用户名: 密码: 验证码:
基于超声导波技术的管道损伤检测实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道运输业在经济建设和国防工业中发挥着越来越重要的作用,但管道腐蚀、裂纹等缺陷引起的泄露不仅造成经济上的巨大损失,且会污染环境影响生态平衡,因此对管道的损伤检测显得尤为重要。超声导波是近年来发展起来的一种能够进行快速、长距离、大范围、相对低成本的无损检测方法,受到无损检测领域的广泛关注。
     本文在前人对导波在管道中传播的理论基础上,重点对管道进行了损伤检测的实验研究。首先通过对激励信号的分析,发现信号周期数目越多,其频带越窄,更有利于频率的控制,但周期数越多,其在时域信号的持续时间越长,波形易叠加,所以选择经HANNING窗调制的20个周期的正弦信号作为实验的激励信号;然后对3米长钢管进行了裂纹损伤模拟,对5米长钢管进行了腐蚀损伤模拟,发现随着激发频率的增加,激励信号的能量幅值不断增加,但高频率下的能量更易损耗,所以选择70KHz做为激发频率进行实验。实验结果表明了纵向超声导波能很准确地定位单裂纹和双裂纹,并能成功地检测出占管道横截面积3.7%的小损伤,且随着缺陷的扩展,导波遇到缺陷后的能量反射率单调递增,而能量透射率单调递减。当导波经过端面和缺陷时,除了发生反射之外,还会发生一定程度的模态转换,且转换模态幅值与入射导波频率有关。适当地选取激发频率,能很好地抑制转换模态幅值。最后探索了超声导波在4米长的PVC-U管道中的传播规律,发现纵向导波在PVC管道中传播时,其能量大幅度地衰减,传播距离大约为1米,远小于其在钢管中传播的距离,说明了管道材料的性质会极大影响导波的传播距离。
Pipeline transportation business plays a much important role in the economy construction and national defence industry, but the leakage of the pipe defects, corrosion and cracks can not only make the huge damage to the economy, but also pollute the environment and affect the balance of the ecology, so it is very important to detect the pipes. Ultrasonic guided waves technique has not only good command of efficiency and low cost, but also can inspect the whole wall thickness of pipe. Therefore, ultrasonic guided wave technique is paid more attention in pipe NDT area.
     Based on previous study on the guided wave propagated in the pipeline, the main of this paper is to do experimental study on damage detection in pipes using ultrasonic guided waves technique. First of all, based on the analysis of the excitation signal, it's found that the more the number of cycles, the band becomes narrower, more conducive to control the frequency, but the signal lasts longer in the time domain and it is easier to superipose, so select the sinusoidal signal of 20 cycles which modulated by window of HANNING as the excitation signal in the experiment. And then to 3-meter-long steel pipe to simulate the crack damage, the 5-meter-long steel pipe to simulate the corrosion damage was found that increase with the excitation frequency, the energy amplitude of the excitation signal increased, but easier the energy of high-frequency loss, so select 70KHz as the excitation frequency of the experiment. The results showed that the longitudinal ultrasonic guided waves can be very accurately locate a single crack and double cracks, and can successfully detect the small defect which account for 3.7% of cross-sectional area of pipe, and with the expansion of defects, the reflectivity of guided wave energy increase monotonically, while the transmittance of guided wave energy decrease monotonically. When the guided wave propagate through the end of the pipe and defects, in addition to reflection occurs, but also a certain degree of mode conversion, and the amplitude of conversion mode has something with the frequency of the excitating guided wave. Selecting the appropriate excitation frequency can well inhibit the conversion mode amplitude. Finally the rules of ultrasonic guided waves propagate in the 4-meter-long PVC-U pipe were explored and found that the energy of longitudinal guided wave was greatly attenuated, spreading about 1 meter distance, far less than the transmission distance in steel pipe, it indicates that the nature of the pipe material will significantly affect the guided wave propagation distance.
引文
[1]高育红,最经济的运输方式—管道运输,交通与运输,第4期/2009
    [2]宋小春,黄松岭,赵伟,天然气长输管道裂纹的无损检测方法,天然气工业,2006,26(7):103-106.
    [3]王疆戈,世界油气管道现状[J]。中国石化,2004(7):18-19.
    [4]杨继锋,我国石油天然气输送管道现状与输送钢管的发展,焊管,1998,21(6),5-11.
    [5]2009-2012年中国管道运输行业投资分析及前景预测报告,中国投资咨询网
    [6]潘家华,油气管道断裂力学分析[M].北京:石油工业出版社,1989
    [7]李鹤林,赵新伟,吉玲康,油气管道失效分析与完整性管理.。理化检验—物理分册.2005,41增刊.24-31.
    [8]赵新伟,李鹤林,罗金恒,霍春勇,冯耀荣。油气管道完整性管理技术及其进展,中国安全科学学报,第16卷第1期,2006年1月
    [9]李鹤林,油气管道运行安全与完整性管理,石油科技论坛,2007.2
    [10]穆爽,管窥美国管道安全 中国石油企业.2004,6,48-49.
