用户名: 密码: 验证码:
建筑围护结构动态传热模拟方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围护结构形式分不透明围护结构和半透明围护结构两大类。传统的多层墙体围护结构和现代新兴的通风式双层玻璃幕墙围护结构是目前最普遍的两大建筑围护结构代表。作为房间冷热负荷和建筑能耗的重要组成部分的建筑围护结构传热是随时间而变化的复杂过程。特别是我国夏热冬冷地区建筑围护结构更是处于强烈的非稳态传热过程。这使得人们通常在花费大量时间和精力后却难以准确快速实现非稳态的传热计算。因而面向当地气候特点,研究建筑围护结构的动态传热模拟方法,对于我国当前的建筑节能具有相当重要而紧迫的理论和工程意义。
     本文的研究工作分成两部分:第一部分研究以传统的多层墙体为代表的不透明建筑围护结构的动态传热模拟方法;第二部分研究以新兴的通风式双层玻璃幕墙为代表的半透明建筑围护结构在夏热冬冷气候条件下的动态传热模拟方法。本文的具体研究工作和结论如下:
     提出了对目前多层墙体围护结构非稳态传热的各种研究分析方法计算结果的动态验证方法。在采用不同的非稳态传热计算分析方法计算多层墙体围护结构的动态热特性基础数据时,存在着多种潜在因素将可能导致计算结果出现误差。本文基于线性系统动态模型的等价性与频率响应特性的原理,由z传递系数、反应系数及周期反应系数分别构建某不透明围护结构系统的几种动态模型。通过系统的伯德图,直观地观察和比较系统动态模型是否与其所描述的系统是一致或等价,进而验证了该系统的各种动态模型的正确性。利用这种动态验证方法对两类具有代表性的墙体结构进行实例计算验证。这种验证方法能在所关心的整个范围内检验结果的准确性,克服了传统的检验准则只在稳态条件下检验结果的单一性和片面性,同时又具有简单易行的特点。
     在第二部分研究中,对通风式双层玻璃幕墙围护结构进行适应于夏热冬冷地区气候条件下夏季动态传热模拟方法的研究及数值模拟。
     本文首先研究了带遮阳装置的半透明围护结构的动态变化的光学模型。考虑不同气候区域的影响,分别计算了北京和长沙逐时的室外太阳辐射强度、太阳高度角和壁面入射角。在此基础上基于虚拟百叶几何单元模型确定了遮阳百叶在不同太阳高度角下的直射辐射光学参数和散射辐射光学参数。然后基于界面能量平衡原理,建立了双层皮玻璃幕墙动态光学模型,分别计算北京和长沙地区各种结构形式的双层皮玻璃幕墙对太阳散射辐射和太阳直射辐射的逐时反射率、吸收系数和透过系数。计算结果表明同一种多层透过体系在不同地区的光学性能有着明显差异。逐时变化的光学模型可与双层皮玻璃幕墙系统的动态传热模拟过程相互耦合。
     通过综合控制体积模型与区域模型的优点,提出了相对简单却物理意义明确的类区域模型,分别建立了无遮阳通风式双层皮玻璃幕墙系统及有遮阳通风式双层皮玻璃幕墙系统的夏季动态传热模拟模型。将不同结构形式的双层皮玻璃幕墙系统划分成了数目比CFD模拟软件少得多的二维子区域,给出了各个子区域能量平衡偏微分方程组的数学表达式,并依据有限差分法原理编程实现了模型的数值求解。特别是对于有遮阳通风式双层皮玻璃幕墙系统,考虑了百叶遮阳的横向气流影响,基于幂律定律的原理建立了关于各个子区域之间流量平衡的非线性方程组,使空气腔内的气流运动与双层皮玻璃幕墙系统的动态传热过程相互耦合。
     最后利用本文提出的类区域模拟模型及所编程序,对带遮阳的内循环机械通风式双层皮玻璃幕墙系统夏季实验进行了仿真模拟,模拟结果表明本文类区域模型作为一种研究我国夏热冬冷地区气候条件下各类双层皮玻璃幕墙围护结构动态传热的模拟方法,具有较好的可靠性,且计算方法较简便,适合在工程设计中展开应用。
Transient heat transfer through the building envelope is one of the principalcomponents of space cooling/heating loads and energy requirements. Especially forthe hot-summer and cold-winter zone in China, the conduction heat transfer throughbuilding envelope is highly erratic because of the bad weather conditions. It is still nota trivial exercise to predict the thermal performance of the fabric envelope.
