用户名: 密码: 验证码:
机械系统动力学特性的综合分析及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术、网络技术、通信技术等为代表的信息技术广泛应用于机械工程的各个领域,使得机电产品发生了重大变化。当然,这些变化也包括为产品的设计提供支撑的机械学科理论与应用技术的发展。近年来,上述研究取得了一系列重要成果,这些成果在机电产品的创新开发与设计中发挥重要作用。根据系统辨识与结构动力学的基本原理以及相应的试验技术发展起来的实验模态分析(EMA)与工作模态分析(OMA)技术取得长足的发展,从而帮助设计人员根据辨识模型更好地领悟对象机理,并将这些机理应用于产品设计,有力地促进产品的原创性开发与设计,并不断地扩大它的应用领域。
     近年来工作模态分析在机械系统与结构的动态分析与设计以及运行监测与故障诊断等方面获得广泛应用,在应用中也暴露出这些方法存在的问题与缺点,必须解决这些问题才能使这种方法得到有效的工业应用。本文研究适用于大型机械装备与结构的工作模态分析以及消除现有工作模态分析某些缺点的方法。研究的目的是:减少模态试验时间;允许最大限度地利用试验数据;减少分析的复杂性,可以较容易地处理数据;适用于大型机械结构模态试验存在的大量的传感器、大阻尼、带噪声数据、短的数据记录等情况;提高模态参数估计精度。为了达到上述目的,作者从模态试验与模态参数估计方法两方面入手解决工作模态分析的有关问题,取得了重要成果,并成功应用于大型工业装备。
     本文回顾了模态分析的基本理论与方法,包括实验模态分析(EMA)、工作模态分析(OMA)以及有外加输入的模态分析方法(OMAX)。在OMAX架构中讨论了确定性贡献的频响函数估计和随机贡献的正功率谱估计。在此基础上指出这些方法的局限与缺点,作为展开本文研究的背景。
     提出了一种基于循环倒谱的工作模态分析方法。该方法解除了输入信号为白噪声的假设,提高了模态参数的辨识精度。使用循环平稳信号的处理技术来分离响应中由于循环平稳输入信号引起的成分,非常有效地将多输入多输出(MIMO)系统降低为单输入多输出(SIMO)系统,在倒谱域进行曲线拟合,将输入和传递函数分离开,识别出系统的谐振和反谐振,进而得到系统的传递函数。通过钢梁试验对该方法进行验证,并与EMA分析结果进行比较。在这个试验中,精确估计了谐振频率和振型,并且通过增加平均次数来降低估计的不精确性。
     为了解决当输入激励不是白噪声时OMA过程中尺度丢失的问题,本文提出一种恢复模态振型之间的相对比例(尺度)和所有模态振型的全局比例(尺度)的简单方法,该方法建立在循环倒谱的基础之上。这种方法包括通过响应谱识别谐振与反谐振,并用以有限元模型。然后,通过有限元模型得到等效曲线,从而恢复频率响应函数的尺度。
     针对大型机械结构常常出现的由于工作或环境激励的频带较窄,致使工作模态过程中丢失模态以及计算速度慢等问题,提出准工作模态分析方法,即在大结构的部分区域结合使用可测量激励力(类似于实验模态分析)的外加局部辅助激励输入的工作模态分析方法,并提出了适合于准工作模态的基于参考的确定性随机子空间混合辨识算法,提高了模态辨识的精度和速度。
     为验证基于参考的确定性随机的准工作模态分析方法,将其应用于工业振动筛工作模态的综合分析,精确地辨识了振动筛的模态参数,得到很好的效果,证明了该方法的鲁棒性与可靠性。
Significant changes have been taken place in mechanical and electrical products as the information technology, which is represented by computer technology, network technology and communication technology, is widely used in various fields of mechanical engineering. Of course, these changes also include the development of the theory of mechanical disciplines which provide support for the product design and application of technology. In recent years, the above studies have made a series of important achievements. These achievements play an important role in innovation and design of the mechanical and electrical products. Based on the academic principles of the system identification, structural dynamics and the corresponding test techniques, the Experimental Modal Analysis (EMA) and Operational Modal Analysis (OMA) technology have made considerable development, which helps the designers to get more insight of object mechanisms from the identified models and apply the mechanisms to the design of products, to promote originality exploitation and design of the products effectively and to expand its application areas continuously.
