用户名: 密码: 验证码:
基于震相特征的地震成像方法和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震震相在地球结构的研究中扮演了重要的角色,从地球圈层一维结构模型的建立到二维和三维结构的层析成像,人们对地球结构的认识得益于对震相的识别和其特征的认识程度。随着观测技术的不断更新、计算能力的提高以及数值方法的发展,地震成像方法自提出至今得到了长足的发展,根据方法我们可以简要的把成像方法分为三大类:(1)射线体波走时和面波频散射线成像;(2)经典波形反演成像,(3)现今流行的数值全波形反演成像。这三类方法的一个区别在于对地震震相特征的利用:射线体波走时和面波频散成像利用的是走时信息;经典波形反演成像利用的了部分相位和振幅信息;数值全波形反演成像则是走时、相位和振幅都可以利用。现今,如何很好利用震相特征来反演地球结构是地震成像的一个重要方向。本文围绕震相特征的利用,基于半解析方法,对井下摆近震记录、Rayleigh面波频散和椭圆率(偏振)、体波和面波多种测量量作了研究并发展了相应的成像方法,同时利用长周期波形对东亚地区的上地幔剪切波速度结构作了分窗波形反演成像。
     在观察井下摆地震记录时,我们发现了来自震源的直达波和经过自由地表反射的震相,以及经过沉积盆地基底转换的震相。这些震相因为其产生机理,为研究盆地的三维精细结构提供了重要的天然地震数据。围绕SH分量的直达波和地表反射震相,通过观测数据、理论数值模拟相结合研究发现直达波和地表反射波这两个震相的到时差和波形相对振幅受震源深度的影响非常小,几乎可以忽略,震中距离对两个震相的到时差影响也非常小,这两个震相之间的到时差和波形差异携带了台站上方的速度和衰减信息。研究还表明直达波和其相应的地表反射波在浅部的入射角度很小,近乎垂直入射。我们使用平面近似将SH分量的直达波作为源,通过拟合地表反射波的波形来反演近地表速度和衰减结构。基于理论和实际波形的反演表明我们发展的波形反演方法可以很好地获得近地表的速度和衰减结构,该研究可以为盆地三维结构研究、强地面震动模拟等研究提供重要的资料。
     面波的频散携带了丰富的地球结构信息,利用面波频散信息的成像技术无论在区域还是全球地震学结构上都取得了一系列成果。但是由于面波频散仅包含不同频率面波的走时信息,对地球结构能够提供的约束较单一。基于地震记录不同分量上面波相对振幅的面波椭圆率的提取和利用是近年来正逐渐活跃的研究方向。本文基于反射透射系数方法,研发了计算面波频散曲线和椭圆率的程序,并结合模拟退火算法发展了利用面波频散和椭圆率联合反演地球结构的一套工具。正演数值实验告诉我们地震面波频散和面波椭圆率对地下结构具有不同的敏感性,面波相速度频散对面波采样深度范围内的平均速度敏感,而面波椭圆率对速度梯度敏感,两者的结合使用可以帮助降低反演时模型的非唯一性。基于联合反演的测试证明了两者的联合反演能够对地球结构提供更好的约束。
     体波接收函数是研究地壳上地幔结构的一种常用的方法之一,它的独特之处在于不同分量上体波波形的反褶积尽可能的去除了震源和远处路径上结构的影响,而提取出对台站下方结构敏感的信息。接收函数波形携带了不同的转换或多次反射震相与直达波之间的相对振幅和相对走时信息,它仅对较大的速度跳变敏感(如Moho等),而对平滑的速度渐变和平均速度不敏感。我们探讨了接收函数,Rayleigh波相速度频散曲线和椭圆率曲线三种数据联合起来反演壳幔结构的可行性,研发了三种数据联合反演的成像工具,通过基于理论数据的反演实验探讨了体波接收函数与两种面波观测数据联合反演的优缺点。研究结果表明体波接收函数和Rayleigh波相速度频散以及椭圆率联合反演具有对地球结构约束很强的优点,在区域壳幔结构成像中将具有很好的应用前景。
     东亚地区是一个地震活动频繁、灾害严重的区域,该区域内青藏高原-喜马拉雅碰撞带,西太平洋俯冲带,天山一贝加尔构造带等等一系列活动构造形成了东亚地区复杂的构造格局。本文收集了东亚及其邻区可以公开获得的高质量远震波形数据,利用基于非线性渐进耦合理论(non-linear asymptotic coupling theory:NACT)计算理论地震图和敏感核函数对周期长于60秒的波形进行波形反演成像。获得的三维剪切波速度模型展示了与东亚地区构造格局一致性很好的横向非均一性。模型中稳定块体具有较厚的岩石圈,这些块体如西伯利亚地台、哈萨克斯坦地块、塔里木克拉通、扬子地块、印度板块、青藏高原除去羌塘昆仑的大部分区域,在模型中表现为较强的高速结构。而兴蒙地块、贝加尔断裂带、华北克拉通、华南地块、印支地块、鄂霍次克海一日本海一东海一台湾岛一带,菲律宾板块以及中国南海的岩石圈较薄,在模型中表现为低速结构。新模型表明印度岩石圈俯冲到青藏高原之下,并且在青藏高原下自西向东具有不同的北部边缘,我们同时看到西太平洋俯冲到欧亚板块之下并滞留在地幔过渡带中。大尺度的高速和低速异常之间的边界与区域内构造带具有很好的相关性,譬如,中亚造山带、阿尔泰祁连一秦岭大别造山带。径向各向异性结果显示大洋地幔和深度大于300km的区域Vsh>Vsv,而在部分造山区域Vsv>Vsh。
The knowledge of the earth structure from1D earth to2D or3D, benefits a lot from studies of the seismic phase that can shed light on the earth interior. Significant progresses have been made for seismic tomography, thanks to the technique of observation, computer resources and numerical methods. The methods of tomography may be classified into three categories, ray theory based on traveltime tomography of body waves and surface wave dispersion curve, semi-analytical method based classical waveform tomography, and the numerical simulation based waveform tomography. One of the differences of these methods is how the seismic phases are employed in the imaging process. Traveltimes of body waves are used in the ray theory traveltime tomography, the classical waveform tomography trys to fit mainly the phase and part of the amplitude of seismic phases, while the fully numerical simulation based tomography can make use of the traveltime, phase and amplitude of the seismic phase or even every wiggle of the seismic waveforms. Nowadays it becomes an important research direction to find a suitable way of making use of characteristics of the seismic phase for the purpose of imaging the earth interior. Here we developed imaging methods using the borehole seismic records, Rayleigh wave dispersion and ellipticity curves, and body wave receiver function, we also use the long period waveform tomographic method to image the upper mantle structure of East Asia.