     As there are two type of building envelope (opaque or transperant), the researchof dynamic heat transfer in this paper is also divided into two parts: the first part is forconventional wall constructions and the second part is for ventilated double-skinfacade (DSF) as they are now the types of envelopes mostly applied in commercialbuildings in China.
     In the first part of this paper, a method based on the equivalence of dynamicmodels for a linear system and the frequency characteristics of building transient heattransfer models are introduced for verification of the CTF coefficients and responsefactors over the whole frequency range.
     Various causes may lead to incorrect dynamic thermal behavior data used inbuilding simulation and dynamic space cooling/heating load calculation. Variousdynamic models of a linear system should be equivalent. The agreement between thefrequency characteristics of the models based on dynamic thermal behavior data andthe theoretical frequency characteristics of the construction is used to evaluate theircorrectness and reliability. The Bode diagrams for the dynamic models and theoreticalfrequency characteristics are visual aids to judge whether or not the dynamic thermalbehavior data is correct. Two examples have demonstrated the verification of dynamicthermal behavior data using the Bode diagrams and the percentage error. As thesteady-state conduction tests only checks the response at a single frequency, the workdescribed in this paper can tests the response over a range of frequencies. Furthermore,the method is both comprehensive and reasonably easy to implement.
     In the second part of this paper, models for simultaneous thermal, optical, andfluid flow processes are analyzed in turn to establish an improved zonal model tosimulate the complex dynamic thermal process occupied in the ventilated DSF in hotsummertime.
     As building energy consumption of buildings with DSF strictly depends on thesolar heat gain which differs with seasons and latitude location, the solar radiation,the sun-heights angle and the beam incident angle for the vertical skin in Changshaand Beijing are calculated respectively. These results show the importance of dynamicoptical model for the transient heat transfer process through the ventilated DSF
     This paper also considered the spectral properties of the slab-type blinds whichshould change with different sun-height angle. A cell model of blinds is applied tocalculate the slab’s spectral properties for beam radiation and diffuse radiationrespectively. Then treat the blinds system as a transparent material whose extinctioncoefficient is given. Based on the radiation balance on the surface, the optical modelfor the multilayer transparent system is easily established to get its dynamic spectralproperties. The reflectivity, absorption and transmittance for direct and diffuse solarenergy of the whole DSF system are obtained respectively to calculate heat sources inglass panes and on opaque surfaces of shading devices. These heat sources aresubsequently implemented in the DSF simulation model.
     When simulating the thermal process in DSF system with or without slab-typeblind device in summertime, an improved zone model which is simple and explicit isprovided instead of those commonly used software which are very complex. Thisthermal model combines the control-volume method and zonal approach. Each layerof the DSF system is divided into many two-dimensional sub-zones. The mass andenergy conservation equations for each sub-zone are then given and calculated byfinite difference method. The Power Law Model (PLM) based on the relationshipbetween pressure difference and mass flow is applied to calculate the vertical air flowrate in the channel and the cross air flow rate through the slabs of the blinds. Thetemperatures and airflow results for each sub-zone are obtained at last.
     An existent summer experiment on the ventilated DSF system with slab-type blinddevice in the air channel is used to verify the introduced simulation model. The resultsshow that the improved zone model is reliable and simple which is suitable foranalyzing the dynamic heat transfer through the double-skin facade under the weatherconditions in the hot-summer and cold-winter zone in China.