     In recent years, the Operational Modal Analysis is widely used in the dynamic analysis and the design of mechanical system and structure, as well as in monitoring and fault diagnosis. The existing problems and disadvantages of these methods are also exposed in applications. In order to make these methods be effective in industrial applications, these problems must be resolved. The research in this paper is suitable for the Operational Modal Analysis of large-scale machinery equipments and structures, as well as suitable for eliminating some shortcomings of modal analysis. The purpose of this study is to reduce the test time, to allow to exploit maximal test data, to decrease the complexity of the analysis, to allow to process the data easily, to apply in modal test of large mechanical structure which existing the problems of a large number of sensors, high damping, noise data, short data records etc, to increase the accuracy of the estimate of mode. In order to achieve the above purpose, starting from modal testing and modal parameter estimation, some problems of operational modal analysis have been solved, some important achievements have been made and applied to large industrial equipments successfully.
     In this paper the basic theories and methods of modal analysis are reviewed, which includes Experimental Modal Analysis (EMA), Operational Modal Analysis (OMA) and an Operational Modal Analysis with eXogenous inputs (OMAX). The frequency response function estimation of deterministic contribution and the positive power spectrum estimation of random contribution are discussed in the frame of OMAX. On this basis, the limitations and shortcomings of these methods are pointed, which is used as the background of this paper.
     Operation modal analysis based on cyclic cepstrum is proposed. This method relieves the assumption that the input signal of OMA is white noise and improves the accuracy of the identification of modal parameters. The portion of the responses caused by the cyclostationary input is separated by the technique of cyclostationary signal processing. The MIMO system is effectively reduced to an SIMO system. In the cepstrum domain the SIMO responses are curve-fitted, the input and transfer function then can be separated, and the system resonances and anti-resonances are identified. The transfer functions of system can be regenerated. Through the steel beam test the method is verified and is compared with the EMA analysis results. In this trial, the resonance frequencies and mode shapes are estimated accurately and the estimated imprecision is reduced by increasing the average number of times.
     In order to solve the problems of scale lost when the input stimulus is not white noise, a simple method is proposed to recover the relative proportion (scale) between mode shapes and global proportions (scale) of all mode shapes. This method is based on cyclic cepstrum. The method includes the recognition of resonance and anti-resonance by response spectrum and using them to correct the finite element model. Then, the equivalent curve is acquired by the finite element model, and then the scale of.the frequency response function is recovered.
     Qusical OMA is put forward against the problem of modals lost and problem of low speed of Calculation in the process of OMA of large mechanical structures because of narrow band of the operation or ambient excitation. In part of the area of the large structure is combined with measured excitation force (similar to the experimental modal analysis), and part auxiliary excitation input is used in Operational Modal Analysis method. Suitable modal identification algorithm for Quasi OMA based on the mixed reference deterministic stochastic subspace is also proposed, the accuracy and speed of the modal identification is improved.
     In order to verify Quasi OMA, it is applied to modal analysis of industrial screen; the modal parameters of the screen are accurately identified and achieved very good results. This method is proved be robust and reliable.
引文
[1]H. Van der Auweraer. Testing in the age of virtual protoyping [C]//In Proceedings of the International Conference on Structural Dynamics Modeling.Fontal. Madeira (Portugal), 2002:16-17.
    [2]B. Peeters, P. Guillaume, H. Van der Auweraer, etc.. Automotive and aerospace applications of the PolyMAX modal parameter estimation method [C]//In Proceedings of the 22th International Modal Analysis Conference. Dearborn (US), January 2004:38-48.
    [3]P. Vanhonacker. The Use of Modal Parameters of Mechanical Structures in Sensitivity Analysis, System Synthesis and System Identification Methods [D]. Belgium:Dept. of Mechanical Engineering, Katholieke Universities Leuven,1988.
    [4]N.M.Maia and J.M. Silva. Theoretical and Experimental Modal Analysis [M].Research Studies Press, Hertfordshire England,1997:50-200.
