用户名: 密码: 验证码:
RNA基因干扰技术抑制草鱼呼肠孤病毒复制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草鱼是我国重要的淡水养殖品种,其产量占淡水养殖总产量20%。草鱼出血病是草鱼鱼种阶段最为严重的疾病,该病发病季节长,流行范围广,死亡率高,其病原为草鱼呼肠孤病毒(Grass carp reovirus, GCRV)。草鱼呼肠孤病毒已被证实是致病力最强的水生呼肠孤病毒,到目前为止,已报道的草鱼呼肠孤分离株有20多株。根据目前已有研究,草鱼呼肠孤病毒主要有三种基因型,不同基因型的毒株核苷酸和氨基酸序列的同源性均小于30%,而同一基因型的毒株核苷酸和氨基酸序列的同源性均大于95%。不同分离株在基因组带型、基因组序列、对草鱼的致病能力、致细胞病变能力等方面有一定的差异。草鱼呼肠孤病毒存在不同的基因型也给草鱼出血病的防治带来了困难。目前,草鱼出血病的预防和治疗主要依赖疫苗免疫预防与天然植物药物治疗等方法,但效果有限。分离鉴定草鱼呼肠孤病毒流行毒株,探索新的草鱼出血病预防与控制技术具有较大的科学意义与应用价值。本研究针对草鱼出血病开展了草鱼呼肠孤病毒流行株的分离鉴定和运用RNA干扰(RNA interference, RNAi)技术抑制草鱼呼肠孤病毒的复制相关研究,主要结果如下:
     1.草鱼呼肠孤病毒流行毒株的分离鉴定:从湖北患典型草鱼出血病的草鱼体内分离到一株新致病型草鱼呼肠孤病毒,暂命名为GCRV-104。采用细胞培养分离的技术,分离并纯化病毒,经人工感染试验、电镜超微观察、病毒的理化特性分析及病毒的基因组分析,确认该分离株属于草鱼呼肠孤病毒Ⅲ型。用该病毒进行人工感染健康草鱼,可复制出自然发病类似症状;病毒感染草鱼肾脏细胞系(CIK)可以产生典型的细胞病变。病毒感染细胞的超薄切片电镜观察结果显示,病毒在细胞质内复制,呈晶格状排列,双层衣壳,无囊膜,直径约60-70nnm;冻融、氯仿、乙醚、56℃1h处理对病毒滴度影响不显著,65℃1h处理病毒滴度下降显著。病毒基因组SDS-PAGE分析和核酸敏感性试验结果表明,其基因组由11个分段的RNA核酸节段组成,为典型的水生呼肠孤病毒基因组结构。病毒基因组S8节段全长基因的克隆测序分析其全长核苷酸数目为1319bp编码VP6蛋白,与Genbank中登录的草鱼呼肠孤病毒分离株GCRV-873, GCRV-991, GCRV-875, GCRV-876的氨基酸序列的同源性仅为22.6%。该流行毒株的分离鉴定为研究草鱼出血病的流行病学、诊断方法与防治技术提供了重要的病原材料。
     2.真核表达载体介导的siRNA抑制草鱼呼肠孤病毒的复制:针对草鱼出血病呼肠孤病毒(GCRV-JX09-01)分节段基因组L2片段上的RNA聚合酶基因(RdRp)和S10片段上的外衣壳蛋白基因(OCP),设计并合成可转录为siRNA结构的DNA分子,利用在合成的DNA分子上引入的限制性酶切位点,将合成的DNA分子克隆到pSilencer真核表达载体中,构建含有siRNA结构的转录载体pSi-1286, pSi-117,经PCR鉴定及测序分析确认重组载体的正确性。采用脂质体转染法用重组载体转染草鱼肾脏组织细胞(CIK),并用感染复数(MOI)为0.01的GCRV感染CIK细胞,分别通过细胞病变效应(CPE)、real-time RT-PCR、病毒滴度测定来评定载体转录siRNA对GCRV在CIK细胞中复制的影响情况。结果显示,所构建的siRNA载体转录产生siRNA可以
     有效抑制CIK中GCRV的复制,病毒滴度下降,干扰组GCRV mRNA的水平仅为病毒阳性对照组的11.22%和26.86%,而阴性对照组没有明显的抑制效果。该结果说明真核表达载体介导的siRNA可以作为抑制GCRV感染和复制的新途径。
     3.siRNA多表达载体抑制不同基因型GCRV分离株的复制:为了实现RNA干扰可以同时抑制不同基因型草鱼呼肠孤分离株的复制,本研究设计并构建了同时靶向流行株GCRV-JX09-01(GCRV I型)及GCRV-104(GCRV III型)的siRNA多表达载体,pMultisiVP2/2(靶向GCRV-JX09-01和GCRV-104的VP2蛋白基因);pMultisiVP6/7(靶向GCRV-JX09-01VP7蛋白基因和GCRV-104VP6蛋白基因)。两个siRNA多表达载体均可同时抑制GCRV-JX09-01和GCRV-104在CIK细胞上的复制,并且无明显的细胞毒性。转染pMultisiVP2/2组,GCRV-JX09-01. GCRV-104VP2mRNA拷贝数分别下降为10.98±2.5%,10.16±3.1%;转染pMultisiVP6/7组GCRV-JX09-01VP7、GCRV-104VP6mRNA拷贝数分别下降为19.37±3.7%,13.22±2.75%,显著低于阳性对照组mRNA转录水平,而转染pSiNC组与病毒阳性对照组没有显著差别。本研究首次将siRNA多表达载体应用于抑制水生病毒的研究中。该实验方法的建立和应用,将为使用RNAi抑制不同基因型GCRV分离株奠定理论基础和材料基础,为防治草鱼出血病提供了潜在的新途径。
Grass carp (Ctenopharyngodon idellus) is one of the most important species in freshwater aquaculture of China, its yield accounts for20%in total aquaculture production yield. Grass carp reovirus (GCRV) is the causative agent of the grass carp hemorrhage, the most severe viral disease of fish in China. This pathogen causes huge economic losses. GCRV has been recognized by ICTV as a species belonging to the genus Aquareovirus, AQRV-C. During this years, there are also more than20strains of aquareovirus isolated from grass carp. Based on the phylogenetic relationship of these isolates, there are three genotypes, the similarity was less than30%among the three genotypes. Currently, there is no effective treatment method against GCRV infection. Progress has been made with immune based preventive strategies, but they are far from being applicable in the practical production of grass carp. Therefore, studies on new methods for the prevention and treatment of this disease are warranted. A new strain grass carp reovirus that is the true cause of the current epidemic of Grass carp haemorrhage was isolated in this study, and single-siRNA, multiple-siRNA expression vectors targeting the GCRV were constructed to inhibit viral replication. The results were present as below:
