywith Temporal Correlation. Optics Letters Vol.30, No.16/August15,2005:2098-2100.
    [62]. Guo, X.; Riebel, U.. Experimental Study on Particle Size Distribution andConcentration Using Transmission Fluctuation Spectrometry with theAutocorrelation Technique. Part. Part. Syst. Charact.22(2005):161-171.
    [63].于彬,沈建琪:无限细光束中消光起伏时间相关谱法高浓度效应的模拟,光学学报,Vol.27(7),2007年,1309-1315.
    [64]. Bin Yu, Jianqi Shen: Simulations on Particle Overlapping of TransmissionFluctuation Spectrometry with Temporal Correlation, The5th InternationalSymposium on Measurement Techniques for Multiphase Flows,Dec.10-13,2006, Macau, China.
    [65]. Bin Yu, Jianqi Shen, Yamin Xu, Ulrich Riebel, Xiaoai Guo: Measurementson Particle Size Distribution and Concentration by TransmissionFluctuation Spectrometry with Temporal Correlation. Part. Part. Syst.Charact.25(2008),231-243.
    [66]. Bin Yu, Jianqi Shen, Yamin Xu, Huarui Wang, High Concentration Effectsof Transmission Fluctuation Spectrometry with Temporal Correlation. The6th International Symposium on Measurement Techniques for MultiphaseFlows. Journal of Physics: Conference Series147(2009)012085.(IOPPublishing).
    [67]. Bin Yu, Jianqi Shen, Yamin Xu, Huarui Wang, Yuehuan Wei, Haitao Yu:Effects of Particle Overlapping on Transmission Fluctuation Spectrometrywith Temporal Correlation. Chemical Engineering Communications.197(2)(2010),134-144.
    [68]. U. Riebel, Fundamentals of Process Engineering, Particle Technology.BTU Cottbus,1994.
    [69]. U. Riebel, P. Hickl, Dense Monolayers of Monodisperse Opaque Spheres:Transmission and Diffraction in the Fraunhofer Domain.Part.Part.Syst.Charat.10(1993),201-211.
    [70]. U. Riebel, U. Kr uter, Extinction of Radiations in Sterically InteractingSystems of Monodisperse Spheres. Part1: Theory. Part.Part.Syst.Charat.11(1994),212-221.
    [71]. U. Kr uter, U. Riebel, Extinction of Radiations in Sterically InteractingSystems of Monodisperse Spheres. Part2: Experimental Results.Part.Part.Syst.Charat.12(1995),132-138.
    [72]. J. D. Gaskill, Linear systems, Fourier Trasforms and Optics. John Wiley&Sons,1978.
    [73]. F. S. Harris, Light Diffraction Patterns. Appl. Opt.3(1964),909-913.
    [74]. S. A. Akhmanov, S. Y. Nikitin, Physical Optics, Clerendon Press. Oxford,1997.
    [75]. Kr uter, U.: grundlagen zur in-situ Partikelgr enanalyse mit Licht undUltraschall in konzentrierten Partikelsystemen, Dissertation, Karlsruhe,1995.
    [76]. Breitenstein, M.: Grundlagnuntersuchung zur statistischenPartikelgr enspektrometrie mittels Auswertung derTransmissionsfluktuation von Licht in dispersen Systemen, Dissertation,Cottbus,2000.
    [77]. Breitenstein, M.; Kr uter, U.; Riebel, U.: The Fundamentals of ParticleSize Analysis by Transmission Fluctuation Spectrometry. Part1: A Theoryon Temporal Transmission Fluctuations in Dilute Suspensions. Part. Part.Sys. Charact.16(1999),249-256.
    [78]. Breitenstein, M.; Riebel, U.; Shen, J.: The Fundamentals of Particle SizeAnalysis by Transmission Fluctuation Spectrometry. Part2: A Theory onTransmission Fluctuations with Combined Spatial and Temporal Averaging.Part. Part. Sys. Charact.18(2001),134-141.
    [79]. Shen, J.; Riebel, U.: The Fundamentals of Particle Size Analysis byTransmission Fluctuation Spectrometry. Part3: A Theory on TransmissionFluctuations in a Gaussian Beam and with Signal Filtering. Part. Part. Syst.Charact.20(2003),94-103.
    [80]. Shen, J.; Riebel, U.: Particle Size Analysis by Transmission FluctuationSpectrometry: Experimental Results Obtained with a Gaussian Beam andAnalog Signal Processing. Part. Part. Syst. Charact.20(2003),250-258.