引文
[1]江亿.中国建筑能耗现状及节能途径分析.New Architecture,2008,24(2):4-7
    [2]刘伟.建筑节能新标准新要求与节能达标规划设计、施工新技术实用手册.第一版.北京:中国建筑科技出版社,2007,1-100
    [3]国家行业标准JGJ134-2001《夏热冬冷地区居住建筑节能设计标准》.北京:建筑工业出版社,2001
    [4]李保峰.适应夏热冬冷地区气候的建筑表皮之可变化设计策略研究:[清华大学博士学位论文].北京:清华大学,2004,230-247
    [5]杨慧媛,高甫生.玻璃类型对玻璃幕墙建筑室内热环境的影响分析.暖通空调HV&AC,2005,35(10):23-28
    [6]高甫生,杨慧媛.玻璃幕墙建筑能耗分析.暖通空调HV&AC,2006,36(7):13-17
    [7]高甫生,周雪飞.玻璃幕墙建筑夏季室内热环境研究.哈尔滨工业大学学报,2004,36(2):250-253
    [8] Manz H, Schaelin A, Simmler H. Airflow patterns and thermal behavior ofmechanically ventilated glass doubl facades. Building and Environment.2004,39(9):1023-1033
    [9] Gratia E, Herde A D. Natural ventilation in a double-skin facade. Energy andBuildings,2004,36(2):137-146
    [10] Manz H. Total solar energy transmittance of glass double fa ades with freeconvection. Energy and Buildings,2004,36(2):127-136
    [11] Cetiner I, Ozkan E. An approach for the evaluation of energy and cost efficiencyof glass facades. Energy and Buildings.2005,37(6):673-684
    [12] Eicker U, Fux V, Bauer U, et al. Facades and summer performance ofbuildings. Energy and Buildings,2008,40(4):600-611
    [13]中华人民共和国国家标准.GB90176-93《民用建筑热工设计规范》.北京:中国建工出版社,1993
    [14]单寄平.空调负荷实用计算法.北京:中国建筑工业出版社,1989,1-7
    [15] Stephenson D G,Mitalas G P. Cooling load calculation by thermal responsefactors method. ASHRAE Transactions,1967,73(2):III.2.1-2.10
    [16] Stephenson D G, Mitalas G P. Calculation of heat conduction transfer functionfor multi-layer slabs. ASHRAE Transactions,1971,77(2):117-126
    [17] Rudoy W,Duran F. Development of an improved cooling load calculation method.ASHRAE Transactions,1975,81(2):19-69
    [18] Pedersen C O,Fisher D E,Liesen R J. Development of a Heat Balance Procedurefor Calculating Cooling Loads. ASHRAE Transactions,1997,103(2):459-468
    [19] Spitler J D, Fisher D E, Pedersen C O. The Radiant Time Series Cooling LoadCalculation Procedure. ASHRAE Transactions,1997,103(2):503-515
    [20] Spitler J D, Fisher D E. On the relationship between the radiant time series andtransfer function methods for design cooling load calculations. InternationalJournal of HVAC&R Research,1995,5(2):125-138
    [21]彦启森,赵庆珠.建筑热过程.北京:中国建筑工业出版社,1986,6-95
    [22] Brisken W R, Reque S G. Heat load calculations by thermal response factors.ASHRAE Transactions,1956,62:13-17
    [23] Burch D M, Seem J E. Dynamic evaluation of thermal bridges in a typical officebuilding. ASHRAE Transactions,1992,98(1):291-301
    [24] Hittle D C. A Comparison of energy use calculation with actual and synthesizedweather data. ASHRAE Transactions,1979,85(2):167-177
    [25]丁国良,张春路.空调动态负荷计算的新型谐波法.上海交通大学学报,1996,30(8):100-103
    [26] CIBSE.1986Guide Book A (Design Data). London: Chartered Institution ofBuilding Services Engineers
    [27] Davies M G. Current methods to handle wall conduction and room internal heattransfer. ASHRAE Transactions,1999,105(2):142-150
    [28] Mitalas G P,Stephenson D G. Room thermal response factors. ASHRAETransactions,1967,73(2):III.1.1-1.7
    [29] Mitalas G P. Calculation of transient heat flux through wall and roofs. ASHRAETransactions,1968,74:182-188
    [30] Mitalas G P. Comments on the Z-transfer function method for calculating heattransfer in building. ASHRAE Transactions,1978,84:667-663
    [31] Peavy B A.A note on response factors and conduction transfer function.ASHRAE Transactions,1978,84:688-690