     1. A new grass carp reovirus strain named GCRV-104was isolated from hemorrhagic grass carp in Hubei, China and identified as Aqureovirus by the Electron microscopy and SDS-PAGE assays. The complete nucleotide sequences of genomic segment8(S8) was1319bp in length with51%G+C content and encoding VP6protein. Analysis of S8gene and amino acid sequences and Phylogenetic analysis indicated that it belongs to the family Reoviridae, genus Aqureovirus. But it was far from the other isolates reported before. All the results indicated that GCRV-104is a new strain grass carp reovirus that was a basic materal for prevention and treatment of grass carp hemorrhage.
     2. Two DNA constructs targeting the grass carp reovirus (GCRV) RNA dependent RNA polymerase (RdRp) gene and outer capsid protein (OCP) gene that were each64bp in length were chemically synthesized and cloned into pSilencer2.1-U6neo plasmid, named pSi-RdRp1286and pSi-OCP117, respectively. After transfection of pSi-RdRp1286and pSi-OCP117plasmids into CIK cells, the inhibition of GCRV replication in the cells were detected by observing cytopathic effect (CPE), quantitating virus titers (TCID50/mL) and real-time quantitative RT-PCR analysis of viral RdRp and OCP genes. Five days after the cells were challenged with GCRV, both pSi-RdRp1286and pSi-OCP117reduced the viral titers by5.471gTCIDso/mL and4.371gTCIDso/mL, respectively. Compared to the positive control, CPE induced by GCRV in transfected cells was delayed and significantly less. Furthermore, the real-time quantitative RT-PCR analysis of the viral RdRp gene and OCP gene showed that the targeted gene expression were reduced by89%and73%, respectively. These results proved that the plasmid-transcribed shRNAs could effectively inhibit GCRV replication in CIK cells. These shRNAs provide potential tools for inhibiting GCRV infection and replication both in vitro and in vivo.
     3. Two multiple-siRNA expression vectors were generated, named pMultisiVP2/2and pMultisiVP6/7. One targeted the VP2gene of GCRV-JX09-01and the VP2gene of GCRV-104; another targeted the VP7gene of GCRV-09-01and the VP6gene of GCRV-104. Two multiple-siRNAs expression vectors could simultaneously inhibit the expression of GCRV-JX09-01and GCRV-104without cell toxicity. Compared with the virus positive control, the GCRV-JX09-01VP2gene expression level was10.98±2.5%, while the VP7gene expression level was19.37±3.7%; the GCRV-104VP2gene expression level was10.16±3.1%, while the VP6gene expression level was13.22±2.75%. Expression of the GCRV gene in CIK cells transfected with pSiNC were not reduced compared to the positive control. These results show that pMultishVP2/2and pMultishVP6/7inhibited both GCRV-JX09-01and GCRV-104replication by silencing the gene expression. This study is the first report to apply multiple small interferring RNA (siRNA) expression system in fish cell line. The advantages of multiple-siRNA expression vector are demonstrated using a model system simulating the emergence of mutated viruses. This approach also could provide a possible therapeutic strategy against multiple virus co-infection.