    [81].沈建琪,许亚敏:消光起伏法中的颗粒交叠效应,中国颗粒学会年会,2004年8月(过程工程学报2004年第4卷增刊,14-22).
    [82]. B. D. Ripley, Spatial Statistics. Wiley, New York,1981.
    [83]. Ripoll, M. S.; Tejero, C. F.: Approximate Analytical Expression for theDirect Correlation Function of Hard Discs within the Percus-YevickEquation [J]. Molecular Physics,1995,85:423-428.
    [84].沈建琪,蔡小舒,于彬,消光起伏自相关光谱法颗粒测量技术,工程热物理学报,Vol.27(5),2006:795-798.
    [85].沈建琪,蔡小舒,郭小爱等,消光起伏频谱的时间相关处理,中国工程热物理学会2004年多相流学术年会论文集,2004.上海,607-616;工程热物理学报,2005,26(3):455-458.
    [86].沈建琪,蔡小舒,于彬,消光起伏自相关光谱法颗粒测量技术,中国工程热物理学会第十一届年会论文集多相流,2005年,北京:华北电力大学,551-559.
    [87]. D. L. Philips. A Technique for the Numerical Solution of Certain IntegralEquations of the First Kind, J. Ass. Comp. Mach.(1962):84-97.
    [88]. A. N. Tikhonov, V. Y. Arsenin. Solution of Ill-Posed Problems. Wiley, NewYork,1977.
    [89]. P. C. Hansen. Analysis of Discrete Ill-posed Problems by Means of theL-Curve. SIAM Rev,34(1992):561-580.
    [90]. P. C. Hansen, D. C. O’Leary. The Use of the L-curve in the Regularizationof Discrete Ill-posed Problems. SIAM J. Sci. Comp.14(1993):1487-1503.
    [91]. G. E. Backus, J. F. Gilbert. Numerical Applications of a Formalism forGeophysical Inverse Problems. Geophys, J. Roy. Astron. Soc.13(1967):247-276.
    [92]. S. Twomey. Comparison of Constrained Linear Inversion and an IterativeNon-linear Algorithm Applied to the Indirect Estimation of Particle SizeDistributions. J. Comp. Phys.18(1975):188-200.
    [93]. J. Wang, S. Xie, Y. Zhang,&W. Li. Improvecd Projection Algorithm toInvert Forward Scattered Light for Particle Sizing. App. Opt. August10(2001):3937-3945.
    [94]. M. T. Chahine: Determination of the temperature profile in an atmospherefrom its outgoing radiance, J. Opt. Soc. Am.58,1968,1634-1637.
    [95]. S. Twomey: Comparison of constrained linear inversion and an iterativenon-linear algorithm applied to the indirect estimation of particle sizedistributions, J. Comput. Phys.18,1975,188-200.
    [96]. H. Grassl: Determination of aerosol size distributions from spectralattenuation measurements, App. Opt.10,1971,2534-2538.
    [97]. R. Santer and M. Herman: Particle size distributions from forwardscattered light using the Chahine inversion scheme, App. Opt.22,1983,2294-2301
    [98]. F. Ferri, M. Giglio and U. Perini: Inversion of light scattering data fromfractals by the Chahine iterative Algorithm, App. Opt.28,1989,3074-3082.
    [99]. F. Ferri, A. Bassini and E. Paganini: Modified Version of the ChahineAlgorithm to Invert Spectral Extinction Data for Particle Sizing, App. Opt.34,1995,5830-5839.
    [100]. F. Ferri, G. Righini and E. Paganini: Inversion of Low-angle ElasticLight-Scattering Data with a New Method Devised by Modification of theChahine Algorithm, App. Opt.36,1997,7539-7550.
    [101]. R. Hitzenberger and R. Rizzi: Retrieved and Measured Aerosol Mass SizeDistributions: A Comparison, App. Opt.25,1986,546-553.
    [102]. G. R. Markowski: Improving Twomey’s Algorithm for Inversion ofAerosol Measurement Data, Aerosol Sci. Technol.7,1987,127-141.
    [103]. W. Winklmayr, H. C. Wang and W. John: Adaptation of the TwomeyAlgorithm to the Inversion of Cascade Impactor Data, Aerosol Sci.Technol.13,322-331.
    [104]. N. Wolfson, Y. Mekler and J. H. Joseph: Comparative study of inversiontechniques. Part II: Resolving power, conservation of normalization andsuperposition principles, J. Appl. Meteorol.18,1979,556-561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700