用户名: 密码: 验证码:
基于关联规则与决策树的预测方法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关联规则挖掘(mining association rule)与决策树(decision tree)是模式识别、人工智能、数据挖掘等领域的研究热点,在商业决策、医院病人诊断与治疗规律分析等领域都有着广泛的应用,但目前面临缺少基于特定数据集的扩展研究、预测精度难以进一步提高等诸多挑战。为此,本文研究了关联规则挖掘与决策树算法,重点对关联规则挖掘的扩展研究,包括生成规则数量、挖掘支持度较低的长项目集关联规则以及决策树算法中属性选择标准和多值属性多类标数据决策树的构建等方面进行了深入探讨,开展了如下创新性研究。
     (1)分析了支持度-置信度-兴趣度模型下的参数意义,并利用回归方法设计了多种规则条数与参数之间的方程。利用复相关系数检验了方程的拟合效果,并采用显著性检验来验证参数的系数是否显著为零。将复相关系数较大的回归方程作为拟合的最优方程。并利用冠心病数据和University of California Irvine(UCI)数据进行了验证。通过选定的最优方程,可以较好地预测给定参数下的规则的数量,同时优化参数的选择以及确定参数的选择范围。
     (2)提出新的关联规则挖掘模型:模糊递减支持度,置信度。在此基础上,通过分析生成的规则前件与后件的相关性,提出了3种修正模型:模糊递减支持度,置信度,兴趣度模型;模糊递减支持度,双向置信度,兴趣度模型;模糊递减支持度,重合度,兴趣度模型。根据医院采集的冠心病数据,提取中医的辨证相关因素和病人的用药数据。实验结果表明,本文提出的模型不仅验证了已有的辨证与用药规律,而且能够挖掘出多因素组合的辨证和多种药物之间的配伍规律。
     (3)分析了已有的基于变精度粗集的决策树分类算法,提出了两种新的属性选择方法。第一种属性选择方法,不仅考虑当前结点的属性值个数,而且考虑下层结点的变精度明确区大小,即同时考虑树的两层结点。通过新的属性选择方法,不仅克服了ID3算法中的不足,而且具有变精度粗糙集的优点。第二种属性选择方法,使用了一种综合考虑分类精度和分支数量的属性选择新标准——加权粗糙度和复杂度。同时在结点停止分裂条件中引入了支持度和置信度,提高决策树的泛化能力。为降低噪声数据和缺失值的影响,算法使用了基于匹配度的类别预测方法。通过对比实验,验证了本文提出的方法的有效性。
     (4)提出了3种新的多值属性和多类标数据的决策树算法。算法中,首先提出了新的孩子结点的类标集相似度计算公式来评定属性分类效果,综合考虑两个多类标集合中元素同时出现或不出现的情况,使类标集相似度的计算更加全面和准确。其次,提出了新的结点停止分裂条件,使得结点的类标集标注更加准确。最后,给出了相应的预测方法。通过与已有的算法进行比较,验证了本文提出的算法的分类效果。文中提出的分类算法更适合处理多值属性和多类标数据的分类问题。
Mining association rule and decision tree is a hot research topic in various fields like machine learning, artificial intelligence, data mining, and has been applied to business decision, the laws of diagnose and drug using, etc. But it faced many challenges such as the shortage of special dataset based expanded research, and hard-to-improved precision. This paper analyzes association rule mining and decision tree algorithm, especially for expanded research about association rule mining and decision tree classifier, which are numbers of rules, data-validity, long itemsets with low support, attribute selection criterion and constructing decision tree algorithms with multi-valued and multi-labeled data, are studied in depth. Some improved approaches are proposed as follows.
     (1) We analyze the meaning of parameters under this model: support-confidence-interest and designed a variety of equations between the number of rules and parameters by using regression method.we use Multiple Correlation Coefficients to test the fitting effects of equation and use significance test to verify whether the coefficients of parameters are significantly zero. The regression equation which has a larger Multiple Correlation Coefficient will be as the optimal equation fitted. Through the selected optimal equation, we can predict the number of rules under the given parameters, while optimizing the choice of three parameters and determining the range of parameters.