引文
1.安伟,曾令兵,周勇,徐进,范玉顶,肖艺.体外抗草鱼呼肠孤病毒药物筛选细胞模型的建立.中国兽医科学,2011,9:972-978
    2.陈延,王炜,柯丽华.草鱼出血病病毒的糖蛋白和结构多肽的抗原性.病毒学报,1992,3(1):57-61
    3.陈芸.用RNA干扰(RNAi)抗草鱼出血病病毒的初步研究.[博士学位论文].中科院研究生院,2005
    4.陈燕新,江育林.草鱼出血病病毒形态结构及理化性质的研究.科学通报,1983,28:1138-1140
    5.陈忠斌,于乐成,王升启.RNA干扰作用(RNAi)研究进展.中国生物化学与分子生物学报,2002,18(5):525-528
    6.董天红,史增奎,赵润朝.pH值对草鱼白细胞吞噬力影响的研究田.河北渔业,2005,3:3-5
    7.丁清清,刘平.Livin特异性siRNA表达载体在胃癌细胞中的稳定表达.南京医科大学学报,2008,4:429-433
    8.丁清泉,余兰芬,王学兰.草鱼出血病病鱼主要器官的超薄切片观察及感染力的比较.水产学报,1990,14(1):66-69
    9.方勤,丁清泉,汪亚平.草鱼呼肠孤病毒RNA聚合酶基因的表达与产物纯化.中国病毒学,2003,18(2):169-173
    10.方勤,丁清泉,汪亚平.两株水生呼肠孤病毒部分特性的比较.中国病毒学,2003,18(5):464-467
    11.方勤,丁清泉.呼肠孤病毒内源性转录的结构基础.中国病毒学,2004,19(5):535-539
    12.方勤,田静.草鱼呼肠孤病毒(GCRV)部分基因片段cDNA文库的构建.中国病毒学,2000,5(1):78-82
    13.方勤,肖调义,丁清泉,李旅,章怀云,朱作言.草鱼呼肠孤病毒新分离株(GCRV991)的病毒学特性分析.中国病毒学,2002,17(2):178-181
    14.方勤,肖调义,李旅.四株草鱼呼肠孤病毒毒株的细胞感染特性比较研究.中国病毒学,2002,17(2):182-184
    15.方勤,朱作言.草鱼呼肠孤病毒RNA聚合酶基因功能区在原核细胞中的表达.病毒学报,2002,18(1):86-88
    16.方勤,朱作言.呼肠弧病毒结构与功能研究进展.病毒学报,2003,9(4):381-384
    17.方勤,朱作言.水生呼肠孤病毒研究进展.中国病毒学,2003,18(1):82-86
    18.方勤.草鱼呼肠孤病毒的三维结构与衣壳蛋白特性.中国水产科学,2005,35(3):231-237
    19.郝贵杰,沈锦玉,潘晓艺,徐洋,姚嘉赞,尹文林.草鱼呼肠孤病毒湖州分离株的分离鉴定.渔业科学进展,2011,32(1):47-52
    20.李兵,范玉顶,李艳秋,徐进,周勇,曾令兵.化学合成小干扰RNA分子高效抑制草鱼呼肠孤病毒复制.病毒学报,2009,25(5):388-394
    21.李江南.RNA干扰途径抗猪瘟病毒研究.[博士学位论文].吉林大学.2011
    22.李军,王铁辉,陆仁后.草鱼出血病病毒的研究进展.海洋与湖沼,1999,30(4)445-452
    23.李军,王铁辉,陆仁后.草鱼出血病病毒的研究进展.海洋与湖沼,1999,30(4):445-452
    24.李军,王铁辉,周立冉.两种草鱼出血病病毒的比较.中国水产科学,1998,5(3):115-118
    25.李军,王铁辉,周立冉.应用逆转录聚合酶链反应直接检测草鱼出血病病鱼组织的研究.水产学报,1997,21(2):175-179
    26.李亚南,毛树坚.紫外线诱变建立草鱼抗出血病病原病毒的AHZC88细胞株.水产学报,1990,14(2):89-93
    27.廖莎,陈芸,杜富宽,汪亚平,廖兰杰,朱作言.抗草鱼出血病病毒转基因稀有觞鲫的初步研究.水生生物学报,2010,34:837-842
    28.林明辉,刘春花,陈道印.草鱼出血病冻干细胞疫苗与细菌性“三联”灭活疫苗在草鱼精养草鱼中的应用.江西农业学报,2010,22:11.
    29.倪达书.我国鱼病学研究现状及其发展前景.现代渔业信息,1994,9(3):1-4
    30.邱并生.微生物生态修复技术.微生物学通报.2011,38(4):601-602
    31.邱涛,张菁,陆仁后.草鱼出血病病毒873株基因组外发现缺损性干扰颗粒的亚基因组成份.病毒学报,2001(6):141-144
    32.邱涛.草鱼出血病病毒873株基因组外发现缺损性干扰颗粒的亚基因组成份.病毒学报,2001,17(2):140-143
    33.邵建忠,项黎新,李亚南.应用Dot-ELISA技术检测草鱼出血病病毒的研究.水产学报,1996,20(1):6-11
    34.苏岚,曾令兵,周勇,张辉,高正勇,张金凤.草鱼呼肠孤病毒VP6蛋白在毕赤酵母中表达的初步研究.淡水渔业,2012,6:38-42
    35.苏建明,章怀云,肖调义.草鱼抗病育种研究进展.内陆水产,2002,1:43-45
    36.孙建国,廖荣霞,陈正堂.RNA干涉分子机制研究进展.生物化学与生物物理进展,2002(5):678-681
    37.田静,邹桂平,方勤.草鱼出血病病毒基因组的cDNA合成、克隆及部分序列分析.中国病毒学,1999,4(1):87-92
    38.王方华,李安兴.草鱼病毒性出血病研究进展.南方水产,2006,2(3):66-71
    39.王海燕,刘文博,高崧,刘秀梵.载体表达的siRNA分子对猪圆环病毒2型复制的抑制作用.微生物学报,2008,48(11):1507-1512
    40.王炜,蔡宜权,方勤..草鱼出血病病毒多肽的基因定位.中国病毒学,1994,9(4):356-361
    41.王炜,陈延,柯丽华.草鱼出血病病毒武汉南湖株的精细结构与基因组及多肽的研究.病毒学报,1990,6:44-49
    42.王文博,李爱华,汪建国,蔡桃珍,吴玉深.拥挤胁迫对草鱼非特异性免疫功能的影响.水产学报,2004,28(2):139-144
    43.夏定国,张国政,王文兵.dsRNA对家蚕核型多角体病毒复制增殖的抑制效果.蚕业科学,2006,32(2):206-210
    44.肖调义,唐湘北,章怀云,等.转Hu-IFN-α基因草鱼雌核发育F1的遗传配型分析.水产学报,2006,30:837-842
    45.许淑英,李焕林,郑国成.草鱼出血病细胞培养弱毒疫苗的制备及其免疫效果.水产学报,1994,18(2):110-115
    46.薛仁宇,曹广力,王崇龙等.基于DNA载体的RNAi抑制家蚕核型多角体病毒复制.蚕业科学,2006,32(3):362-367