     We observed the direct phase and its surface reflected phase, also the S-P wave converted from the basement of sediment on the near field borehole seismic records. These phases can help to image the detailed structure of the sediment. The observation and forward modeling of SH component direct phase S1and its surface reflected phase S2shows that these two phases have very small incident angles, and they are less affected by the epicentral distance and focal depth, their relative amplitude and traveltime are sensitive to the structure above the borehole. Based on plane wave approximation, we take the S1and source time function to simulate the waveform of the S2phase, and invert for the Vs structure and Qs above the receiver. The theoretical inversion tests and application to the real data shows that our inversion method is able to obtain fine layered Vs velocity and Qs factor of the near surface structure which are useful data for the studies of strong ground motion and estimating seismic hazards.
     Surface wave dispersion can help to image the earth interior on both regional and global scales. However dispersion curve only contains the traveltime of surface waves at different periods, and its constrain on the velocity structure is thus limited. The measuring and inversion of Rayleigh wave ellipticity or particle motion start to become popular. We here developed a tool to simulate and invert the surface wave dispersion curve and ellipticity, based on the fast generalized R/T coefficient method. The forward modeling of a series of crustal model indicates that dispersion and ellipticity curves have different sensitivity to the earth structure, dispersion curve can constrain the average velocity very well, while the ellipticity curve is sensitive to the velocity gradient. The joint inversion of these two types of data has been proved to be able to provide us better constrains on the earth structure, however the deeper part such as Moho interface is not well resolved.
     Body wave receiver function is a popular technique for studying structure of crust and upper mantle. The receiver function is measured from the deconvolution of vertical component body wave from horizontal components which results in a time series that is sensitive to the structure beneath the receiver. Seismic phases on receiver functions are direct P wave and other conversions and reverberations from interfaces in the crust and upper mantle, thus the receiver function is only sensitive to the relatively large velocity jumps, such as Moho et al., while not sensitive to smooth gradients and average velocity. We developed a new tool for jointly inverting the body wave receiver function, Rayleigh wave dispersion and ellipticity. Theoretical inversion tests shows that the joint inversion of body wave and surface wave data can constrains the absolute velocity better, and deep structure such as Moho can be well resolved.
     East Asia is a seismically active region featuring active tectonic belts, such as the Himalaya collision zone, western Pacific subduction zones and the Tianshan-Baikal tectonic belt. In this study we collected high quality regional and teleseismic waveform data that can be publicly available in this region to image the3D mantle structure using long period waveform (>60sec) inversion method based on non-linear asymptotic coupling theory. The3D velocity model shows strong lateral heterogeneities in the target region, which correlates well with the surface geology in East Asia. The stable blocks in target region have relatively thick lithosphere, such as Siberia platform, Kazakhstan block, Tarim block, Yangtze craton, Indian plate, most area of Tibet except for Chiangtang and Kunlun, are all shown as high velocity anomalies. While lower velocity anomalies are found in Xing-Meng block, Baikal rift, North China craton, South China block, Indo-China block, Sea of Okhotsk—Japan Sea—East China Sea—Taiwan Island, Philippine plate and South China Sea. Our new model suggests that Indian plate has subducted with different north reach from the west to east beneath the Tibetan Plateau, and the Pacific plate has subducted down to the depth of transition zone and stagnates in the transition zone in East China. The dominant fast and slow velocity boundaries in the study region are well correlated with tectonic belts, such as the central Asian orogenic belt and Alty/Qilian-Qinling/Dabie orogenic belt. Our radially anisotropic model shows Vsh> Vsv in oceanic regions and at larger depths(>300km), and Vsv> Vsh in some orogenic zones.
引文
黄建平,倪四道,傅容珊等.综合近震及远震波形反演2006文安地震(Mw5.1)的震源机制解.地球物理学报,2009,52(1):120~130
    刘启元,李昱,陈九辉,郭飚,王峻,齐少华,&李顺成.(2010).基于贝叶斯理论的接收函数与环境噪声联合反演.地球物理学报,53(011),2603-2612.
    刘渊源,崇加军,倪四道.(2011).基于井下摆天然地震数据测量首都圈近地表波速结构[J].北京:地震学报.33:342-350.
    罗艳,崇加军,倪四道,陈棋福,陈顒.(2008).首都圈地区莫霍面起伏及沉积层厚度.地球物理学报,51(4),1135-1145.
    潘佳铁,吴庆举,李永华等. (2009).基于快速广义反射透射系数方法的面波群速度计算.地球物理学进展,24,2030-2035
    滕吉文,胡家富,张中杰.(1995).中国西北地区岩石层瑞利波三维速度结构与沉积盆地.地球物理学报,38(6):737-749.
    王卫民,姚振兴.(2003).用转换函数方法研究台湾地区三维深部结构.地球物理学报,46(5),628-632.
    吴庆举,李永华,张瑞青,张乃铃.(2007).用多道反褶积方法测定台站接收函数.地球物理学报,50(3),791-796.
    吴庆举,田小波,张乃铃,李卫平,曾融生.(2003a)。计算台站接收函数的最大熵谱反褶积方法.地震学报,25(4),382-389.
    吴庆举,田小波,张乃铃,李卫平,曾融生.(2003b).用wiener滤波方法提取台站接收函数.中国地震,19(1),41-47.
    徐果明,李光品,王善恩等.用瑞利面波资料反演中国大陆东部地壳上地幔横波速度的三维构造.地球物理学报,2000,43(3):366-375.
    朱介寿,曹家敏,蔡学林,严忠琼,&曹小林.(2002).东亚及西太平洋边缘海高分辨率面波层析成像.地球物理学报,45(5),646-664.
    Abers, G. A., X. Hu, and L. R. Sykes (1995). Source scaling of earthquakes in the Shumagin region, Alaska:time-domain inversions of regional waveforms, Geophys. J. Int.123,41-58.
    Abo-Zena, A. M. (1979). Dispersion function computations for unlimited frequency values, Geophys. J. R. Astr. Soc.58,91-105.
    Aki K., Richards P.G.(2002). Quantitative Seismology.2nd edn. University Science Books; Sausalito, CA. ISBN 0-935702-96-2.
    Aki, K.,1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bull. Earthq. Res. Inst.,35,415-456.