     (2) A new association rule mining framework is proposed:fuzzy decreasing support-confidence that finds all itemsets that satisfy a length-decreasing support constraint. On this basis, by analyzing the correlation between the antecedent and the consequent of the generated rules, we further propose three correction frameworks:1) Fuzzy Decreasing Support, Confidence, Interestingness;2) Fuzzy Decreasing Support, Bidirectional Confidence, Interestingness;3) Fuzzy Decreasing Support, Coincidence, Interestingness. We extract data about the relevant factors of Syndrome Differentiation and the patients' medication from the coronary heart disease data collected from the hospitals. The experimental results show that the frameworks proposed in this paper not only verify the existing Syndrome Differentiation and regular patterns of medication, but also discover Syndrome Differentiation with a combination of factors and medicine compatibilities among multiple drugs.
     (3) This paper analyzes the existing decision tree classification algorithms, and proposes two new attribute selection methods. The first method MVPRSDT:When the algorithm selects a new attribute, not only the number of attribute values in the current node, but also the size of variable precision explicit region in the lower node is taken into consideration. In other words, the size of variable precision explicit region of attributes in two levels of the decision tree is used. Through the new approach to selection of attributes, the algorithm overcome the lack of ID3algorithm and also has the advantages of variable precision rough set. The second method IVPRSDT:This algorithm uses a new standard of attribute selection which considers comprehensively the classification accuracy and number of attribute values, that is, weighted roughness and complexity. At the same time support and confidence are introduced in the conditions of the corresponding node to stop splitting, and they can improve the algorithm's generalization ability. To reduce the impact of noise data and missing values, IVPRSDT uses the label predicted method based on match. The comparing experiments on some data sets from the UCI Machine Learning Repository prove the effect.
     (4) We present three new decision tree algorithms for multi-valued and multi-labeled data. In these algorithms, three new measuring formulas calculating the similarity between two label-sets in the child nodes are firstly proposed. They comprehensively consider both the condition which the elements appear or not appear in the two label-sets at the same time as well as the boundary condition, and make the similarity calculations in the label-sets more comprehensive and accurate. Moreover, we propose the new conditions of the corresponding node to stop splitting as well as the corresponding prediction method. The experiment compared with the existing algorithms proves that these algorithms have the higher accuracy, and are more suitable for dealing with multi-valued and multi-labeled data.
引文
[1]Jiawei Han, Micheline Kamber数据挖掘概念与技术.北京:机械:工业出版社,2002.
    [2]Agrawal R, Srikant R. Fast algorithms for mining association rules[C]. In:Proceedings of the 1994 international conference on very large data bases (VLDB'94), Santiago, Chile,1994:487-499.
    [3]Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation[C]. In:Proceeding of the 2000 ACM-SIGMOD international conference on management of data (SIGMOD'00), Dallas, TX,2000:1-12.
    [4]Zaki MJ. Scalable algorithms for association mining [J]. IEEE Trans Knowl Data Eng,2000,12: 372-390
    [5]Park JS, Chen MS, Yu PS. An effective hash-based algorithm for mining association rules[C]. In: Proceeding of the 1995 ACM-SIGMOD international conference on management of data (SIGMOD'95), San Jose, CA,1995:175-186.
    [6]Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases [C]. In:Proceeding of the 1995 international conference on very large data bases (VLDB'95), Zurich, Switzerland,1995:432-443
    [7]Toivonen H. Sampling large databases for association rules [C]. In:Proceeding of the 1996 international conference on very large data bases (VLDB'96), Bombay, India,1996:134-145.
    [8]Brin S, Motwani R, et al. Dynamic itemset counting and implication rules for market basket analysis [C]. In:Proceeding of the 1997 ACM-SIGMOD international conference on management of data (SIGMOD'97), Tucson, AZ,1997:255-264.
    [9]Park JS, Chen MS, Yu PS. Efficient parallel mining for association rules [C]. In:Proceeding of the 4th international conference on information and knowledge management, Baltimore, MD,1995: 31-36.
    [10]Agrawal R, Shafer JC. Parallel mining of association rules:design, implementation, and experience[J]. IEEE Trans Knowl Data Eng 1996,8:962-969.
    [11]Cheung DW, Han J, Ng V et al. A fast distributed algorithm for mining association rules[C]. In: Proceeding of the 1996 international conference on parallel and distributed information systems, Miami Beach, FL,1996:31-44.
    [12]Zaki MJ, Parthasarathy S, Ogihara M et al. Parallel algorithm for discovery of association rules[J]. Data mining knowl discov,1997,1:343-374.
    [13]Geerts F. Goethals B, Bussche J. A tight upper bound on the number of candidate patterns[C]. In:Proceeding of the 2001 international conference on data mining (ICDM'01), San Jose, CA.2001: 155-162.
    [14]崔贯勋,李梁,王柯,等.关联规则挖掘中Apriori算法的研究与改进[J].计算机应 用,2010,30(11):2952-2955.