    [32] Stephenson D G,Ouyang K.Frequency domain analysis of the accuracy ofZ-transfer function for walls. CIB5th International Symposium, Bath, England,1986
    [33] Falcone D R,Sowell E F.Electronic tables for the ASHRAE load calculationmanual. ASHRAE Transactions.1993,99(2):193-200
    [34] Mitalas G P,Arseneault J G. Fortran IV program to calculate z-transfer functionsfor the calculation of transient heat transfer through walls and roofs. In: Use ofComputers for Environmental Engineering Related to Buildings. Gaithersburg,MD: NBS Building Science Series,1971
    [35] ASHRAE. Handbook of Fundamentals. Atlanta: American Society of Heating,Refrigerating, and Air-Conditioning Engineers, Inc.1977
    [36] ASHRAE. Handbook of Fundamentals. Atlanta: American Society of Heating,Refrigerating, and Air-Conditioning Engineers, Inc.1981
    [37] ASHRAE. Handbook of Fundamentals. Atlanta: American Society of Heating,Refrigerating, and Air-Conditioning Engineers, Inc.1985
    [38] Sowell E F. Updating cooling load temperature and cooling load factors forchapter2.6of the handbook of fundamentals. Final Report, ASHRAE RP-359.1984
    [39] Sowell E F. Development of expanded wall, roof and zone classifications forcooling load calculation methods. Draft Final Report, ASHRAE RP-472
    [40] Harris S M,McQuiston F C. A study to categorize walls and roofs on the basis ofthermal response. ASHRAE Transactions.1988,94(2):688-714
    [41] ASHRAE.ASHRAE Handbook of Fundamentals. Atlanta: American Society ofHeating, Refrigerating, and Air Conditioning Engineering, Inc.1989
    [42] ASHRAE.ASHRAE handbook of fundamentals. Atlanta: American Society ofHeating, Refrigerating, and Air Conditioning Engineering, Inc.1993
    [43] ASHRAE.ASHRAE handbook of fundamentals. Atlanta: American Society ofHeating, Refrigerating, and Air Conditioning Engineering, Inc.1997
    [44]陈友明,王盛卫.计算多层墙体响应系数的频域回归方法.湖南大学学报(自然科学版),2000,27(5):71-77
    [45]左政,陈友明.用频域回归方法计算圆柱形墙体的瞬时热流.湖南大学学报(自然科学版),2001,28(3):106-108
    [46] Wang S W, Chen Y M. A novel and simple building load calculation model forbuilding and system dynamic simulation. Applied Thermal Engineering,2001,21(6):683-702
    [47] Chen Y M, Wang S W. Frequency-domain regression method for estimating CTFmodels of building multilayer constructions. Applied Mathematical Modelling,2001,25(7):579-592
    [48]陈友明,王盛卫.建筑围护结构非稳定传热分析新方法.北京:科学出版社,2004,69-317
    [49] Hittle D C, Bishop R. An improved root-finding procedure for use in calculatingtransient heat flow through multi-layered slabs. Heat Mass Transfer,1983,26(1):1685-1694
    [50] Kusuda T. Thermal response factors for multi-layer structures of various heatconduction system. ASHRAE Transactions,1969,75:246-271
    [51] Spilter J D,Fisher D E. Development of periodic response factors for use withthe radiant time series method. ASHRAE Transactions,1999,105(2):491-502
    [52] Jiang Y. State-Space Method for the Calculation of Air-Conditioning Loads andthe Simulation of Thermal Behavior of the Room. ASHRAE Transactions,1982,88(2):122-138
    [53] Seem J E. Modeling of Heat Transfer in Buildings. Madison, Wisconsin, US:The University of Wisconsin Madison,1987
    [54] Ouyang K, Haghighat F. A procedure for calculating thermal response factors ofmulti-layer walls—State space method. Building and Environment,1991,26(2):173-177
    [55]龙惟定.用状态空间法计算墙体反应系数.制冷学报,1989,(40):10-14
    [56]丁国良,张春路,王险峰等.状态空间法计算墙体Z传递函数.暖通空调HV&AC,1997,27(2):15-17