    [5]B. Cauberghe. The use of scanning laser vibrometry for in-line quality control [C]//In Poly-tic Users Meeting organized by Techpro Engineering BVBA and K. Peraer BVBA. Vrije Universities Brussel, Brussels, Belgium, October 2003:1153-1160.
    [6]James, G. H., Carne, T. G., Lauffer, J. P., and Nord, A. R. (1992). Modal testing using natural excitation [C]//10th Internationa] Modal Analysis Conference. San Diego, CA, USA, Feb.3-7,1992:1209-1216.
    [7]Vold, H, Kundrat J, Rocklin G T, et al. A multi-input modal estimation algorithm for mini-computers [J]. SAE Technical report series.1982,91 (1):815-821.
    [8]Brownd, L.,Allemang R. J., etc.. Parameter estimation techniques for modal analysis[R].SAE paper 790221,1979:19.
    [9]Juang, J. N. and Pappa, R. S.. An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction[J].Journal of Guidance and Control Dynamics, AIAA, Vol.8, No.5,1985:620-627.
    [10]Ibrahim, S. R. and Mikulcik, E. C. A Method for the Direst Identification of Vibration Parameters from Free Response[J].Shock and Vibration Bulletin, Vol.47, Pt.4, Sept. 1977:183-198.
    [11]Fukuzono, K. Investigation of Multiple Reference Ibrahim Time Domain Modal Parameter Estimation Technique[D]. USA:Dept. of Mechanical and Industry Engineering, University of Cincinnati,1986.
    [12]Zhang, L.-M., et al. An Improved Time Domain Polyreference Method for Modal Identification [J]. Mechanical System and Signal Processing,1(4),1987:399-413.
    [13]Juang, J.-N., Cooper, et al. An Eigensystem Realization Algorithm Using Data Correlation (ERA/DC) for Modal Parameter Identification[C]//5th International Modal Analysis Conference. London, England,2004:1158-1163.
    [14]Zhang, L.-M. On the Two-stage Time Domain Modal Identification[C]//IMAC-XXI:A Conference on Structural Dynamics. KISSIMMEE, FLORIDA,2003:1459-1466.
    [15]Cole, H.A..On-Line Failure Detection and Damping Measurements of Aerospace Structures by Random Decrement Signature[R]. NASA CR-2205,1973.
    [16]Ibrahim, S.R.. Random Decrement Technique for Modal Identification of Structures [J] Journal of Spacecraft and Rockets, Vol.14, No.1 977:p.696-700.
    [17]Vandiver, J. K. et al.. A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique [J]. ASME J. of Mechanical Design. Vo.104, April 1982:p_
    [18]Asmussen, J.C.. Modal Analysis based on the Random Decrement Technique[d]. Denmark:Aalborg University,1997.
    [19]Ljung, L.. System Identification Theory for the User [M]. USA:Prentice Hall. Englewood Cliffs,1987:169-206.
    [20]Andersen, Palle. Identification of Civil Engineering Structures using Vector ARMAR Model [D]. Denmark:Aalborg University,1997.
    [21]Petsounis, K.A. and Fassois,S.D. Parametric Time-Domain Methods for the Identification of Vibrating Structures-A Critical Comparison and Assessment [J]. Mechanical System and Signal Processing, v.15, n6,2001:1031-1060.
    [22]Leuridan, J.M., Brown, D.L. etc..Time Domain Parameter Identification Methods for Linear Modal Analysis:A Unifying Approach [M]. ASME Paper Number 85-DET-90, ASME Transactions, Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1985:130-280.
    [23]Allemang, R.J., Brown, D.L., Fladung, W.. Modal Parameter Estimation:A Unified Matrix Polynomial Approach [J]. Proceedings of the IMAC,1994:pp.501-514,
    [24]Peeters B,De Roeck G,Pollet T and et al. Stochastic subspace techniques applied to parameter identification of civil engineering structures[C]//In Proceedings of the International Conference MV2 on New Advances in Modal Synthesis of Large Structures, Non-Linear, Damped and Non-Deterministic Cases. Lyon, France, October 1995:151-162.