    [15]张云涛,于治楼,张化祥.关联规则中频繁项集高效挖掘的研究[J].计算机工程与应用,2011,47(3):139-141.
    [16]Agarwal R, Aggarwal CC, Prasad VVV. A tree projection algorithm for generation of frequent itemsets[J]. Parallel Distribute Compute,2001,61:350-371.
    [17]Liu J, Pan Y, Wang K et al. Mining frequent item sets by opportunistic projection[C]. In: Proceeding of the 2002 ACM SIGKDD international conference on knowledge discovery in databases (KDD'02), Edmonton, Canada,2002:239-248.
    [18]Srikant R, Agrawal R. Mining generalized association rules[C]. In:Proceeding of the 1995 international conference on very large data bases (VLDB'95), Zurich, Switzerland,1995:407-419.
    [19]Han J, Kamber M. Data mining:concepts and techniques[C].2nd edn. Morgan Kaufmann, 2006.
    [20]Kamber M, Han J, Chiang JY. Metarule-guided mining of multi-dimensional association rules using data cubes[C]. In:Proceeding of the 1997 international conference on knowledge discovery and data mining (KDD'97), Newport Beach, CA,1997:207-210.
    [21]Pasquier N, Bastide Y, Taouil R et al. Discovering frequent closed itemsets for association rules[C]. In:Proceeding of the 7th international conference on database theory (ICDT'99), Jerusalem, Israel,1999:398-416.
    [22]Pei J, Han J, Mao R. CLOSET:an efficient algorithm for mining frequent closed itemsets [C]. In:Proceeding of the 2000 ACM-SIGMOD international workshop data mining and knowledge discovery (DMKD'00), Dallas, TX,2000:11-20.
    [23]Zaki MJ, Hsiao CJ. CHARM:an efficient algorithm for closed itemset mining[C]. In: Proceeding of the 2002 SIAM international conference on data mining (SDM'02), Arlington, VA, 2002:457-473.
    [24]Wang J, Han J, Pei J. CLOSET+:searching for the best strategies for mining frequent closed itemsets[C]. In:Proceeding of the 2003 ACM SIGKDD international conference on knowledge discovery and data mining (KDD'03), Washington, DC,2003:236-245.
    [25]Grahne G, Zhu J. Efficiently using prefix-trees in mining frequent itemsets[C]. In:Proceeding of the ICDM'03 international workshop on frequent itemset mining implementations (FIMI'03), Melbourne, FL,2003:123-132.
    [26]Liu G, Lu H, Lou W et al. On computing, storing and querying frequent patterns[C]. In: Proceeding of the 2003 ACM SIGKDD international conference on knowledge discovery and data mining (KDD'03), Washington, DC,2003:607-612.
    [27]Bayardo RJ. Efficiently mining long patterns from databases[C]. In:Proceeding of the 1998 ACM-SIGMOD international conference on management of data (SIGMOD'98), Seattle, WA,1998: 85-93.
    [28]Burdick D, Calimlim M, Gehrke J. MAFIA:a maximal frequent itemset algorithm for transactional databases[C]. In:Proceeding of the 2001 international conference on data engineering (ICDE'01), Heidelberg, Germany,2001:443-452.
    [29]钱雪忠,惠亮.关联规则中基于降维的最大频繁模式挖掘算法[J].计算机应用,2011,31(5):1339-1343
    [30]肖波,张亮,徐前方,等.快速统一挖掘超团模式和极大超团模式[J].2010,21(4):659-671
    [31]Xiaobing Liu, Kun Zhai, Witold Pedrycz. An improved association rules mining method[J]. Expert Systems with Applications,2012,39:1362-1374
    [32]Pan F, Cong G, Tung AKH et al. CARPENTER:finding closed patterns in long biological datasets[C]. In:Proceeding of the 2003 ACMSIGKDD international conference on knowledge discovery and data mining (KDD'03),Washington, DC,2003:637-642.
    [33]Liu H, Han J, Xin D et al. Mining frequent patterns on very high dimensional data:a top down row enumeration approach[C]. In:Proceeding of the 2006 SIAM international conference on data mining (SDM'06), Bethesda, MD,2006:280-291.
    [34]Pei J, Han J, Lakshmanan LVS. Mining frequent itemsets with convertible constraints[C]. In: Proceeding of the 2001 international conference on data engineering (ICDE'01), Heidelberg, Germany,2001:433-332.