    Aki, K., Christoffersson, A.,& Husebye, E. S. (1976). Three-dimensional seismic structure of the lithosphere under Montana LASA. Bulletin of the Seismological Society of America,66(2), 501-524.
    Ammon (1991). The isolation of receiver effects from teleseismic P waveforms, Bull. Seismol. Soc.Amer.,81,2504-2510
    Ammon, C. J., G. E. Randall, and G. Zandt (1990). On the nenuniqueness of receiver function inversions, J. Geophys. Res.95,15303-15318.
    Anderson J. G., Lee Y, Zeng Y and Day S (1996). Control of strong motion by the upper 30 meters. Bull Seism Soc Amer 86:1749-1759.
    Anderson, J. G. (2007). Physical Processes That Control Strong Ground Motion. In Hiroo Kanamori, Volume Editor; Gerald Schubert, Editor in Chief (Ed.), Treatise on Geophysics, Volume 4, Earthquake Seismology (vol.4, pp.513-565). Amsterdam:Elsevier.
    Anderson. (2003) Strong-motion Seismology.In:Lee WHK, Kanamori H, and Jennings PC (eds.) International Handbook of Earthquake and Engineering Seismology, vol.81B, pp.937-965. New York:Academic Press.
    Aster R. C. and Shearer P M (1991). High-frequency borehole seismograms recorded in the San Jacinto fault zone, southern California. Part 2:Attenuation and site effects. Bull Seism Soc Amer 81:1081-1100.
    Babuska, V.& Cara, M.,1991. Seismic Anisotropy in the Earth, Kluwer Academic Press, Boston, Massachusetts.
    Bakun. (1971). Crustal Model Parameters from P-Wave Spectra, Bull. Seism. Soc. Am.61, 913-935
    Bath, M. and R. Stefansson (1966). S-P Conversions at the base of the crust, Ann. Geofis. 19,119-130.
    Bensen, G. D., Ritzwoller, M. H.,& Shapiro, N. M. (2008). Broadband ambient noise surface wave tomography across the United States. Journal of Geophysical Research:Solid Earth (1978-2012),113(B5).
    Blakeslee S and Malin P (1991). High-frequency site effects at two Parkfield downhole and surface stations. Bull Seism Soc Amer 81:332-345.
    Boatwright J, Porcella R, Fumal T and Liu H-P (1986). Direction estimates of shear wave amplification and attenuation from a borehole near Coalinga, California. Earthquake Notes 57(1):8-9.
    Bodin, T., Sambridge, M., Tkalcic, H., Arroucau, P., Gallagher, K.,& Rawlinson, N. (2012). Transdimensional inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research:Solid Earth (1978-2012),117(B2).
    Boore, D.& Toksoz, M.N.,1969. Rayleigh wave particle motion and crustalstructure, Bull.seism. Soc. Am.,59,331-346.
    Boore, D. M., W. B. Joyner, and T. E. Fumal (1993). Estimation of response spectra and peak accelerations from western United States earthquakes:an interim report, U.S. GeoL Surv. Open-File Rep.93-509,72 pp.
    Boore, D. M., W. B. Joyner, and T. E. Fumal (1994). Estimation of response spectra and peak accelerations from western United States earthquakes:an interim report, Part 2, U.S. Geol. Surv. Open-File Rep.94-127,40 pp.
    Boore, D.,2006. Determining subsurface shear-wave velocities:A review. Proceedings 3rd International Symposium on the Effects of Surface Geology on Seismic Motion, Grenoble, France,30 August-1 September,2006, Paper 103.
    Borcherdt RD, Glassmoyer G (1992) On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta earthquake in the San Francisco Bay region, California. Bull Seismol Soc Am 82(2):603-641
    Borcherdt, R. D. (1994). Estimates of site-dependent response spectra for design (methodology and justification), Earthquake Spectra 10,617-653.
    Bording, R. P., Gersztenkorn, A., Lines, L. R., Scales, J. A.,& Treitel, S. (1987). Applications of seismic travel-time tomography. Geophysical Journal of the Royal Astronomical Society, 90(2),285-303.
    Bourjot, L.,& Romanowicz, B. (1992). Crust and upper mantle tomography in Tibet using surface waves. Geophysical research letters,19(9),881-884.
    Brocher (2005). Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust. Bulletin of the Seismological Society of America 95:2081-2092.
    Buchen, P. W., and R. Ben-Hador (1996). Free mode surface-wave computations, Geophys. J. Int. 124,869-887.
    Building Seismic Safety Council (1997) NEHRP Recommended Provisions for Seismic Regulations for New Buildings and other Structures,1997 Edition. Part 1:Provisions, (FEMA 302),336 p. Washington, D.C:Building Seismic Safety Council.
    Burdick, L. J., and C. A. Langston, (1977). Modeling crustal structure through the use of converted phases in teleseismic body-waveforms, Bull. Seismol. Soc. Amer.,67,677-691
    Campillo,M.& Paul, A.,2003. Long-range correlations in the seismic coda, Science,299, 547-549.
    Capdeville, Y,,2005. An efficient Born normal mode method to compute sensitivity kernels and synthetic seismograms in the earth, Geophys. J.Int.,163(2),639-646.
    Castellaro S, Mulargia F, Rossi PL (2008) Vs30:proxy for seismic amplification?. Seismol Res Lett 79(4):540-543.
    Ceylan, S., Ni, J., Chen, J. Y., Zhang, Q., Tilmann, F.,& Sandvol, E. (2012). Fragmented Indian plate and vertically coherent deformation beneath eastern Tibet. Journal of Geophysical Research:Solid Earth (1978-2012),117(B11).
    Chang, S., C. Baag, and C. Langston (2004), Joint analysis of teleseismic receiver functions and surface wave dispersion using the genetic algorithm, Bull. Seismol. Soc. Am.,94(2), 691-704.
    Chen, L., Wen, L.,& Zheng, T. (2005). A wave equation migration method for receiver function imaging:2. Application to the Japan subduction zone. Journal of Geophysical Research: Solid Earth (1978-2012), 110(B11).
    Chen, X.(1993). A systematic and efficient method of computing normal modes for multilayered half-space, Geophys. J. Int.115,391-109.
    Chong and Ni. (2009). Near surface velocity and Qs structure of the Quaternary sediment in Bohai basin, China. Earthq Sci.22:451-458
    Clayton, R.W. and R.A. Wiggins (1976). Source shape estimation and deconvolution of teleseismic body waves, Geophys. J. R. Astr. Soc.47,151-177.
    Clitheroe, G., O. Gudmundsson, and B. Kennett (2000), The crustal thickness of Australia, J. Geophys. Res.,105,13,697-13,713.