    [25]Ho, B. L. and Kalman, R.E.. Effective construction of linear state-variable models from input-output data[C]//Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, University of Illinois, Monticello, IL,1965:449-459.
    [26]Ho, Zeiger, H. P. and McEwen, A. J..Approximate Linear Realizations of Given Dimension Via Ho's Algorithm.IEEE Transactions on Automatic Control, Vol. AC-19, No.2, April 1974:153-153.
    [27]Kung, S. Y.. New Identification and Modal Reduction Algorithm via Singular Value Decomposition//the 12th Asilomar Conference on Circuits, Systems and Computers. Asilomar, California, U.S.A.,1974:705-714.
    [28]Akaike H.Stochastic theory of minimal realization[J].IEEE Trans Automatic Control.19(6),:667-674
    [29]Benveniste A,Fuchs J.Single sample modal identification of a nonstationary stochastic process[J].IEEE Trans Autom Control,30(1),1985:66-74.
    [30]Arun, K.S. and Kung, S.Y.. Balanced Approximation of Stochastic System[J]. SIAM J. Matrix Analysis Application,11(1),1990:42-68.
    [31]Van Overschee, P., and De Moor, B..Subspace Algorithms for the Stochastic Identification Problem. Automatic, Vol.29, No.3,1993:649-660.
    [32]Bandat, J. & Piersiol, A..Random Data, Analysis and Measurement Procedures[M]. John Wiley 7 Son, New York, USA,1986.
    [33]Ventura, C. E. & Tomas H..Structural Assessment by Modal Analysis in Western Canada [C]//Proc. of the IMAC XV, Orlando, Florida,1997.
    [34]Brinc kerR,ZhangLM,AndersenP.Modal identification from ambient responses using frequency domain decomposition [C]//Proceeding of the 18th International Modal Analysis Conference.SanAntonio,TX,USA:SEMINC,2000,625-630.
    [35]Brincker, R. Ventura, C..Andersen, P. Damping Estimation by Frequency Domain Decomposition [C]//Proceedings of the 19th Int'1 Modal Analysis Conference. IMAC XIX, Kissimmee, USA,2001:698-703.
    [36]Zhang, L.-M. Wang, T. And Tamura, Y..Frequency-spatial Domain Decomposition Technique with Application to Operational Modal Analysis of Civil Engineering Structures[C]//10MAC, Copenhagen, Denmark, April,2005.
    [37]Richardson M H. Parameter Estimation from Frequency Response Measurements Using Rational Fraction Polynomials[C]//1stIMAC Conference, Orlando, FL November, 1982:1-15.
    [38]Richardson M H, Formenti D L. Global curve fitting of frequency response measurements using the rational fraction polynomial method [C]//Proceedings of the 3rd International Modal Analysis Conference. Orlando,1985:390-397.
    [39]Shih, C.Y., Tsuei, Y.G., etc. A Frequency Domain Global Parameter Estimation Method for Multiple Reference Frequency Response Measurements[J]. Mechanical Systems and Signal Processing,2(4),1988:349-375.
    [40]Pintelon, R. and Schoukens, J.. System Identification:A Frequency Domain Approach[M]. IEEEPress and John Wiley & Son,2001:1-200.
    [41]Guillaume, F. etc.. Frequency Domain Maximum Likelihood Identification of Modal Parameters with Confidence Levels [C]//Proc. of ISMA 23, Leuven, Belgium:1998: 359-366.
    [42]Guillaume, P. etc.. A Poly-reference Implementation of the Least-Squares Complex Frequency Domain Estimator [C]//IMAC XXI, Kissimmee, USA:2003
    [43]Peeters B,Antonnion V, Hernan V D A. PolyMAX Modal Parameter Estimation from Operational Data [M], Leuven:Katholieke University,2004.
    [44]Peeters B,De Roeck G,Pollet T and et al.Operational PolyMAX for estimating the dynamic properties of a stadiums structure during a football game[J].Shock and Vibration 14(4),2007:283-303.
    [45]Peeters, B. and De Roeck,G.. Reference-based Stochastic Subspace Identification for Output only Modal Analysis [J], Mechanical System & Signal Processing,13(6), 1999:855-878.