    [57] Strand R K, Winkelmann F,Buhl C,et al. Enhancing and extending thecapabilities of the building heat balance simulation technique for use inEnergyPlus. Proceedings of Building Simulation '99,Volume II,1999
    [58]谢晓娜,宋芳婷,燕达等.建筑环境设计模拟分析软件DeST第2讲:建筑动态热过程模型.暖通空调HV&AC,2004,34(8):35-47
    [59] Davies M G. Solutions to Fourier's equation and unsteady heat flow throughstructures. Building and Environment,1995,30(3):309-321
    [60] Davies M G. A time-domain estimation of wall conduction transfer functioncoefficients. ASHRAE Transactions.1996,102(1):328-343
    [61] Davies M G. Wall transient heat flow using time-domain analysis. Building andEnvironment,1997,32(5):427-446
    [62] Wang S W, Chen Y M.Transient heat flow calculation for multilayerconstructions using a frequency-domain regression method. Building andEnvironment,2003,38(1):45-61
    [63]涂逢祥.节能窗技术.北京:建筑工业出版社,2003,200-208
    [64]李保峰,谯华芬.窗户的革命.建筑学报,2003(8):38-40
    [65]汪铮,李保峰,白雪.可呼吸的表皮——积极适应气候的“双层皮”幕墙解析.华中建筑,2002,20(1):22-27
    [66]李保峰.“双层皮”幕墙类型分析及应用展望,建筑学报,2001,11:28-31
    [67]曲翠松.双层立面系统在建筑节能设计中的应用,城市建筑,2008,4:31-32
    [68]薛志峰.超低能耗建筑技术及应用.北京:中国建筑工业出版社,2005,47-120
    [69] Saelens D, Roels S, Hens H. Strategies to improve the energy performance ofmultiple-skin facades. Building and Environment,2008,43(4):638-650
    [70] Gratia E, Herde A D. Guidelines for improving natural daytime ventilation in anoffice building with a double-skin facade. Solar Energy,2007,81(4):435-448
    [71] Gratia E, Herde A D. Greenhouse effect in double-skin facade. Energy andBuildings,2007,39(2):199-211
    [72] Stec W J, van Paassen A H C. Maziarz A. Modelling the double skin facade withplant. Energy and Buildings,2005,37(5):419-427
    [73] Baldinelli G. Double skin facades for warm climate regions: analysis of asolution with an integrated movable shading system. Building and Environment,2009,44(6):1107-1118
    [74] Manz H, Frank T. Thermal simulation of buildings with double-skin facades.Energy and Buildings,2005,37(11):1114-1121
    [75] Park C S, Augenbroe G, Messadi T, et al. Calibration of a lumped simulationmodel for double-skin facade systems.Energy and Buildings,2004,36(11):1117-1130
    [76] Park C S, Augenbroe G, Sadegh N,et al. Real-time optimization of a double-skinfacade based on lumped modeling and occupant preference.Energy andBuildings,2004,39(8):939-948
    [77] Balocco C. A non-dimensional analysis of a ventilated double facade energyperformance. Energy and Buildings,2004,36(1):35-40
    [78] Balocco C,Colombar M.Thermal behaviour of interactive mechanicallyventilated double glazed facade: non-dimensional analysis.Energy andBuildings,2006,38(1):1-7
    [79] Balocco C. A simple model to study ventilated facade performance. Energy andBuildings,2002,34(5):469-475
    [80] Tanimoto J, Kimura K. Simulation study on an air flow window system with anintegrated roll screen. Energy and Buildings,1997,26(3):317-325
    [81] Hensen J, Bartak M, Drkal F. Modeling and simulation of a double skin facadesystem. ASHRAE Transactions,2002,108(2):1251-1259
    [82] Aynsley R M. A resistance approach to analysis of natural ventilation airflownetworks. Journal of Wind Engineering and Industrial Aerodynamics,1997,67&68:711-719
    [83] Gratia E, Herde A D. Optimal operation of a south double-skin facade. Energyand Buildings,2004,36(11):41-60
    [84] Gratia E, Herde A D. Is day natural ventilation still possible in office buildingswith a double-skin facade. Building and Environment,2004,39(4):399-409