    Dahlen, F. A., Hung, S. H.,& Nolet, G. (2000). Frechet kernels for finite-frequency traveltimes—I. Theory. Geophysical Journal International,141(1),157-174.
    Dey-Sarkar, S.K., and R. A. Wiggins. (1876). Source deconvolution of teleseismic P wave arrivals between 14°and 40°, J. GeophysR. es.,81,3633-3641
    Du, Z., and G. Foulger (1999), The crustal structure beneath the northwest fjords, Iceland, from receiver functions and surface waves, Geophys. J.Int.,139(2),419-432.
    Dueker, K. G.,& Sheehan, A. F. (1997). Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track. Journal of Geophysical Research,102(B4),8313-8327.
    Dunkin, J. W. (1965). Computations of modal solutions in layered elastic media at high frequencies, Bull. Seismol. Soc. Am:55,335-358.
    Durek, J. J., Ritzwoller, M. H.,& Woodhouse, J. H. (1993). Constraining upper mantle anelasticity using surface wave amplitude anomalies. Geophysical Journal International,114(2),249-272.
    Dziewonski AM and Anderson DL (1981) Preliminary Earth model (PREM Physics of the Earth and Planetary Interiors 25:297-356.
    Ellis, R. M. and P. W. Basham (1968). Crustal characteristics from short period P waves, Bull. Seism. Soc. Am.58,1681-1700.
    Feng, M.,& An, M. (2010). Lithospheric structure of the Chinese mainland determined from joint inversion of regional and teleseismic Rayleigh-wave group velocities. Journal of Geophysical Research:Solid Earth (1978-2012),115(B6).
    Fernandez, L. M. and J. Careaga (1968). The thickness of the crust in central United States and La Paz, Bolivia, from the spectrum of longitudinal seismic waves, Bull. Seism. Soc. Am.58, 711-741.
    Ferreira, A. M. G., and J. H. Woodhouse (2007), Observations of long period Rayleigh wave ellipticity, Geophys. J. Int.,169,161-169.
    Fichtner, A.,& Igel, H. (2008). Efficient numerical surface wave propagation through the optimization of discrete crustal models—a technique based on non-linear dispersion curve matching (DCM). Geophysical Journal International,173(2),519-533.
    Fichtner, A., Bunge, H. P.,& Igel, H. (2006). The adjoint method in seismology:I. Theory. Physics of the Earth and Planetary Interiors,157(1),86-104.
    Forsyth, D. W. (1975). The early structural evolution and anisotropy of the oceanic upper mantle. Geophysical Journal International,43(1),103-162.
    Friederich, W. (1999). Propagation of seismic shear and surface waves in a laterally heterogeneous mantle by multiple forward scattering. Geophysical Journal International,136(1),180-204.
    Friederich, W. (2003). The S-velocity structure of the East Asian mantle from inversion of shear and surface waveforms. Geophysical Journal International,153(1),88-102.
    Friederich,W.,Wielandt, E.& Stange, S.,1993. Multiple forward scattering of surface waves: comparison with an exact solution and Born singlescattering methods, Geophys. J. Int.,112, 264-275.
    Fukushima Y, Kinoshita S and Sato H (1992). Measurement of Q_1 for S waves in mudstone Chikura, Japan:Comparison of incident and reflected phases in borehole seismograms. Bull Seism Soc Amer 82:148-163.
    Gilbert, H. J., Sheehan, A. F., Dueker, K. G., and Molnar, P. (2003). Receiver functions in the western United States, with implications for upper mantle structure and dynamics. Journal of Geophysical Research,108(B5),2229.
    Golitzin, B.B. (1912). On dispersion and attenuation of surface seismic waves (in Russian), Izv. Russ. Acad. Sci.,2
    Gung, Y., Panning, M.,& Romanowicz, B. (2003). Global anisotropy and the thickness of continents. Nature,422(6933),707-711.
    Gurrola, H., F. G. Baker, and J. B. Minster (1995). Simultaneous time domain deconvolution with application to the computer of receiver functions, Geophys. J. Int.120,537-543.
    Harvey, D. (1985). A spectral method for computing synthetic seismograms, Ph.D. Thesis, University of Colorado at Boulder.
    Hasegawa, H. S. (1969). A study of the effects of the Yellowknife crustal structure upon the P coda of teleseismic events, Geophys. J.18,159-175.
    Hasegawa. (1971). Crustal Transfer Ratios of Short-and-Long-Period Body Waves Recorded at Yellowknife, Bull. Seism. Soc. Am.61,1303-1320
    Haskell, N. A.,1953. The dispersion of surface waves on multilayered media, Bull, seism. Soc. Am.,43,17-34.
    Hauksson E, Teng T and Henyey T L (1987). Results from a 1500 m deep, three-level downhole seismometer array:Site response, low Q values, and fmax. Bull Seism Soc Amer 77:1883-1 904.
    Hauksson, E.,& Shearer, P. M. (2006). Attenuation models (QP and QS) in three dimensions of the southern California crust:Inferred fluid saturation at seismogenic depths. Journal of geophysical research,111(B5), B05302.
    Helffrich (2006). Extended-Time Multitaper Frequency Domain Cross-Correlation Receiver-Function Estimation, Bull. Seismol. Soc. Amer.,96,344-347
    Helmberger D V (1968). The crust-mantle transition in the Bering Sea. Bull Seism Soc Amer 58: 179-214.
    Helmberger D V (1974). Generalized ray theory for shear dislocations. Bull Seism Soc Amer 64 45-64.
    Helmberger, D., and R. A. Wiggins. (1971). Upper mantle structure of Mid-western United States, J. GeophysR. es.,76,3229-3245
    Herrmann, R. B., and C. J. Ammon (2002). Computer programs in seismology version 3.30: surface waves, receiver functions, and crustal structure, St. Louis University, Missouri, http://www.eas.slu.edu/People/RBHerrmann/
    Hisada, Y. (1994). An efficient method for computing Green's functions for a layered half-space with sources and receivers at close depths, Bull. Seismol. Soc. Am.84,1456-1472.
    Hisada, Y. (1995). An efficient method for computing Green's functions for a layered half-space with sources and receivers at close depths (part 2), Bull. Seismol. Soc. Am.85,1080-1093.
    Horike, M.,1985, Inversion of phase-velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas, J. Phys. Earth,33(2),59-96.
    Huang, Z., Su, W., Peng, Y., Zheng, Y.,& Li, H. (2003). Rayleigh wave tomography of China and adjacent regions. Journal of geophysical research,108(B2),2073.