    [46]Bernal, D and Gunes, B.. Damage Localization in Output-Only systems:A Flexibility Based Approach [C]// In Proc. of the International Modal Analysis Conference (IMAC) XX, Los Angeles (CA), February,2002:1185-1191.
    [47]Parloo, E. etc..Sensitivity-Based Operational Mode Shape Normalization [J]. Mechanical Systems and Signal Processing,16(5),2002:757-767.
    [48]Brincker, R. and P Andersen. A Way of Getting Scaled Mode Shapes in Output Only ModalTesting [C]//IMAC XXI, Kissemmee (FL), USA, February,2003:1083-1088.
    [49]Khatibia,M.M.,Ashorya, M.R.,etc..Mass-stiffness change method for scaling of operational mode shapes [J], Mechanical Systems and Signal Processing, Volume 26, January 2012:34-59.
    [50]Christof,D.,Gert,D. S.,Steve,V.. Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements [J]. Mechanical Systems and Signal Processing.Volume 23.Issue 3,April 2009:621-635.
    [51]Christof,D.,Gert,D. S, etc.. An operational modal analysis approach based on parametrically identified multivariable transmissibilities [J]. Mechanical Systems and Signal Processing,Volume 24,Issue 5,July 2010:1250-1259.
    [52]曹树谦,张文德,萧龙翔.振动结构模态分析:理论、实验与应用[M].天津:天津大学出版社,2001:1-225.
    [54]唐照千,黄文虎,振动与冲击手册(第1卷)[M].北京:国防工业出版社,1988:253-254.
    [55]萧龙翔.振动结构模态分析基础[M].天津:天津大学力学系,1991:1-23
    [56]B. Cauberghe. Applied frequency-domain system identification in the field of experimental and operational modal analysis[D],Vrije Universiteit Brussel,2004
    [57]K. Godfrey, Editor. Perturbation signals for System Identification[M]. Prentice Hall Professional Technical Reference,1993:1-100.
    [58]W. Heylen, S. Lammens, and P. Sas. Modal Analysis Theory and Testing[M]. K.U.Leuven,1998:1-200.
    [59]P. Verboven. Frequency-domain System Identification for Modal Analysis[D]. Dept. of Mechanical Engineering, Vrije Universiteit Brussel, Belgium,2002.
    [60]R. Pintelon and J. Schoukens. System identification:A frequency domain approach[M]. IEEE Press, USA.2001:1-300.
    [61]J. Schoukens, Y. Rolain, J. Swevers, and J. De Cuyper. Simple methods and insights to deal with nonlinear distortions in frf measurements[J]. Mechanical Systems and Signal Processing,14(4),2000:657-666.
    [62]J. Schoukens, J. Swevers, R. pintelon, and H. Van der Auweraer. Excitation design for frf measurements in the presence of nonlinear distortions[J]. Mechanical Systems and Signal Processing,18,2004:727-738.
    [63]Jr. S. Lawrence Marple. Digital Spectral Analysis[M]. Prentice-Hall, New Jersey, 1987:2-50.
    [64]R.B. Blackman and J.W. Tukey. The measurement of power spectra from point of view of communication engineering[M]. Dover Publications Inc., New York,1958:30-100.
    [65]J.S. Bendat and A.G. Piersol. Engineering Applications of Correlation and Spectral Analysis[M]. John Wiley, New York,1980.
    [66]E. Parloo, P. Verboven, P. Guillaume, and M. Van Overmeire. Sensitivity-based operational mode shape normalization[J]. Mechanical Systems and Signal Processing (MSSP),16(5),2002:757-767.
    [67]张义民.机械振动[M].北京:清华大学出版社,2007:120-316.
    [68]王彤,张令弥.有理分式正交多项式频响函数模态参数识别[J].航空学报,2003,24(2):140-143.
    [69]钟秉林,黄仁.机械故障诊断学.机械工业出版社,1997:1-55.
    [70]傅志方,华宏星.模态分析理论及应用.上海交通大学出版社,上海,2000:1-330.
    [71]D. Hanson, R.B. Randall, J. Antoni, etc.Cyclostationarity and the cepstrum for operational modal analysis of mimo systems-Part Ⅰ:Modal parameter identification [J]..Mechanical Systems and Signal Processing, Volume 21, Issue 6, August 2007: 2441-2458.