    [85] Stec W J, van Paassen A H C. Symbiosis of the double-skin facade with theHVAC system. Energy and Buildings,2005,37(5):461-469
    [86] Faggembauu D, Costa M, Soria M, et al. Numerical analysis of the thermalbehaviour of ventilated glazed facades in Mediterranean climates. Part I.Development and validation of a numerical model. Solar Energy,2003,75(3):217-228
    [87] Faggembauu D, Costa M, Soria M, et al. Numerical analysis of the thermalbehaviour of ventilated glazed facades in Mediterranean climates. Part II.Applications and analysis of results. Solar Energy,2003,75(3):229-239
    [88] Saelens D, Roels S, Hens H. The inlet temperature as a boundary condition formultiple-skin facade modelling. Energy and Buildings,2004,36(8):825-835
    [89]王福军.计算流体动力学分析.北京:清华大学出版社,2004,1-61
    [90] Somarathne S, Seymour M, Kolokotroni M. Dynamic thermal CFD simulation ofa typical office by efficient transient solution methods. Building andEnvironment,2005,40(7):887-896
    [91] Safer N, Woloszyn M, Roux J J. Three-dimensional simulation with a CFD toolof the airflow phenomena in single floor double-skin facade equipped with avenetian blind. Solar Energy,2005,79(2):193-203
    [92] Manz H. Numerical simulation of heat transfer by natural convection in cavitiesof facade elements. Energy and Buildings,2003,35(3):305-311
    [93] Jiru T E, Haghighat F. Modeling ventilated double skin fa ade-a zonal approach.Energy and Buildings,2008,40(8):1567-1276
    [94]陈海,姜清海,郭金基等.双层通风幕墙热气流有限分析计算方法的研究.中山大学学报(自然科学版),2005,44(1):33-37
    [95]陈海,姜清海,郭金基等.太阳辐射作用下双层玻璃幕墙热通道的节能计算与实验研究.中山大学学报(自然科学版),2006,45(6):36-39
    [96]蒋骞,龙惟定.双层皮玻璃幕墙建筑的能耗分析和优化设计.暖通空调HV&AC,2006,36(11):58-63
    [97]李容敏,顾建明.玻璃幕墙热通道内气流组织的模拟与分析.暖通空调HV&AC,2007,37(1):23-28
    [98]高云飞,赵莉华,李丽等.外呼吸双层通风玻璃幕墙热工性能模拟分析.暖通空调HV&AC,2007,37(1):20-22
    [99]方伟,杨国荣,胡仰耆.幕墙通风系统设计探讨.暖通空调HV&AC,2008,38(6):121-125
    [100]刘猛,龙惟定.夏季工况双层皮玻璃幕墙综合传热系数计算模型.同济大学学报(自然科学版),2009,37(10):1403-1408
    [101]撒世忠,周亚素,魏世雄等.夏热地区热通道玻璃幕墙的热工数学模型.建筑热能通风空调,2005,24(6):9-18
    [102] Pasquay T. Natural ventilation in high-rise buildings with double facades,saving or waste of energy. Energy and Buildings,2004,36(4):381-389
    [103] Gratia E, Herde A D. Are energy consumptions decreased with the addition of adouble-skin. Energy and Buildings,2007,39(5):605-619
    [104]朱清宇,杜国付,邹瑜.内呼吸玻璃幕墙综合传热系数CFD模拟计算.暖通空调HV&AC,2005,35(6):102-106
    [105] Gratia E, Herde A D. The most efficient position of shading devices in adouble-skin fa ade. Energy and Buildings,2007,39(3):364-373
    [106]陈海辉,熊建明,邓先和.热通道玻璃幕墙的特性研究及应用.华南理工大学学报(自然科学版),2002,30(12):50-53
    [107] Zollner A. Experimental studies of combined heat transfer in turbulent mixedconvection fluid flow in double-skin-facades. Inernational Journal of Heat andMass Transfer,2002,45(22):4401-4408
    [108]刘晶晶,林波荣,秦佑国.双层玻璃幕墙节能辅助设计方法探讨.华中建筑,2006,24(5):53-55
    [109] LBNL, DOE-2Engineer manual-Version2.1A, LBNL, University of CaliforniaBerkeley, November1982
    [110] Solar Energy Laboratory, TRNSYS Version15User Manual and Documentation,February2000, Madison, Wisconsin: Solar Energy Laboratory, MechanicalEngineering Department, University of Wisconsin,2000
    [111] Crawley D B, Lawrie L K, Frederick C, et al. EnergyPlus: creating anew-generation building energy simulation program.Energy and Buildings,2001,33(4):319-331