    Humphreys, E.,& Clayton, R. W. (1988). Adaptation of back projection tomography to seismic travel time problems. Journal of Geophysical Research:Solid Earth (1978-2012),93(B2), 1073-1085.
    Ichikawa, M. and P. W. Basham (1965). Variations in short-period records from Canadian seismograph stations, Can. J. Earth Sci.2,510-542.
    Inoue, H., Fukao, Y, Tanabe, K.,& Ogata, Y. (1990). Whole mantle P-wave travel time tomography. Physics of the earth and planetary interiors,59(4),294-328.
    Jongmans D and Malin P E (1995). Microearthquake S-wave observations from 0 to 1 km in the Varian well at Parkfield, California. Bull Seism Soc Amer 85:1805-1821.
    Jordan, T. H. and L. N. Frazer (1975). Crustal and upper mantle structure from Sp phases, J. Geophys. Res.80,1504-1518.
    Julia, J. (2007). Constraining velocity and density contrasts across the crust-mantle boundary with receiver function amplitudes. Geophysical Journal International,171(1),286-301.
    Julia, J., C. Ammon, R. Herrmann, and A. Correig (2000), Joint inversion of receiver function and surface wave dispersion observations, Geophys. J. Int.,143(1),99-112.
    Kang, T.S. and Shin, J.S.,2006. Surface-wave tomography from ambient seismic noise of accelerograph networks in southern Korea, Geophys. Res. Lett.,33, L17303.
    Karato, S. I., Jung, H., Katayama, I.,& Skemer, P. (2008). Geodynamic significance of seismic anisotropy of the upper mantle:new insights from laboratory studies. Annu. Rev. Earth Planet. Sci.,36,59-95.
    Kausel, E., and J. M. Roesset (1981). Stiffness matrices for layered solids, Bull. Seismol. Soc. Am. 71,1743-1761.
    Kawase H (2003) Site effects on strong ground motions. In:Lee WHK, Kanamori H, and Jennings PC (eds.) International Handbook of Earthquake and Engineering Seismology, vol.81B, pp. 1013-1030. New York:Academic Press.
    Ke, Dong, Kristensen and Thompson (2011). Modified Thomson-Haskell Matrix Methods for Surface-Wave Dispersion-Curve Calculation and Their Accelerated Root-Searching Schemes, Bull. Seismol. Soc. Am.101,1692-1703.
    Kennett, B. L. N. (1974). Reflection, rays and reverberations, Geophys. J. R. Astr. Soc.64, 1685-1696.
    Kennett, B. L. N. (1983). Seismic Wave Propagation in Stratified Media, Cambridge University Press, New York,342 pp.
    Kennett, B. L. N., and N. J. Kerry (1979). Seismic waves in a stratified half-space, Geophys. J. R. Astr. Soc.57,557-583.
    Kerry, N. J.,1981. Synthesis of seismic surface wave, Geophys. J. R. am. Soc.,64,425-446.
    Kind, R.,& Yuan, X. (2010). Seismic images of the biggest crash on Earth. Science,329(5998), 1479-1480.
    Kind, R., Kosarev, G. L.,& Petersen, N. V. (1995). Receiver functions at the stations of the German Regional Seismic Network (GRSN). Geophysical Journal International,121(1), 191-202.
    Kinoshita S (1994). Frequency-dependent attenuation of shear waves in the crust of the southern Kanto area, Japan. Bull Seism Soc Amer 84:1387-1396.
    Kinoshita S (2008). Deep-borehole-measured Qp and Qs attenuation for two Kanto sediment layer sites. Bull Seism Soc Amer 98:463-468.
    Knopoff, L. (1964). A matrix method for elastic wave problems, Bull. Seismol. Soc. Am.45, 431-438.
    Knopoff, L. (1972). Observation and inversion of surface-wave dispersion. Tectonophysics,13(1), 497-519.
    Knopoff, L. (1974). The Structure of the Upper Mantle under the United States from the Dispersion of Rayleigh Waves*. Geophysical Journal of the Royal Astronomical Society, 36(3),515-539.
    Komatitsch, D.& Vilotte, J.,1998. The spectral elementmethod:an efficient tool to simulate the seismic response of 2D and 3D geological structures, Bull, seism. Soc. Am.,88(2),368-392.
    Kosarev, G. L., Petersen, N. V., Vinnik, L. P.,& Roecker, S. W. (1993). Receiver functions for the Tien Shan analog broadband network:Contrasts in the evolution of structures across the Talasso-Fergana fault. Journal of Geophysical Research:Solid Earth (1978-2012),98(B3), 4437-4448.
    Kosarev, G., Kind, R., Sobolev, S. V., Yuan, X., Hanka, W., and Oreshin, S. (1999). Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science,283(5406), 1306-1309.
    Kuo, C., C. R. Lindberg, and D. J. Thomson (1990). Coherence established between atmospheric carbon dioxide and global temperature, Nature 343,709-713.
    Kurita, T. (1969). Crustal and upper mantle structure in Japan from amplitude and phase spectra of long-period P-waves. Part 1. Central mountain area, J. Phys. Earth 17,13-41.
    Kurita. (1973). A PROCEDURE FOR ELUCIDATING FINE STRUCTURE OF THE CRUST AND UPPER MANTLE FROM SEISMOLOGICAL DATA, Bull. Seism. Soc. Am.63, 189-209
    Kustowski, B., Ekstrom, G.,& Dziewonski, A. M. (2008). The shear-wave velocity structure in the upper mantle beneath Eurasia. Geophysical Journal International,174(3),978-992.
    Langston C A (2002). ESEE:embayment seismic excitation experiment. Seism Res Lett 73:268
    Langston C A (2003a). Local earthquake wave propagation through Mississippi embayment sediments. Part Ⅰ:Body-wave phases and local site responses. Bull Seism Soc Amer 93:2 664-2684.
    Langston C A (2003b). Local earthquake wave propagation through Mississippi embayment sediments. Part Ⅱ:Influence of local site velocity structure on Qp-Qs determinations. Bul Seism Soc Amer 93:2685-2702.
    Langston C A, Bodin P, Powell C, Withers M, Horton S and Mooney W (2005). Bulk sediment QP and Qs in the Mississippi embayment, Central United States. Bull Seism Soc Amer 95:2 162-2179.
    Langston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research:Solid Earth (1978-2012),84(B9),4749-4762.