    47.杨少丽.靶向斑马鱼VEGF的shRNA表达载体的构建及其对斑马鱼胚胎血管发育的影响.[博士学位论文].中科院研究生院,2007
    48.杨先乐,左文功.水温与草鱼免疫应答关系的研究.动物学报,1997,43(1):42-48
    49.曾令兵,贺路,左文功.草鱼出血病病毒854株的理化、生物学特性及基因组结构.水产学报,1998,22(3):279-282
    50.曾令兵,贺路.草鱼出血病病毒854株的纯化及其理化特性.淡水渔业,1992,2:3-5
    51.曾令兵,袁明雄.草鱼出血病病毒高滴度培养方法的研究.淡水渔业,2000,30(4)40-41
    52.张保焰,柯丽华.草鱼出血病病毒基因组体内转录的研究.中国病毒学,1993,8(2):185-188
    53.张义兵,石耀华,桂建芳.鱼类培养细胞抗病毒基因差减cDNA文库的构建.水生生物学报,2003,27(2):113-118
    54.郑德崇,黄琪琰,赵立勤.草鱼出血病的电镜观察.水产学报,1991,15(4):317-320
    55.周凯.禽流感H5N1病毒的RNAi研究.[硕士学位论文].河北师范大学,2005
    56.周勇,曾令兵,范玉顶,徐进,马杰,罗晓松,肖艺.草鱼呼肠孤病毒TaqMan real-time PCR检测方法的建立.水产学报,2011,35(5):152-157
    57.周勇,曾令兵,范玉顶,罗晓松,徐进,肖艺.草鱼呼肠孤病毒VP6蛋白与大肠杆菌LTB亚基植物融合表达载体的构建.中国水产科学,2011,1:1-7
    58.中国科学院武汉病毒研究所,中国水产科学研究院长江水产研究所沙市分所草鱼出血病研究协作组.草鱼出血病病毒精细结构.淡水渔业,1984,2:21-22
    59.中国科学院武汉病毒研究所,中国水产科学研究院长江水产研究所沙市分所草鱼出血病研究协作组.草鱼出血病病原-鱼呼肠孤病毒(FRV)核酸特性的研究.淡水渔业,1984,4:7-9
    60.曾伟伟,王庆,刘永奎,张乐生,刘宝芹,石存斌,吴淑勤.一株草鱼呼肠孤病毒弱毒株的分离、鉴定及免疫原性初步分析.水生生物学报,2011,35(5):790-795
    61.左文功,,钱华鑫,许映芳,杜森英,杨先乐.草鱼肾脏组织细胞系CIK的建立,淡水渔业,1984,2:38-39
    62. Adelman, ZN, Sanchez-Vargas, I, Travanty, EA, Carlson, JO, Beaty, BJ, Blair, CD, Olson, KE. RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J.Virol.2002,76:12925-12933
    63. Anderson J, Banerjea A, Planelles V, Akkina R. Potent suppression of HIV type 1 infection by a short hairpin anti-CXCR4 siRNA. AIDS Res Hum Retroviruses, 2003,19:699-706
    64. Agami, R. RNAi and related mechanisms and their potential use for therapy. Curr.Opin.Chem.Biol.2002,6:829-834
    65. Agrawal, N, Dasaradhi, PVN, Mohmmed, A, Malhotra, P, Bhatnagar, RK, Mukherjee, SK. RNA Interference, biology, mechanism, and applications. Microbiol Mol Biol Rev.2003,67(4):657-685
    66. Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to 04CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides, 2003,13:303-312
    67. Andino, R. RNAi puts a lid on virus replication. Nature. Biotechnol.2003,21: 629-630
    68. Armin B. Lentiviral and MLV based retroviral vectors for ex vivo and in vivo gene transfer. Methods,2004,33:164-172
    69. Aymara AC, Daniel DR, Frank MH. Identification of grass carp haemorrhage virus as a new genogroup of aquareovirus. Gen Virol,1999,80:2399-2402
    70. Bartholomay LC, Loy DS, Dustin Loy J, Harris DL. Nucleic-acid based antivirals: augmenting RNA interference to 'vaccinate' Litopenaeus vannamei. J Invertebr Pathol,2012,110:261-266
    71. Bernstein E, Denli AM, Hannon GJ. The rest is silence. RNA,2001,7(11): 1509-1521
    72. Blesch A. Lentiviral and MLV based retroviral vectors for ex vivo and in vivo gene transfer. Methods,2004,33:164-172
    73. Boonanuntanasarn S, Yoshizaki G, Takeuchi T. Specific gene silencing using small interfering RNAs in fish embryos. Biochem Biophys Res Commun,2003,310: 1089-1095
    74. Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R. Induction of an interferon response by RNAi vectors in mammalian cells. Nature genetics,2003, 34:363-364.