    [112] ASHRAE, ASHRAE Handbook of Fundamentals, American Society of Heating,Refrigerating, and Air Conditioning Engineering, Inc., Atlanta,2001
    [113] Seem J E, Klein S A, Beckman W A, Mitchell J W. Transfer functions forefficient calculation of multidimensional transient heat transfer, Journal of HeatTransfer,1989,11:5-12
    [114] Burch D M, Seem J E, Walton G N,et al. Dynamic evaluation of thermal bridgesin typical office building.ASHRAE Transaction,1992,98(1):291-304
    [115] Rees S J, Xiao D, Spitler J D. An analytical verification test suite for buildingfabric models in whole building energy simulation programs. ASHRAETransactions,2002,108(1):30-41
    [116] Bland B H.Conduction in dynamic thermal models: analytical tests forvalidation.Building Services Engineering Research and Technology,1992,13(4):197-208
    [117] Chen Y M,Chen Z K.A neural-network-based experimental technique fordetermining z-transfer function coefficients of a building envelope. Buildingand Environment,2000,35(2):181-189
    [118] Chen Y M, Wang S W. A new procedure for calculating periodic responsefactors based on frequency domain regression method. International Journal ofThermal Sciences,2005,44(4):382-392
    [119]朱燕燕.夏热冬冷地区建筑遮阳系统设计及其节能评价:[西南交通大学硕士学位论文].成都:西南交通大学,2007,38-40
    [120]张野,谢晓娜,罗涛等.建筑环境设计模拟分析软件DeST.第四讲:建筑热过程中的太阳辐射相关模型.暖通空调HV&AC,2004,34(10):55-64
    [121]张晴原,Huang J.中国建筑用标准气象数据库.北京:机械工业出版社,2004:7-93
    [122]我国各地大气透明系数资料.气象科技,1980,6:32-33
    [123]余煜昕.广州地区建筑遮阳设计研究:[华南理工大学硕士学位论文].广州:华南理工大学,2008,29-42
    [124]申政,吕建,杨洪兴等.太阳辐射接受面最佳倾角的计算与分析.天津城市建设学院学报,2009,15(1):61-64
    [125] Rubin M, Powles R, Von Rottkay K. Window optics.Solar Energy,1998,62(3):149-161
    [126]罗忆,刘忠伟.建筑玻璃生产与应用.北京:化学工业出版社,2005,2-51
    [127] Ismail K A R, Henriquez J R.Two-dimensional model for the double glassnaturally ventilated window. International Journal of Heat and MassTransfer,2005,48(3-4):461-475
    [128] Baker P H, McEvoy M. Test cell analysis of the use of a supply air window as apassive solar component. Solar Energy,2000,69(2):113-130.
    [129]张廷芳.计算流体力学(第二版).大连:大连理工大学出版社,2007,1-7
    [130] Ismail K A R,Henriquez J R. Simplified model for a ventilated glass windowunder forced air flow conditions.Applied Thermal Engineering,26(2-3)295-302
    [131]章熙民,任泽霈.传热学.北京:中国建筑工业出版社.2003,195-238
    [132]谢海容.贴膜窗户玻璃能耗的理论分析与实验研究:[湖南大学硕士论文].长沙:湖南大学,2007,22-32
    [133] Pfrommer P, Lomas K J, Kupke C H R. Solar radiation transport throughslat-type blinds: A new model and its application for thermal simulation ofbuildings. Solar Energy,1996,57(2):77-91
    [134] Documents. EnergyPlus Version4.0
    [135] Xu X L,Yang Z. Natural ventilation in the double skin fa ade with venetianblind. Energy and Buildings,2008,40(8):1498-1504
    [136] Arons, M M D. Properties and applications of double skin facades. Master ofScience in Building Technology, University of Minnesota, MassachusettsInstitute of Technology.2000
    [137] Di Maio F, Van Paassen A H C. Simulation of temperature and air flow in asecond skin facade. Proc. Of the7th International Conference on AirDistribution in Rooms (ROOMVENT)1,2000:9-12
    [138] Ye P, Harrison P J, Oosthuizen P H. Convective heat transfer from a windowwith venetian blind: detailed modeling. ASHRAE Trans.,1999,105(2):1031-1037
    [139]陶文铨.数值传热学.西安:西安交通大学出版社.2001,1-47
    [140] Tuomaala P, Rahola J.Combined air flow and thermal simulation of buildings.Building and Environment,1995,30(2):255-265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700