    [11]他得安,刘镇清,田光春,超声导波在管材中的传播特性,声学技术,2001,20(3)
    [12]J.Rayleigh. The theory of Sound. Vol. Ⅰ and Ⅱ. Dover Publications, New York, 1945
    [13]H.Lamb. On waves in an elastic plate. Proc.Royal soc. London.1917(A93):114
    [14]C.Chree.Longitudinal vibrations of a circular bar. Quarterly Journal of Mathematics.1886,21,287~295
    [15]J.Ghosh. Longitudinal vibrations of a hollow cylinder. Bulletin of the Calcutta Mathematical Society.1923,24,14,32~40
    [16]A.Love. A treatise on the mathematical theory of elasticity. Dover Publications. New York.1944
    [17]R.M.Cooper, P.M.Naghdi. Propagation of nonaxially symmetric waves in elastic cylindrical shells. Journal of the Acoustical Society of America.1957,29, 1365~1373
    [18]T.C. Lin, G W Morgan. A study of axi-symmetric vibrations of cylindrical shells as affected by rotatory inertia and transverse shear. Journal of AMechanics 1956,78,255~261
    [19]P.M. Naghdi, R.M. Cooper. Propagation of elastic waves in cylindrical shells, including the effects of transverse shear and rotatory inertia. Journal of the Acoustical Society of America,1956,28(1),56~63
    [20]D.C.Gazis. Exact analysis of the plane-strain vibrations of thick-walled hollow cylinders. Journal of the Acoustical Society of America.1958,30,786~794
    [21]M.J.S.Lowe, D.N.Alleyne, P.Cawley. TheMode Conversion of a Guided wave by a Part-Circumferential Noteh in a Pipe. Journal of Applied Mechanies,1998,65, 649~656.
    [22]D.N.Alleyne,M.J.S.Lowe,P.Cawley.The reflection of guided waves from circumferential notohes in pipes Journal of APPlied Mechanies September 1998, 65,635~641.
    [23]M.J.S.Lowe, D.N.Alleyne, P.Cawley.Mod conversion of guided waves by defects in pipes.Review of Progress in Quantitative Nondestructive Evaluation,1997, 16,1261~1268.
    [24]P.Wileox, M.J.S.Lowe, RCawley.The effect of dispersion on long-range in spection using ultrasonic guided waves, NDT&E Intemational,2001,34,1~9.
    [25]D.N.Alleyne, P.Cawley.A two-dimensional Fourier transform method for the measurement of propagating multimode signals.J.Aeoust.Soe.Am.,1991,89(3), 1159~1168.
    [26]A.H. Fitch. Observation of elastic pulse propagation in axially symmetricand nonaxially symmetric longitudinal modes of hollow cylinders. Journal of the Acoustical Society of America.1963,35,706~707
    [27]M.GSiIk, K.F.Bainton. The propagation in metal tubing of ultrasonic wave modes equivalent to waves. Ultrasonics.1979.17(1).11~19
    [28]M.VBrook, Ngoc T DK, Eder J E. Ultrasonics inspection of steam generator tubing by cylindrical guided waves. Review of Progress in Quantitative Nondestructive Evaluation.1980,9,243~249
    [29]D.N.Alleyne, M. J.S.Lowe, P.Cawley. The reflection of guided waves from circumferential notches in pipes Journal of Applied Mechanics September 1998, 65,635~641
    [30]D.N.Alleyne, P Cawley. The interaction of Lamb waves with defects.IEEE Trans UFFC,1992,39(3),381~397.
    [31]D.N.Alleyne, P.Cawley. The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducer.Joumal of Nondestructive Evaluation, 1996,15(1),11~20.
    [32]D.N.Alleyne, M.J.S.Lowe, P.Cawley. The inspection of chemical plant pipework using Lamb waves:Defect sensitivity and field experience. Review of Progress in Quantitative Nondestructive Evaluation,1996,15,1859~1866.
    [33]P.Cawley, D.Alleyne. The use of Lamb waves for the long range inspection of large structures. Ultrasonics,1996,34,287~290.
    [34]D.N.Alleyne, P.Cawley. Long range propagation of Lamb waves in chemical plant pipework. Material Evaluation,1997,53(4),504~508.
    [35]J.L.Rose,Zhao Xiaol Material Evaluation,lsang.2001.Flexural Mode Tuning for Pipe Elbow Testing.May,621~624.
    [36]Hyeon Jae Shin,J.L.ROse.Gulded waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders.Ultrasonies,1999,37,355~363.