    75. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science,2002,296:550-553
    76. Caplen, NJ, Zheng, Z, Falgout, B, Morgan, RA. Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference. Mol.Ther. 2002,6,243-251
    77. Capodici, J, Kariko, K, Weissman, D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J.Immunol.2002,169:5196-5201.
    78. Carmichael, GG Medicine:silencing viruses with RNA. Nature.2002,418: 379-380
    79. Castanotto D, Li H, Rossi J. Functional siRNA expression from transfected PCR products. RNA,2002,8(11):1454-1460
    80. Chen Y, Mahato RI. siRNA pool targeting different sites of human hepatitis B surface antigen efficiently inhibits HBV infection. J. Drug Target,2008,16: 140-148.
    81. Clemens JC, Worby CA, Simonson-Leff N. Use of double-stranded RNA interference in Drosophila cell lines to dissert signal transduction pathway. Proe Natl Acid Sci USA,2000,97(12):499-6503
    82. Coburn, GA, Cullen, BR. Potent and specific inhibition of human immunodeficiency virus typel replication by RNA interference. J. Virol,2002,76: 9225-9231
    83. Cogoni C, Romano N, Macino G Suppression of gene expression by homologous transgenes. Anlonie Van Leeuwenhoek,1994,65:205-208
    84. Dorsett Y, Tuschl T. siRNAs:applications in functional genomics and potential as therapeutics. Nature reviews drug discovery,2004,4:318-329
    85. Dang LT, Hidehiro K, Ikuo H. Inhibition of red seabream iridovirus (RSIV) replication by small interfering RNA (siRNA) in a cell culture system. Antiviral Research,2008,77:142-149
    86. Dang LT, Kondo H, Aoki T, Hirono I. Engineered virus-encoded pre-microRNA (pre-miRNA) induces sequence-specific antiviral response in addition to nonspecific immunity in a fish cell line:Convergence of RNAi-related pathways and IFN-related pathways in antiviral response. Antiviral Res.2008,80(3):316-23
    87. Das AT, Brummelkamp TR, Westerhout EM, Vink M, Madiredjo M, Bernards R, Berkhout B. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol.2004,78:2601-2605
    88. Deng X, Ewton DZ, Pawlikowski B. Mirk/dyrklB is a Rho-induced kinase active in skeletal muscle differentiation. Biol Chem,2003,278(42):41347-41354
    89. Dodd A, Chambers SP, Love DR. Short interfering RNA-mediated gene targeting in the zebrafish. Febs Lett,2004,561(1):89-93
    90. Elbashir SM, Harbort HJ, Lendeckel W. Duplexes of 21 nucleotide RNAsmediate RNA interference in cultured mammalian cells. Nature,2001,411 (6836):494-498
    91. Fang, Q, Attoui, H, Biagini, JFP, Zhu, ZY, de Micco, P, de Lamballerie, X. Sequence of genome segments 1,2, and 3 of the grass carp reovirus (Genus Aquareovirus, Family Reoviridae). Biochem. Biophys. Res. Commun,2000,274: 762-766
    92. Fang Q, Shah S, Liang Y, et al.3D reconstruction and capsid protein characterization of grass carp reovirus. Sci China C Life Sci,2005.48:593-600.
    93. Ferreira, HL, Spilki, FR, de Almeida, RS, Santos, MM, Arns, CW. Inhibition of avian metapneumovirus (AMPV) replication by RNA interference targeting nucleoprotein gene (N) in cultured cells. Antiviral Res,2007,74:77-81
    94. Filipowicz W. RNAi:the nuts and bolts of the RISC machine. Cell,2005,122: 17-20
    95. Fire A. RNA-triggered gene silencing. Trends in Genetics,1999,15(9):358-363
    96. Fire A, Xu S, Montgomery M K. Potent and specific genetic interference by double-stranded RNA in Caeorhabditis elegans. Nature,1998,391(6669):806-811
    97. Fire A, Xu S, Montgomery M K. Potent and specific genetic interference by double-stranded RNA in Caeorhabditis elegans. Nat,1998,391:806-811
    98. Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature,2002,418:430-434
    99. Grimm D, Kay MA. Combinatorial RNAi:a winning strategy for the race against evolving targets? Mol. Then 2007,15:878-888.
    100. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature,2006,441:537-541
    101. Gruber J, Manninga H. Tuschl T. Specific RNAi mediated gene knockdown in zebrafish cell lines. RNA Biology,2005,2:101-105
    102. Haasnoot J, Berkhout B. RNAi and cellular miRNAs in infections by mammalian viruses. In:Rij RP, editor. Antiviral RNAi. Humana Press,2011. p.23-41
    103. Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses:strike and counterstrike. Nature Biotechnology,2007,25:1435-1443
    104. Hamasaki K, Nakao K, Matsumoto K, Ichikawa T, Ishikawa H, Eguchi K. Short interfering RNA-directed inhibition of hepatitis B virus replication. FEBS Lett, 2003,543:51-54
    105. Hamilton, MA, Russo, RC, Thurston, RV. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol,1977,11:714-719
    106. Hannon GJ. RNAinterference. Nature,2002,418(6894):244-251
    107. Hinton TM, Doran TJ. Inhibition of chicken anaemia virus replication using multiple short-hairpin RNAs. Antiviral Res.2008,80,143-9
    108. Hwang HJ, Moon CH, Kim HG. Identification and functional analysis of salmon annexin 1 induced by a virus infection in a fish cell line. Virol,2007,81(24): 13816-13824
    109. Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature,2002,418,435-438
    110. Jannel A, Yamila C, Ingrid B. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. Journal of Biotechnology,2005,119:324-331
    111. Judge A, MacLachlan I. Overcoming the innate immune response to small interfering RNA. Hum Gene Ther,2008,19:111-124
    112. Kapadia SB, Brideau-Andersen A, Chisari FV. Interference of hepatitisC virus RNA replication by short interferingRNAs. Proc Nat Acad SciU SA,2003,100(4): 2014-2018.