    Last, R. J., Nyblade, A. A., Langston, C. A.,& Owens, T. J. (1997). Crustal structure of the East African Plateau from receiver functions and Rayleigh wave phase velocities. Journal of Geophysical Research,102(B11),24469-24.
    Lawrence, J. F. and Shearer, P. M. (2006). A global study of transition zone thickness using receiver functions. Journal of Geophysical Research:Solid Earth (1978-2012),111(B6).
    Lawrence, J., and D. Wiens (2004), Combined receiver-function and surface wave phase-velocity inversion using a niching genetic algorithm:Application to Patagonia, Bull. Seismol. Soc. Am.,94(3),977-987.
    Lay, T.,& Wallace, T. C. (1995). Modern global seismology (Vol.58). Academic press.
    Lebedev, S.,& Nolet, G. (2003). Upper mantle beneath Southeast Asia from S velocity tomography. Journal of Geophysical Research,108(B1),2048.
    Lee VW, Trifunac MD (2010) Should average shear-wave velocity in the top 30m of soil be used to describe seismic amplification?. Soil Dyn Earthq Eng 30(11):1540-1549
    Lehmann I(1936) P'. Publ. Bureau Cent. Seism. Inter., Serie A, Trav. Scient 14:87-115.
    Lekic, V.,& Romanowicz, B. (2011). Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophysical Journal International,185(2), 799-831.
    Levin, V.,& Park, J. (1997). P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation. Geophysical Journal International,131(2),253-266.
    Li, C., van der Hilst, R. D., Meltzer, A. S.,& Engdahl, E. R. (2008). Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1),157-168.
    Li, X.-D.& Romanowicz, B.,1996. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory, J. geophys. Res.,101(B10),22245-22272.
    Li, X.-D.& Tanimoto, T.,1993a. Waveforms of long-period body waves in a slightly aspherical Earth model, Geophys. J. Int.,112,92-102
    Li, X.-D., and B. Romanowicz,1995. Comparison of global waveform inversions with and without considering cross-branch modal coupling, Geophys. J. Int., loel,695-709
    Ligorria and Ammon (1999). Iterative Deconvolution and Receiver-Function Estimation, Bull. Seismol. Soc. Amer.,89,1395-1400
    Lin F.C., Schmandt B. and Tsai V.C.,2012. Joint inversion of Rayleigh wave phase velocity and ellipticity using USArray:constraining velocity and density structure in the upper crust. Geophys. Res. Lett.39
    Lin, F.C, Ritzwoller, M.H., Townend, J., Savage, M.& Bannister, S.,2007, Ambient noise Rayleigh wave tomography of New Zealand, Geophys. J. Int.,72(2),649-666. doi:10.1111/j.1365-246X.2007.03414.x,2007.
    Liu (2010). Efficient Reformulation of the Thomson-Haskell Method for Computation of Surface Waves in Layered Half-Space, Bull. Seismol. Soc. Am.100,2310-2316.
    Liu, Q.,& Tromp, J. (2006). Finite-frequency kernels based on adjoint methods. Bulletin of the Seismological Society of America,96(6),2383-2397.
    Long, M. D.,& Becker, T. W. (2010). Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters,297(3),341-354.
    Love, A.E.H., Some Problemsi n GeodynamicsC, ambridge Univ. Press, New York,1911. (Reprinted Dover, New York,1967.)
    Lowe, M. J. S. (1995). Matrix techniques for modeling ultrasonic waves in multilayered media, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr.42,525-542
    Luco, J. E., and R. J. Apsel (1983). On the Green's function for a layered half-space, part Ⅰ, Bull. Seismol. Soc. Am.73,909-929.
    Marone, F.,& Romanowicz, B. (2007a). Non-linear crustal corrections in high-resolution regional waveform seismic tomography. Geophysical Journal International,170(1),460-467.
    Marone, F.,& Romanowicz, B. (2007b). The depth distribution of azimuthal anisotropy in the continental upper mantle. Nature,447(7141),198-201.
    Marquering, H., Dahlen, F. A.,& Nolet, G. (1999). Three-dimensional sensitivity kernels for finite-frequency traveltimes:the banana-doughnut paradox. Geophysical Journal International,137(3),805-815.
    Martin, G. R. and R. Dobry (1994). Earthquake site response and seismic code provisions, NCEER Bull.8,1-6.
    McEvilly, T. V. (1964). Central US crust—upper mantle structure from Love and Rayleigh wave phase velocity inversion. Bulletin of the Seismological Society of America,54(6A), 1997-2015.
    Megnin, C.& Romanowicz, B.A.,2000. The 3D shear velocity structure of the mantle from the inversion of body, surface and higher mode waveforms, Geophys. J. Int.,143,709-728.
    Mohorovic ic' A (1910) Potres od 8. X 1909. God. Izvjesc'e Zagr. met. Ops. Zag.1909, Zagreb (Das Beben vom 8. X 1909. Jahrbuch des meteorologischen Observatoriums in Zagreb fu" r das Jahr 1909),9, Part 4,1-63.
    Molnar, S., Cassidy, J., Monahan, P., and Dosso, S.E.2007. Comparison of Geophysical shear-wave velocity methods.9th Canadian Conference on Earthquake Engineering, Ottawa, Canada. Paper 1173 on CD-ROM.25-29 June 2007, Ottawa.
    Moorkamp, M., Jones, A. G.,& Fishwick, S. (2010). Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data. Journal of Geophysical Research:Solid Earth (1978-2012),115(B4).
    Moschetti, M.P., Ritzwoller, M.H.& Shapiro, N.M.,2007. Surface wave tomography of the western United States from ambient seismic noise:Rayleigh wave group velocity maps, Geochem., Geophys., Geosys.,8, Q08010, doi:10.1029/2007GC001655.
    Nakamura, Y.,1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Q. Rep. Railway Tech. Res. Inst.,30(1),25-33.
    Ni,James and Barazangi,Muawia. (1983). High-frequency seismic wave propagation beneath the Indian Shield, Himalayan Arc, Tibetan Plateau and surrounding regions:high uppermost mantle velocities and efficient Sn propagation beneath Tibet. Geophysical Journal International,72(3),665-689.
    Nolet, G. (1977). The upper mantle under western Europe inferred from the dispersion of Rayleigh modes. J. Geophys,43(1-2),265-285.
    Nolet, G. (1990). Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs. Journal of Geophysical Research:Solid Earth (1978-2012),95(B6),8499-8512.
    Owens, T. J., G. Zandt, and S. R. Taylor (1984). Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee:a detailed analysis of broadband teleseismic P waveforms, J. Geophys. Res.89,7783-7795.