    [35]Yu JX, Chong Z, Lu H et al. False positive or false negative:mining frequent itemsets from high speed transactional data streams[C]. In:Proceeding of the 2004 international conference on very large data bases (VLDB'04), Toronto, Canada,2004:204-215.
    [36]Yun U, Leggett J. Wfim:weighted frequent itemset mining with a weight range and a minimum weight[C]. In:Proceeding of the 2005 SIAM international conference on data mining (SDM'05), Newport Beach, CA,2005:636-640.
    [37]Geng L, Hamilton H J. Interestingness measures for data mining:a survey. ACM Computing Surveys.2006,38 (3):33-42.
    [38]梅志芳,王建.关联规则兴趣度问题研究[J],计算机工程.2010,36(1):38-42
    [39]W. Hamalainen, M. Nykanen. Efficient discovery of statistically significant association rules.in: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining,2008.
    [40]Kirsch A, Mitzenmacher M, Pietracaprina A et al. An efficient rigorous approach for identifying statistically significant frequent itemsets. in:Proceedings of the 28th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Rhode Island, USA, 2009.
    [41]S. Lallich, O. Teytaud, E. Prudhomme. Association rule interestingness:measure and statistical validation.Data Mining,2007:251-275.
    [42]Webb G I. Preliminary investigations into statistically valid exploratory rule discovery, in: Australasian Data Mining Workshop (AudDM03),2003.1-9.
    [43]Webb G I. Discovering Significant Patterns. Machine Learning, Springer,2007:1-33.
    [44]Wei J M, Yi W G, Wang M. Y. Novel measurement for mining effective association rules. Knowledge Based Syst,2006,19:739-743.
    [45]Wei C. Statistical mining of interesting association rules. Statistics and Computing,2008,18(2) 185-194.
    [46]Brin S, Motwani R, Silverstein C. Beyond market basket:generalizing association rules to correlations[C]. In:Proceeding of the 1997 ACM-SIGMOD international conference on management of data (SIGMOD'97), Tucson, AZ,1997:265-276.
    [47]郭俊芳,谢益武,周生宝.关联规则相关性的度量[J].计算机应用.2007,27(4):174-176.
    [48]Tan Pang-Ning, Kumar V. Interestingness measures for association patterns:A perspective [C]. Department of Computer Science and Engineering, University of Minnesota, Minneapolis, USA: Technical Report,2000.
    [49]Omiecinski E R. Alternative interest measures for mining associations in databases[J]. IEEE Transactions on Knowledge and Data Engineering,2003,15(1):57-69.
    [50]CheungD W, Han J, Ng VT et al. Maintenance of discovered association rules in large databases:An incremental updating approach. The 12th IEEE International Conference on Data Engineering[C].1996:106-114.
    [51]Cheung D W, Lee S D, Kao B. A general incremental technique for maintaining discovered association rules [C]. In:Proceedings of Database Systems for Advanced Applications. Melbourne, Australia,1997:185-194.
    [52]Ayan N F, Tansel A U, Arkun E. An efficient algorithm to update large itemsets with early pruning[C]. In:Proc of 1999Int'l Conf on Knowledge Discovery and Data Mining. SanDiego, CA, 1999:287-291.
    [53]Lee C, Lin C, Chen M. Sliding Window Filtering:An efficient algorithm for incremental mining[C]. In:Proc of ACM CIKM'2001,2001:263-270.
    [54]朱玉全,孙志辉,季小俊.基于频繁模式树的关联规则增量式更新算法[J].计算机学报,2003,26(1):91-96.
    [55]陈秋阳,金连甫.并行的关联规则增量式更新优化算法研究[J].计算机工程与应用.2011,47(14):149-151.
    [56]Victoria Nebot, Rafael Berlanga. Finding association rules in semantic web data[J]. Expert Systems with Applications.2012,25 (1):51-62
    [57]Victoria Pachon alvarez, Jacinto Mata Vazquez. An evolutionary algorithm to discover quantitative association rules from huge databases without the need for an a priori discretization[J]. Expert Systems with Applications,2012,39 (1):585-593
    [58]徐龙琴,刘双印.基于影响度的隐私保护关联规则挖掘算法[J].计算机工程,2011,37(11):59-61
    [59]Cheng-Hsiung Weng,Yen-Liang Chen. Mining fuzzy association rules from uncertain data[J].knowledge information system,2010,23:129-152
    [60]Hamid Mahmoodian.M., Hamiruce Marhaban, Raha Abdulrahim et al.Using fuzzy association rule mining in cancer classification[J].Australasian College of Physical Scientists and Engineers in Medicine,2011,34:41-54.