    113. Karpala AJ, Doran TJ, Bean AGD. Immune responses to dsRNA:implications for gene silencing technologies. Immunol Cell Biol,2005,83:211-216
    114. Ketzinel-Gilad M, Shaul Y, Galun E. RNA interference for antiviral therapy. J Gene Med,2006,8(8):933-950.
    115. Kim SM, Lee KN, Lee SJ, Ko YJ, Lee HS, Kweon CH, Kim HS, Park JH. Multiple shRNAs driven by U6 and CMV promoter enhances efficiency of antiviral effects against foot-and-mouth disease virus. Antiviral Res,2010,87,307-17
    116. Kim M, Kim K. Inhibition of Viral Hemorrhagic Septicemia Virus replication using a short hairpin RNA targeting the G gene. Arch Virol,2011,156:457-464
    117. Kitagawa R, Miyachi S, Hanawa H. Differential characteristics of HIV-based versus SIV-based lentiviral vector systems:Gene delivery to neurons and axonal transport of expressed gene. Neu Res,2007,57:550-558
    118. Kross(?)y B, Nilsen F, Falk K, Endresen C, Nylund A. Phylogenetic analysis of infectious salmon anaemia virus isolates from Norway, Canada and Scotland. Dis Aquat Organ,2001,44(1):1-6
    119. Kumar P, Wu H, McBrid JL, Jung K, yeong-E, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N. Transvascular delivery of small interfering RNA to the central nervous system. Nature,2007,448:39-43
    120. Lamb RA, Kolakofsky D. Paramyxoviridae:the viruses and their replication. Virology.1996, Vol.1, pp.1177-1204. Raven press, New York. Field BN, Knipe, DM, Howley PM, Eds
    121. Lambeth LS, Zhao YG, Smith LP, Kgosana L, Nair V. Targeting Marek's disease virus by RNA interference delivered from a herpesvirus vaccine. Vaccine,2009,27, 298-306
    122. Lau ST, Li Y, Masanori K. Suppression of HIV replication using RNA interference against HIV-1 integrase. FEBS Letters,2007,581:3253-3259
    123. Laird DJ, Chang WT, Weissman IL. Identification of a novel gene involved in asexual organogenesis in the budding ascidian Botryllus schlosseri. Developmental Dynamics,2005,234:997-1005
    124. Lee NS, Rossi JJ. Control of HIV-1 replication by RNA interference. Virus Res, 2004,102,53-58
    125. Li Y X, Farrell M J. Double-stranded RNA injection produces null phenotypes in zebrafish. Dev Biol,2000,217:394-405
    126. Li ZY, Xiong Y, Peng Y. Specific inhibition of HIV-1 replication by short hairpin RNAs targeting human cyclin T1 without inducing apoptosis. FEBS Letters,2005, 579:3100-3106
    127. Lightner DV. Virus diseases of farmed shrimp in the Western Hemisphere (the Americas):a review. J Invertebr Pathol,2011,106:110e30
    128. Liu WY, Wang Y, Sun YH. Efficient RNA interference in zebrafish embryos using siRNA synthesized with SP6 RNA polymerase. Dev Growth Differ,2005,47: 323-331
    129. Liu WY, Wang Y, Sun YH. Efficient RNA interference in zebrafish embryos using siRNA synthesized with SP6 RNA polymerase. Dev Growth Differ,2005,47(5): 323-331
    130. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (Delta Delta C(T)) method. Methods,2001, 25(4):402-408
    131. Lugo JM, Morera Y, Rodr i guez T, Huberman A, Ramos L, Estrada MP. Molecular cloning and characterization of the crustacean hyperglycemic hormone cDNA from Litopenaeus schmitti. Functional analysis by double-stranded RNA interference technique. FEBS J,2006,273(24):5669-5677
    132. Ma J, Wang WM, Zeng LB, Fan YD, Xu J, Zhou Y. Inhibition of the replication of grass carp reovirus in CIK cells with plasmid-transcribed shRNAs. J. Virol. Mtheods,2011,175,182-187
    133. McCaffrey AP, Nakai H, Pandey K. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol,2003,21(6):639-644
    134. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet.2002,3:737-747
    135. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell,1990,2(4):279-289
    136. Nishitsuji H, Ikead T, Miyoshi H. Expression of small haipin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect,2004,6:76-85
    137. Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK, Collman RG, Lieberman J, Shankar P, Sharp PA. siRNA directed inhibition of HIV-1 infection. Nat. Med,2002,8:681-686
    138. Nyholm S V, Passegue E, Ludington W B, et al. Fester, A candidate allorecognition receptor from a primitive chordate. Immunity,2006,25(1):163-173
    139. O'Brien L. Inhibition of multiple strains of Venezuelan equine encephalitis virus by a pool of four short interfering RNAs. Antiviral Res,2007,75:20-29
    140. O'Neil NJ, Martin RL, Tomlinson ML. RNA-mediated interference as a tool for identifying drug targets. Am JPharmacogenomics,2001,1(1):45-53
    141. Ongvarrasopone C, Chanasakulniyom M, Sritunyalucksana K, Panyim S. Suppression of PmRab7 by dsRNA inhibits WSSV or YHV infection in shrimp. Mar Biotechnol,2008,10:374e81
    142. Patrick C. Hanington. Macrophage colony stimulating factor (CSF-1) is a central growth factor of goldfish macrophages. Fish & Shellfish Immunology,2009, 261-269
    143. Lima PC, Harris JO, Cook M. Exploring RNAi as a therapeutic strategy for controlling disease in aquaculture. Fish & shellfish immunology,2013,34: 729-743
    144. Rangel AA, Rockemann DD, Hetrick FM, Samal SK. Identification of grass carp haemorrhage virus as a new genogroup of aquareovirus. Journal of general virology,1999,80:2399-2402
    145. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg,1938,27:493-497
    146. Reynolds A, Leake D, Boese Q. Rational siRNA design for RNA interference. Nat Bio,2004,2 (3):326-330
    147. Rinkevich Y, Paz G, Rinkevich B, Reshef R. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate botrylloides leachi. PLoS Biol,2007,5(4):e71
    148. Robalino J, Bartlett T, Shepard E, Prior S, Jaramillo G, Scura E, Chapman RW, Gross PS,Browdy CL, Warr GW. Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp:convergence of RNA interference and innate immunity in the invertebrate antiviral response. Journal of Virology,2005,79(21):13561-13571
    149. Robalino J, Bartlett T, Shepard. Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response. Virol,2005,79:13561-13571.