    Owens, T. J., Nyblade, A. A., Gurrola, H., and Langston, C. A. (2000). Mantle transition zone structure beneath Tanzania, East Africa. Geophysical research letters,27(6),827-830.
    Ozalaybey, S., M. Savage, A. Sheehan, J. Louie, and J. Brune (1997), Shear-wave velocity structure in the northern Basin and Range province from the combined analysis of receiver functions and surface waves, Bull. Seismol. Soc. Am.,87(1),183-199.
    Panning, M.& Romanowicz, B.,2006. A three-dimensional radially anisotropic model of shear velocity in the whole mantle, Geophys. J. Int.,167,361-379.
    Panning, M. P., Cao, A., Kim, A.,& Romanowicz, B. A. (2012). Non-linear 3-D Born shear waveform tomography in Southeast Asia. Geophysical Journal International,190(1), 463-475.
    Panning, M. P., Capdeville, Y.,& Romanowicz, B. A. (2009). Seismic waveform modelling in a 3-D Earth using the Born approximation:Potential shortcomings and a remedy. Geophysical Journal International,177(1),161-178.
    Panning, M.,& Romanowicz, B. (2004). Inferences on flow at the base of Earth's mantle based on seismic anisotropy. Science,303(5656),351-353.
    Park and Levin (2000). Receiver Functions from Multiple-Taper Spectral Correlation Estimates, Bull. Seismol. Soc. Amer.,90,1507-1520
    Pei, D. H., J. N. Louie, and S. K. Pullammanappallil (2008). Improvements on computation of phase velocity of Rayleigh wave based on the generalized R/T coefficient method, Bull. Seismol. Soc. Am.98,280-287.
    Pestel, E., and F. A. Leckie (1963). Matrix Methods in Elasto-Mechanics, McGraw-Hill, New York,435 pp.
    Phinney, R. A. (1964), Structure of the Earth's Crust from Spectral Behavior of Long-Period Body Waves, J. Geophys. Res.69,2997-3017
    Priestley, K., Debayle, E., McKenzie, D.,& Pilidou, S. (2006). Upper mantle structure of eastern Asia from multimode surface waveform tomography. Journal of Geophysical Research:Solid Earth(1978-2012),111(B10).
    Randall, G. E. (1989). Efficient calculation of differential seismograms for lithospheric receiver functions, Geophys. J. Int.99,469-481.
    Rawlinson, N., Pozgay, S.,& Fishwick, S. (2010). Seismic tomography:A window into deep Earth. Physics of the Earth and Planetary Interiors,178(3),101-135.
    Ritzwoller, M. H.,& Levshin, A. L. (1998). Eurasian surface wave tomography:Group velocities. Journal of Geophysical Research:Solid Earth (1978-2012),103(B3),4839-4878.
    Rokhlin, S. I., and L. Wang (2002). Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media, J. Acoust. Soc. Am.112,822-834.
    Romanowicz, B. (1990). The upper mantle degree 2:Constraints and inferences from global mantle wave attenuation measurements. Journal of Geophysical Research:Solid Earth (1978-2012),95(B7),11051-11071.
    Romanowicz, B. (1995). A global tomographic model of shear attenuation in the upper mantle. Journal of geophysical research,100(B7),12375-12.
    Romanowicz, B. A., Panning, M. P., Gung, Y.,& Capdeville, Y. (2008). On the computation of long period seismograms in a 3-D earth using normal mode based approximations. Geophysical Journal International,175(2),520-536.
    Ryberg, T., and Weber, M. (2000). Receiver function arrays:a reflection seismic approach. Geophysical Journal International,141(1),1-11.
    Sabra, K.G., Gerstoft, P., Roux, P., Kuperman,W.A.& Fehler, M.C.,2005.Surfacewave tomography from microseisms in Southern California, Geophys. Res. Lett.,32, L14311.
    Saito, M. (1967). Excitation of free oscillations and surface waves by a point source in a vertically heterogeneous Earth. J. Geophys. Res.72,3689
    Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm—I.Searching a parameter space. Geophysical Journal International,138(2),479-494.
    Schmidt, H., and G. Tango (1986). Efficient global matrix approach to the computation of synthetic seismograms, Geophys. J. R. Astr. Soc.84,331-359.
    Schwab, F. A. (1970). Surface-wave dispersion computations:Knopoff's method, Bull. Seismol. Soc. Am.60,1491-1520.
    Schwab, F. A., and L. Knopoff (1970). Surface-wave dispersion computations, Bull. Seismol. Soc. Am.60,321-344.
    Schwab, F. A., and L. Knopoff (1972). Fast surface wave and free mode computations, in Methods in Computational Physics, B. A. Bolt (Editor), Vol. Ⅱ, Academic Press, New York, pp.87-180.
    Seale S and Archuleta R (1989). Site amplification and attenuation of strong ground motion. Bull Seism Soc Amer 79:1673-1696.
    Shapiro, N. M.,& Ritzwoller, M. H. (2002). Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophysical Journal International,151(1),88-105.
    Shapiro, N.M., Campillo, M., Stehly, L.& Ritzwoller, M.H.,2005. Highresolution surface-wave tomography from ambient seismic noise, Science,307,1615-1618.
    Shen, W., Ritzwoller, M. H., Schulte-Pelkum, V.,& Lin, F. C. (2013). Joint inversion of surface wave dispersion and receiver functions:a Bayesian Monte-Carlo approach. Geophysical Journal International,192(2),807-836.
    Shen, Y., Ren, Y., Gao, H.,& Savage, B. (2012). An Improved Method to Extract Very-Broadband Empirical Green's Functions from Ambient Seismic Noise. Bulletin of the Seismological Society of America,102(4),1872-1877.
    Shibutani, T., M. Sambridge, and B. Kennett (1996), Genetic algorithm inversion for receiver functions with application to the crust and uppermost mantle structure beneath eastern Australia, Geophys. Res. Lett.,23,1829-1832.
    Steidl JH (2000) Site response in southern California for probabilistic seismic hazard analysis. Bull Seismol Soc Am 90(6B):S149-S169
    Takeuchi, H. and Saito, M.,1972. Seismic surface waves. In:"Seismology:Surface Waves and Free Oscillations" (B.A. Bolt, Ed.), methods in computational Physics, Vol.11,pp.217-295. Academic Press, New York.
    Tan, E. L. (2005). Stiffness matrix method with improved efficiency for elastic wave propagation in layered anisotropic media, J. Acoust. Soc. Am.118,3400-3403.