    [61]张继福,赵旭俊.一种基于约束FP树的天体光谱数据相关性分析方法.模式识别与人工智能.2009,22(4):639-646
    [62]Quinlan J R. Learning efficient classification procedures and their application to chess and games[J]. Machine Learning:An Artifical Intelligence Approach,1984,1:463-482.
    [63]Schlimmer J C, Fisher D A. Case Study of Incremental Concept lnduction[C]. In:Proceedings of the Fourth National Conference on Artificial Intelligence,1986:496-501.
    [64]Utgof P E. ID5:An Incremental ID3[C]. In:Proceedings of the Fifth International Conference on Machine Learning,1988:107-120.
    [65]刘小虎,李生.决策树的优化算法[J].软件学报,1998,9(10):797-800.
    [66]洪家荣,丁明峰,李星原,等.一种新的决策树归纳学习算法[J].计算机学报,1995,18(6):470-474.
    [67]王熙照,杨晨晓.分支合并对决策树归纳学习的影响[J].计算机学报,2007,30(8):1251-1258
    [68]王涛,李周军,等.一种高效的数据流挖掘增量模糊决策树分类算法[J].计算机学报,2007,30(8):1244-1250.
    [69]孟凡荣,蒋晓云,等.基于主成分分析的决策树构造方法[J].小型微型计算机系统,2008,29(7):1245-1249.
    [70]Chandra B, Varghese P P. Moving towards efficient decision tree construction[J]. Information sciences,2009,179(8):1059-1069.
    [71]Chen Y L, Hu H W, Tang K. Constructing a decision tree from data with hierarchical class labels[J]. Expert systems with applications,2009,36(3):4838-4847.
    [72]翟俊海,王熙照,张素芳.基于模糊积分的多模糊决策树融合[J].计算机研究与发展,2009.46(3):470-477.
    [73]徐鹏,林森.基于C4.5决策树的流量分类方法[J].软件学报,2009,20(10):2692-2704.
    [74]Smith Tsang,Ben Kao,Kevin Y et al.Decision Trees for Uncertain Data[J].IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2011,23(1):64-78
    [75]Bandra.Ravi Kothari, Pallath Paul.A new node splitting measure for decision tree construction [J].Pattern Recognition,2010,43:2725-2731
    [76]Breiman L, Friedman J H, Olshen R A et al. Classification and regression trees[C]. California: Wadsworth,1984.
    [77]Metha M, Rissanen J, Agrawal R. SLIQ:A fast scalable classifier for data mining[C]. In: EDBT'96, Avignon, France,1996.
    [78]J.C.Shafer, R.Agrawal. SPRINT:A scalable parallel classifier for data mining [C]. In: Proceedings of the 22nd International Conference on Very Large Databases,1996:544-555.
    [79]Rajeev R, Kyuseok S. PUBLIC:A Decision Tree Classifier that Integrates Pruning and Building. Data Mining and Knowledge Discovery,2000,4(4):315-344.
    [80]Ting K M, Zheng Z. Boosting Trees for Cost-Sensitive Classifications[C]. In:The Tenth European Conference on Machine Learning, Germany,1998:190-195.
    [81]Breiman L. Bagging Predictors[J]. Machine Learning Journal,1996,24(2):123-140.
    [82]Pawlak Z. Rough sets[J]. International Journal of information and Computer Science,1982, 11(5):314-356.
    [83]Wang J, Peng Y. Efficient rough-set-based attribute reduction algorithm with nearest neighbors searching[J]. Electronics letters,2007,43(10):563-564.
    [84]苗夺谦,王珏.基于粗糙集的多变量决策树构造方法[J].软件学报,1997,8(6):425-431.
    [85]Jin-Mao Wei. Rough Set Based Approach to Selection of Node[J]. International journal of computational cognition,2003,1(2):25-40.
    [86]Sang Wook Han, Jae-Yearn Kim. Rough Set-based Decision Tree using the Core Attributes Concept. Second International Conference on Innovative Computing, Information and Control, 2007.
    [87]Cuiru Wang, Fangfang Ou. An Algorithm for Decision Tree Construction Based on Rough Set Theory [J]. International Conference on Computer Science and Information Technology,2008: 295-298.
    [88]Jin-Mao Wei et al. Rough Set Based Approach for Inducing Decision Trees[C]. RSKT 2006, LNAI 4062,2006:421-429.