    150. Rothe D, Wajant G, Grunert HP, Zeichhardt H, Fechner H, Kurreck J. Rapid construction of adeno-associated virus vectors expressing multiple short hairpin RNAs with high antiviral activity against echovirus 30. Oligonucleotides,2010,20, 191-198.
    151. Ruiz S, Schyth BD, Encinas P, Tafalla C, Estepa A, Lorenzen N. New tools to study RNA interference to fish viruses:fish cell lines permanently expressing siRNAs targeting the viral polymerase of Viral Hemorrhagic Septicemia Virus. Antivir Res,2009,82:148-156
    152. Ryo K, Shigehiro M, Hideki H. Differential characteristics of HIV-based versus SIV-based lentiviral vector systems:Gene delivery to neurons and axonal transport of expressed gene. Neu Res,2007,57:550-558
    153. Sabariegos R, Gimenez-Barcons M, Tapia N, Clotet B, Martinez MA. Sequence homology required by human immunodeficiency virus type 1 to escape from short interfering RNAs. J Virol,2006,80:571-577
    154. Saulnier A, Pelletier I, Labadie K, Colbere-Garapin F. Complete cure of persistent virus infections by antiviral siRNAs. Mol. Ther,2006,13,142-150
    155. Schyth BD, Lorenzen N, Pedersen FS. Antiviral activity of small interfering RNAs:specificity testing using heterologous virus reveals interferon-related effects overlooked by conventional mismatch controls. Virology,2006,349(1):134-141
    156. Schyth BD, Bramsen JB, Pakula MM, Larashati S, Kjems J, Wengel J, et al. In vivo screening of modified siRNAs for non-specific antiviral effect in a small fish model:number and localization in the strands are important. Nucleic Acids Res, 2012,40:4653-4665
    157. Schubert S., Grunert HP, Zeichhardt H, Werk D, Erdmann VA, Kurreck J. Maintaining inhibition:siRNA double expression vectors against coxsackieviral RNAs. J Mol Bio,.2005,346:457-65
    158.Senapin S, Phiwsaiya K, Anantasomboon G, Sriphaijit T, Browdy CL, Flegel TW. Knocking down a Taura Syndrome Virus (TSV) binding protein Lamr is lethal for the whiteleg shrimp Penaeus vannamei. Fish Shellfish Immunol,2010,29:422-429
    159. Shinagawa T, IshiiS. Generation of Ski-knock down mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev,2003,17: 1340-1345
    160. Sijen T, Fleenor J, Simmer F. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell,2001,107(4):465-476
    161. Snyder LL, Esser JM, Pachuk CJ, Steel LF. Vector design for liver-specific expression of multiple interfering RNAs that target hepatitis B virus transcripts. Antiviral Res,2008,80,36-44
    162. Song E, Lee SK, Wang J. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med,2003,9(3):347-351
    163. Song JJ, Smith SK, Hannon GJ. Crystal structure of Argonaute and its implications for RISC slicer activity. Science,2004,305(5689):1434-1437
    164. Stevenson M. Therapeutic potential of RNA interference. N Engl J Med.2004, 351(17):1772-1777
    165. Su J, Oanh DT, Lyons RE, Leeton L, van Hulten MC, Tan SH, Song L, Rajendran KV, Walker PJ. A key gene of the RNA interference pathway in the black tiger shrimp, Penaeus monodon:identification and functional characterisation of Dicer-1.2008,24(2):223-33
    166. Su J, Zhu Z, Xiong F. Hybrid Cytomegalovirus-U6 Promoter-based Plasmid Vectors Improve Efficiency of RNA Interference in Zebrafish. Mar Biotechnol, 2008,10:511-517
    167. Su J, Zhu Z, Wang Y, Zou J, Wang N, Jang S. Grass carp reovirus activates RNAi pathway in rare minnow, Gobiocypris rarus. Aquaculture.2009,289(1-2):1-5
    168. Stentiford GD, Neil DM, Peeler EJ, Shields JD, Small HJ, Flegel TW, et al. Disease will limit future food supply from the global crustacean fishery and aquaculture sectors. J Invertebr Pathol,2012,110:141-157
    169. Tabara H, Sarkissian M, Kelly W G. The rde21 gene RNA interference, and transposon silencing in C elegans. Cell,1999,99 (2):123-132
    170. ter Brake O, Konstantinova P, Ceylan M, Berkhout B. Silencing of HIV-1 with RNA interference:a multiple shRNA approach. Mol. Ther,2006,14,883-892
    171. Tirasophon W, Roshorm Y, Panyim S. Silencing of yellow headvirus replication in penaeid shrimp cells by dsRNA. Biochemicaland Biophysical Research Communications,2005,334:102-107