    [72]D. Hanson, R.B. Randall, J. Antoni,etc. Cyclostationarity and the cepstrum for operational modal analysis of MIMO systems-Part Ⅱ:Obtaining scaled mode shapes through finite element model updating[J].Mechanical Systems and Signal Processing, Volume 21, Issue 6, August 2007:2459-2473.
    [73]D.J. Ewins.Modal testing:theory, practice and application[M]. P.J.B. Roberts, Mechanical Engineering Research Studies Engineering Dynamics Series, (seconded), Research Studies Press, Hertfordshire, England,2000:1-300.
    [74]Brincker, R., Zhang, L., and Andersen, P. Modal Identification of Output-Only Systems Using Frequency Domain Decomposition[J].Smart Materials and Structures, Vol.10, 2001:441-445.
    [75]R. Brinker, L. Zhang, P. Andersen. Modal identification from ambient responses using frequency domain decomposition[C]//Proceedings of The 18th International Modal Analysis Conference, San Antonio, TX,2000:625-630.
    [76]B. Peeters and G.d. Roeck, Reference-based stochastic subspace identification for output-only modal analysis. Mechanical Systems and Signal Processing[J].13,6,1999: 855-878.
    [77]B. Peeters and G.d. Roeck, Stochastic system identification for operational modal analysis:a review[J].. Journal of Dynamic Systems, Measurement and Control,123,2001: 659-667.
    [78]R.B. Randall and Y. Gao, Extraction of modal parameters from the response power cepstrum[J]. Journal of Sound and Vibration,176,2,1994:179-193.
    [79]Y. Gao and R.B. Randall, Determination of frequency response functions from response measurements-Ⅰ. Extraction of poles and zeros from response cepstra[J]. Mechanical Systems and Signal Processing,10,3 1996:293-317.
    [80]J. Antoni. Cyclic spectral analysis in practice[J]. Mechanical Systems and Signal Processing,21,2,2007:597-630.
    [81]A.V. Oppenheim, R.W. Schafer and J.R. Buck. Discrete-time signal processing[M].A.V. Oppenheim, Editor, Prentice Hall Signal Processing Series, (seconded), Upper Saddle River, NJ, Prentice-Hall International,1999.
    [82]R.B. Randall, J. Antoni and S. Chobsaard. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults another cyclostationary machine signals[J]. Mechanical Systems and Signal Processing,15,5,2001:945-962.
    [84]朱国良,王开和,卢学军等.工作模态分析方法的应用研究[J].天津科技大学学报,22(1),2007:75-78.
    [85]张义民,张守元,李鹤等.运行模态分析中固有模态和谐波模态区分方法研究[J].振 动与冲击,2009,28(1):64-67.
    [86]张义民,张守元,李鹤等.运行模态分析中谐波模态识别方法研究及应用[J].振动、测试与诊断,28(3),2008,:197-200.
    [87]顾建祖,郝文峰,骆英等.固有模态函数振动传递率损伤识别实验研究[J].实验力学,2005,25(4):386-392.
    [88]E. Parloo, etc.Increased reliability of reference-based damage identification techniques by using output-only data[J]. Journal of Sound and Vibration,270,4-5,2004:813-832.
    [89]E. Parloo, etc.. Force identification by means of in-operation modal models [J]. Journal of Sound and Vibration,262,2003:161-173.
    [90]Y. Gao and R.B. Randall, Determination of frequency response functions from response measurements-Ⅱ:regeneration of frequency response functions from poles and zeros [J].. Mechanical Systems and Signal Processing,10,3,1996:319-340.
    [91]Hanson, D., et al., Cyclostationarity and the cepstrum for operational modal analysis of MIMO systems-Part Ⅰ:modal parameter estimation [J]. Mechanical Systems and Signal Processing (2007), doi:10.1016/j.ymssp.2006.11.008.
    [92]E. Parloo, et al. Sensitivity-based operational mode shape normalisation:application to a bridge[J]. Mechanical Systems and Signal Processing,19,2005:43-55.