    Tanimoto, T.& Alvizuri, C.,2006. Inversion of the HZ ratio of microseisms for S-wave velocity in the crust, Geophys. J. Int.,165,323-335.
    Tanimoto, T.& Rivera, L.,2005. Prograde Rayleigh wave particle motion, Geophys. J. Int.,162, 399-405.
    Tanimoto, T.& Rivera, L.,2008. The ZH ratio method for long-period seismic data:sensitivity kernels and observational techniques, Geophys. J. Int.,172,187-198.
    Tanimoto, T.& Tsuboi, S.,2009. Variational principle for Rayleigh wave ellipticity Geophys. J. Int.,179,1658-1668.
    Tanimoto, Yano and Hakamata.,2013. An approach to improve Rayleigh-wave ellipticity estimates from seismic noise:application to the Los Angeles Basin. Geophys. J. Int.,193(1), 407-420
    Tarantola, A.& Valette, B.,1982. Generalized nonlinear inverse problems solved using the least squares criterion, Rev. geophys. Space Phys.,20,219-232.
    Thornson, W. T.,1950. Transmission of elastic waves through a stratified solid medium, J. uppl. Phys.,21,89-93.
    Thrower, E. N. (1965). The computation of dispersion of elastic waves in layered media, J. Sound Vib.2,210-226.
    Tkalcic, H., Pasyanos, M. E., Rodgers, A. J., Gok, R., Walter, W. R.,& Al-Amri, A. (2006). A multistep approach for joint modeling of surface wave dispersion and teleseismic receiver functions:Implications for lithospheric structure of the Arabian Peninsula. Journal of Geophysical Research:Solid Earth (1978-2012),111(B11).
    Utsu, T. (1966). Variations in spectra of P waves recorded at Canadian Arctic seismograph stations, Can. J. Earth. Sci.3,597-621.
    van der Hilst, R. D., Widiyantoro, S.,& Engdahl, E. R. (1997). Evidence for deep mantle circulation from global tomography. Nature,386,578-584.
    Vernon, F. L., J. Fletcher, L. Carroll, A. Chave, and E. Sembrera (1991). Coherence of seismic body waves from local events as measured by a small-aperture array, J. Geophys. Res.96, 11,981-11,996.
    Vinnik, L., C. Reigber, I. Aleshin, G. Kosarev, M. Kaban, S. Oreshin, and S. Roecker (2004), Receiver function tomography of the central Tien Shan, Earth Planet. Sci. Lett.,225(1-2), 131-146.
    von Rebeur-Paschwitz E (1895) Horizontalpendal-Beobachtungen auf der Kaiserlichen Universitats-Sternwarte zu Strassburg 1892-1894. Gerland Beitr. Zur Geophys.2:211-536.
    Wang, L., and S.I. Rokhlin (2001). Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media, Ultrasonics 39,413-424.
    Wang, Y., and R. K. N. D. Rajapakse (1994). An exact stiffness method for elastodynamics of a layered orthotropic half-space, J. Appl. Mech.61,339-347.
    Wang, Z.& Dahlen, F.A.,1995. Spherical spline parameterization of three-dimensional Earth models, Geophys. Res. Lett.,22,3099-3102.
    Watson, T. H. (1970). A note on fast computation of Rayleigh wave dispersion in the multilayered half-space, Bull. Seismol. Soc. Am.60,161-166.
    Woodhouse, J.H.& Dziewonski, A.M.,1984. Mapping the upper mantle:Three dimensional modelling of Earth structure by inversion of seismic waveforms, J. geophys. Rex, 89,5953-5986
    Woodhouse, J.H.,1983. The joint inversion of seismic waveforms for lateral variations in Earth structure and earthquake source parameters, eds Kanamori, H.& Boschi, E., Proc.'Enrico Fermi' Int. Sch. Phys., LXXXV,366-397.
    Wu, F. T., Levshin, A. L.,& Kozhevnikov, V. M. (1997). Rayleigh wave group velocity tomography of Siberia, China and the vicinity, pure and applied geophysics,149(3),447-473.
    Yamada K and Horike M (2007). Inference of Q-values below 1 Hz from borehole and surface data in the Osaka basin by three-component waveform fitting. Bull Seism Soc Amer 97:1 267-1278.
    Yang, Y., Ritzwoller, M.H., Levshin, A.L.& Shapiro, N.M.,2007. Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int.,168,259-274.
    Yano, Tanimoto and Rivera.,2009. The ZH ratio method for long-period seismic data:inversion for S-wave velocity structure Geophys. J. Int.,179,413-424
    Yanovskaya, T. B.,& Kozhevnikov, V. M. (2003).3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data. Physics of the Earth and Planetary Interiors,138(3),263-278.
    Yao, H.J., Van Der Hilst, R.D.& de Hoop, M.V.,2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps, Geophys. J. Int.,166,732-744.
    Yao, Z. X.,& Harkrider, D. G. (1983). A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms. Bulletin of the Seismological Society of America,73(6A),1685-1699.
    Yuan, H.,& Romanowicz, B. (2010). Lithospheric layering in the North American craton. Nature, 466(7310),1063-1068.
    Zhao, J., Yuan, X., Liu, H., Kumar, P., Pei, S., Kind, R.,...& Wang, W. (2010). The boundary between the Indian and Asian tectonic plates below Tibet. Proceedings of the National Academy of Sciences,107(25),11229-11233.
    Zhao, L. S., Sen, M. K., Stoffa, P.,& Frohlich, C. (1996). Application of very fast simulated annealing to the determination of the crustal structure beneath Tibet. Geophysical Journal International,125(2),355-370.
    Zhao, L.,& Jordan, T. H. (2006). Structural sensitivities of finite-frequency seismic waves:a full-wave approach. Geophysical Journal International,165(3),981-990.
    Zhao, L., Jordan, T. H., Olsen, K. B.,& Chen, P. (2005). Frechet kernels for imaging regional earth structure based on three-dimensional reference models. Bulletin of the Seismological Society of America,95(6),2066-2080.
    Zhao, L., Jordan, T.H.& Chapman, C.,2000. Three-dimensional Fr'echet differential kernels for seismic delay times, Geophys. J. Int.,141,558-576.
    Zhu, L. (2000). Crustal structure across the San Andreas Fault, southern California from teleseismic converted waves. Earth and Planetary Science Letters,179(1),183-190.
    Zhu, L., and Kanamori, H. (2000). Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research,105(B2),2969-2980.
    Zhu, L., and L. A. Rivera (2002), A note on the dynamic and static displacements from a point source in multilayered media, Geophys. J. Int.,148,619-627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700