    [37]刘镇清。圆管中的超声导波。无损检测NDT,1999年12月,第21卷第12期:560~562
    [38]刘镇清,刘骁。超声无损检测的若干新进展。无损检测NDT,2000年9月,第22卷第9期:403~405
    [39]何存富,吴斌,范晋伟。超声柱面导波技术及其应用研究进展。力学进展,2001年5月25日,第31卷第2期:203~214
    [40]焦敬品,何存富,吴斌,费仁元,王秀艳。管道超声导波检测技术研究进展。实验力学,2002年3月,第17卷第1期:1~9
    [41]李衍,强天鹏。管道长距离超声导波检测新技术的特性和应用。无损探伤(双
    月刊),2002年第四期:1
    [42]程载斌,王志华,马宏伟。管道应力波检测技术及研究进展。太原理工大学学报,2003年7月,第34卷第4期:426~430
    [43]程载斌,王志华,马宏伟,张立军。管道超声纵向导波裂纹检测数值模拟。应用力学学报,2004年12月,第21卷第4期:76~79
    [44]何存富,刘增华,孙雅欣,王秀艳,吴斌。基于超声导波技术对弯管中缺陷检测的实验研究。中国机械工程2005年9月下半月,第16卷第18期:1662~1665
    [45]何存富,刘增华,孙雅欣,王秀艳,吴斌。弯管缺陷超声导波检测的有限元分析。北京工业大学学报,2006年4月,第32卷第4期:289~294
    [46]Yong-Moo Cheong,Dong-Hoon Lee,Hyun-Kyu Jung. Ultrasonic guided wave parameters for detection of axial cracks in feeder pipes of PHWR nuclear power plants. Ultrasonics 42 (2004) 883-888
    [47]Liu Guoli, Qu Jianmin. Guided circumferential waves in a circular annulus. Journal of Applied Mechanics,1998,65,424~430.
    [48]Friedrich Moser, L.J.Jacobs, Qu Jianmin. Modeling elastic wave propagation in wave guides with the finite element method. NDT & E International,1999,32, 225~234.
    [49]S.Towfighi, T.Kundu, M.Ehsani. Elastic wave propagation in circumferential direction in anisotropic cylindrical curved plates. Journal of Applied Mechanics, 2002,69,283~291.
    [50]S. Towfighi. Elastic wave propagation in circumferential direction in anisotropic pipes. Ph.D. dissertation,2001, The University of Arizona, AZ
    [51]Liu Guoli, Qu Jianmin. Transient wave propagation in a circular annulus subjected to transient excitation on its outer surface. Journal of the Acoustical Society of America,1998,103(4),1210~1220.
    [52]D.Gridin, R.V.Craster, J.Fong etc. The high-frequency asymptotic analysis of guided waves in a circular elastic annulus. Wave Motion,2003,38,67~90.
    [53]Wang Z, A.N.Norris. Waves in cylindrical shells with circumferential submembers:a Matrix approach. Journal of Sound and Vibration,1995,181(3),
    457~484.
    [54]W.Hansan, P.B.Nagy. Circumferential creeping waves around a fluid-filled cylindrical cavity in an elastic medium. Journal of the Acoustical Society of America,1997,101(5),2496~2503.
    [55]B.Rult. Rayleigh waves on curved surface. Journal of the Acoustical Society of America, Vol.45, pp:493~499.
    [56]Qu Jianmin, Y.Berthelot. Dispersion of guided circumferential waves in circular annulus. Review of Progress in Quantitative Nondestructive Evaluation,1996,15, 169~176.
    [57]D.C.Gazis. Three-dimensional investigation of the propagation of waves in hollow circular cylinders. Ⅰ. Analytical foundation. Journal of the Acoustical Society of America.1959,31,568~573.
    [58]D.C.Gazis. Three-dimensional investigation of the propagation of waves in hollow circular cylinders. Ⅱ. Numerical results. Journal of the Acoustical Society of America.1959,31,573~578.
    [59]Morio Onoe, H.D.Mcniven, R.D.Mindlin. Dispersion of axially symmetric waves in elastic rods. Journal of Applied Mechanics,1962,729~734.
    [60]Marilyn J. Berliner, Roman Solecki. Wave propagation in fluid-loaded, transversely isotropic cylinders. Part Ⅰ. analytical formulation. Journal of the Acoustical Society of America,1996,99(4),1841~1847.
    [61]Yin Hsing Pao, R. D. Mindlin, Dispersion of flexural waves in an elastic, circular, cylinder. Part 1, Journal of Applied Mechanics,1960,513~520.
    [62]Yin Hsing Pao, Dispersion of flexural waves in an elastic, circular, cylinder, Part 2. Journal of Applied Mechanics,1962,61~64.
    [63]Allen H. Meitzler. Backward-wave transmission of stress pulses in elastic cylinders and plates. Journal of the Acoustical Society of America,1965, 835~842.
    [64]马宏伟,吴斌。弹性动力学及其数值方法。中国建材工业出版社,2000.
    [65]Hideo Nishino, Sunao Takashina, Fukutoshi Uchida etc. Modal analysis of hollow cylindrical guided wave and application, Japan Society of Applied Physics,2001,40,364~370.
    [66]程载斌,利用超声导波进行管道裂纹检测的数值模拟研究和实验研究,硕士论文,太原理工大学,2004
    [67]肖慧丽,含裂纹管道损伤检测的数值研究,硕士论文,暨南大学,2008
    [68]宋振华,基于小波分析的超声导波法管道损伤检测研究,硕士论文,暨南大学,2009
    [69]何存富,刘增华,吴斌。传感器在管道超声导波检测中的应用。传感器技术2004年第23卷第11期
    [70]许盛光PVC管道的应用现状及发展趋势。聚氯乙烯2006年2月,第二期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700