    [93]E. Parloo, et al. Sensitivity-based mode shape normalisation[J]. Mechanical Systems and Signal Processing,16,5,2002:757-767.
    [94]K. Jones and J. Turcotte.Finite element model updating using antiresonant frequencies[J].Journal of Sound and Vibration,252,4,2002:717-727.
    [95]D. Hanson, et al. The role of anti-resonances from operational modal analysis in finite element model updating[J]. Mechanical Systems and Signal Processing,211 (2007), pp. 74-97.
    [96]W. D'Ambrogio and A. Fregolent, Results obtained by minimising natural frequency and antiresonance errors of a beam model[J]. Mechanical Systems and Signal Processing,171 2003:29-37.
    [97]W. D'Ambrogio and A. Fregolent.The use of antiresonances for robust model updating[J].Journal of Sound and Vibration,236 2,2000:227-243.
    [98]K. Jones and J. Turcotte, Finite element model updating using antiresonant frequencies. Journal of Sound and Vibration,2524,2002:717-727.
    [99]Y.W. Kwon and H. Bang, The Finite Element Method Using Matlab, (second) [M]. CRC Press, Boca Raton, FL,2000.
    [100]M.I. Friswell and J.E. Mottershead, Finite Element Model Updating in Structural Dynamics, Kluwer Academic Publishers, London (1999).
    [101]J. Antoni, P. Wagstaff etc. consistent estimator for frequency response functions with input and output noise[C]//IEEE Transactions on Instrumentation and Measurement, 53,2 2004:457-465.
    [101]何振亚.数字信号处理的理论及应用.北京:人民邮电出版社,1983:57-65
    [102]邵忍平,郭万林,沈允文.机械传动系统损伤检测的研究现状和展望[J].振动、测试与诊断,2002,22(3):179-183.
    [103]张正松,傅尚新.旋转机械振动监测及故障诊断[M].机械工业出版社,北京,1991:369-390.
    [104]Edwin Reynders, Guido De Roeck. Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis[J].Mechanical Systems and Signal Processing, Volume 22, Issue 3, April 2008:617-637.
    [105]K.-J. Bathe.Finite Element Procedures[M]. Prentice-Hall, Englewood Cliffs, NJ,1996.
    [106]O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu.The Finite Element Method[M]. sixth ed., Butterworth-Heinemann, Burlington, MA,2005.
    [107]E. Doughert.Random Processes for Image and Signal Processing[M]. IEEE Press, Piscataway, NJ,1999.
    [108]R. Pintelon, J. Schoukens. System Identification[M]. IEEE Press, New York,2001.
    [109]P. van Overschee, B. De Moor.Subspace Identification for Linear Systems [M].Kluwer Academic Publishers,Dordrecht, The Netherlands,1996.
    [110]J.W. Brewer.Kronecker products and matrix calculus in system theory[J]. IEEE Transactions on Circuits and Systems 25,1978:772-781.
    [111]I. Goethals. Subspace identification for linear. Hammerstein and Hammerstein-Wiener systems[D]. Thesis, Katholieke Universities Leuven,2005.
    [112]J.-N. Juang.Applied System Identification[M]. Prentice-Hall, Upper Saddle River, NJ, 1994.
    [113]W. Heylen, S. Lammens, P. Sas. Modal Analysis Theory and Testing[M]. Acco, Leuven, 1997.
    [114]沃德·海伦模态分析理论与试验[M].北京:北京理工大学出版社2001:1-226.
    [115]李益华.MATLAB辅助现代工程数字信号处理(第二版)[M].西安:西安电子科技大学出版社,2010:50-190.
    [116]熊诗波,黄长艺.机械工程测试技术基础[M].北京:机械工业出版社,2006:1:198.
    [117]闫庆华,程赵刚,段云龙.AR模型功率谱估计及MATLAB实现[J].计算机与数字工程,2010,246(4):154-156.
    [118]王福杰,潘宏侠.MATLAB中几种功率谱估计函数的比较与选择[J].计算机科学与技术,2009(6):28-31.
    [119]王春兴.基于MATLAB实现现代功率谱估计[J].现代电子技术,2011,34(16):65-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700