    [89]高静,徐章饱,宋威,等.一种新的基于粗糙集模型的决策树算法[J].计算机工程,2008,34(3):9-11
    [90]Ziarko W. Variable precision rough set model [J]. Journal ofComputer and System Sciences, 1993,46(1):39-59.
    [91]洪雪飞,徐维祥.基于变精度粗糙集的决策树改进方法[J].计算机工程与应用,2009,45(13):163-165
    [92]Jin-Mao Wei, Shu-Qin Wang. Rough set based approach for inducing decision trees[J]. Knowledge-Based Systems,2007,20(8):695-702.
    [93]XiangPeng Li, Min Dong. An algorithm for constructing decision tree based on variable precision rough set model[C]. In:Fourth International Conference on Natural Computation, Jinan, Shandong, China,2008:280-283.
    [94]Shuqin Wan, Jinmao Wei, et al. ComEnVprs:a novel aproach for inducing decision tree classifiers[C]. In:ADMA06, Xi'an, China,2006:126-134.
    [95]庞哈利,高政威,等.基于变精度粗糙集的分类决策树构造方法[J].系统工程与电子技术,2008,30(11):2160-2163.
    [96]Seno M, Karypis G. LPMiner:An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint. ICDM'01,2001.
    [97]Seno M,Karypis G.Finding Frequent Patterns Using Length-Decreasing Support Constraints[J]. Data Mining and Knowledge Discovery,2005:197-228.
    [98]Unil Yun, John J.Leggett.WLPMiner:Weighted Frequent Pattern Mining with Length-decreasing support constraints, PAKDD'05,2005.
    [99]Srikant R., Agrawal R. Mining quantitative association rules in large relational tables. In: roceedings of the 1996 ACM SIGMOD International Conference on Management of Data,Mont real, Quebec, Canada,1996:1-12.
    [100]Ahmed K M., El-Makky N M., Taha Y. A note on beyond market baskets:Generalizing association rules to correlations. ACM SIGKDD Explorations Newsletter,2000,1 (2):46-48.
    [101]Savasere A, Omiecinski E, Navathe S. Mining for strong negative associations in a large database of customer transactions. In:Proceedings of the 14th International Conference on Data Engineering, Orlando, Florida, USA,1998:494-502.
    [102]贺志,黄厚宽,田盛丰.一种优化相关规则的发现方法[J].计算机学报,2006,29(6):906-913.
    [103]叶德谦,赵世磊.基于线性回归的关联规则相关性方法的研究[J].计算机研究与发展,2008,45:291-294.
    [104]韩旭,李七一,陈美兰.冠心病中医辨证分型客观化的研究进展[J].辽宁中医药大学学报,2008,10(1):25-26.
    [105]郑明荣.冠心病辨证分型的客观化研究[J].现代中西医结合杂志,2007,17(3):475-477.
    [106]朱明军,王永霞.冠心病中医辨证研究进展[J].上海中医药大学学报,2006,20(1):72-75.
    [107]Ordonez C, Omiecinski E, de Braal L et al. Mining constrained association rules to predict heart disease, in Proc.IEEE ICDM Conf.,2001:433-440.
    [108]Ordonez C.Association Rule Discovery With the Train and Test Approach for Heart Disease Prediction[J], IEEE Transactions on Information Technology in Biomedicine,2006,10(2):334-343.
    [109]Chen Y. Hsu C. Constructing a Multi-valued and Multi-labeled Decision Tree[J]. Expert Systems with Applications,2003,25(2):199-209
    [110]Chou S, Hsu C. MMDT:a Multi-valued and Multi-labeled Decision Tree Classifier for Data Mining[J]. Expert Systems with Applications,2005,28(2):799-812
    [111]赵蕊,李宏.一种多值属性和多类标数据的决策树算法[J].计算机工程,2007,33(13):87-89
    [112]李宏,陈松乔,赵蕊.一种多值属性多类标数据决策树算法[J].模式识别与人工智能,2007,20(6):815-820
    [113]Shafer J C, Agrawal R, Mehta M. SPRINT:A Scalable Parallel Classifier for Data Mining[C]. In:Proceedings of the 22th International Conference on Very Large Databases,1996.
    [114]Agrawal R, Ghosh S, Imielinski T et al. An Interval Classifier for Database Mining Applications[C]. In:Proceedings of the 18th International Conference on Very Large Databases, 2005:560-573.
    [115]Wang H, Zaniolo C. CMP:A Fast Decision Tree Classifier Using Multivariate Predictions[C]. In:Proceedings of the 16th International Conference on Data Engineering,2002:449-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700