    172. Tirasophon W, Yodmuang S, Chinnirunvong W, Plongthongkum N, Panyim S. Therapeutic inhibition of yellow head virus multiplication in infected shrimps by YHV-protease dsRNA. Antiviral Res.2007,74(2):150-155
    173. Tuschl T. Functional genomics:RNA sets the standard. Nature,2003,421: 220-221
    174. Umbach JL, Cullen BR. The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev,2009,23:1151-1164
    175. Voelker D, Stetefeld N, Schirmer K. The role of cypla and heme oxygenase 1 gene expression for the toxicity of 3,4-dichloroaniline in zebrafish embryos. Aquat Toxicol,2008,86(1):112-120
    176. Wang N, Sun YH, Liu J. Knock down of gfp and no tail expression in zebrafish embryo by in vivo-transcribed short hairpin RNA with T7 plasmid system. Biomed Sci,2007,14(6):767-776
    177. Wargelius A, Ellingsen S, Fjose A. Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem Biophys Res Commun,1999, 263 (1),156-161
    178. Westenberg M, Heinhuis B, Zuidema D. siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus. Virus Res,2005,114:133-139
    179. Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nature cell biology,2000, (2): 70-75
    180. Wise TG, Schafer DS, Lowenthal JW, Doran TJ. The use of RNAi and transgenics to develop viral disease resistant livestock. Dev Biol,2008,132:377-382
    181. Wu K, Mu Y, Hu J, Lu L, Zhang X, Yang YB, Li Y, Liu F, Song DG, Zhu Y, Wu JG. Simultaneously inhibition of HIV and HBV replication through a dual small interfering RNA expression system. Antiviral Res,2007,74,142-149
    182. Wu KL, Zhang X, Zhang J, Yang Y, Mu YX, Liu M, Lu L, Li Y, Zhu Y, Wu J. Inhibition of Hepatitis B virus gene expression by single and dual small interfering RNA treatment. Virus Res,2005,112,100-107
    183. Wu S, Page L, Sherwood NM. A role for GnRH in early brain regionalization andeye development in zebrafish. Molecular and Cellular Endocrinology,2006, 257-258:47-64
    184. Wu Y, Lu L, Yang LS. Inhibition of white spot syndrome virus in Litopenaeus vannamei shrimp by sequence-specific siRNA. Aquaculture,2007(271):21-30
    185. Wu YC, Lu YF, Chi SC. Anti-viral mechanism of barramundi Mx against Betanodavirus involves the inhibition of viral RNA synthesis through the interference of RdRp. Fish Shellfish Immun,2010,28:467-475
    186. Xie JF, Ling L, Deng M. Inhibition of reporter gene and Irido virus-tiger frog virus in fish cell by RNA interference. Virol,2005,338:43-52
    187. Xu J, Han F, Zhang X. Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antiviral Res,2007,732:126-131
    188. Yang D, Buchholz F, Huang Z. Short RNA duplexes produced by hydrolysis with Escherichia coli RNaseⅢ mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci USA,2002,99(15):9942-9947
    189. Yelina NE, Savenkov EI, Solovyev AG, Morozov SY, Valkonen JP. Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei and potyviruses:complementary functions between virus families. J. Virol. 2002,76:12981-12991.
    190. Yodmuang S, Tirasophon W, Roshorm Y, Chinnirunvong W, Panyim S. YHV-protease dsRNA inhibits YHV replication in Penaeus monodon and prevents mortality. Biochem Biophys Res Commun.2006,341(2):351-356
    191. Yuan J, Cheung PK, Zhang HM, Chau D, Yang D. Inhibition of coxsackievirus B3 replication by small interfering RNAs requires perfect sequence match in the central region of the viral positive strand. J Virol,2005,79:2151-2159
    192. Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J,2005,24(1): 138-148
    193. Zenke K, Kim KH. Novel fugu U6 promoter driven shRNA expression vector for efficient vector based RNAi in fish cell lines. Biochem Biophys Res Commun,2008, 371:480-483
    194. Zenke K, Kim KH. Effects of long double-stranded RNAs on the resistance of Rock bream Oplegnathus fasciatus fingerling against Rock Bream Iridovirus (RBIV) challenge. JFish Pathol,2010,23:273-280
    195. Zhang C, Wang Q, Shi CB, Zeng WW, Liu Y, Wu SQ. Molecular analysis of grass carp reovirus HZ08 genome segments1-3 and 5-6. Virus Genes,2010,41(1): 102-104
    196. Zhang QL, Yan Y, Shen JY, Hao GJ, Shi CY, Wang QT, Liu H, Huang J. Develepment of a reverse transcription loop-mediated isothermal amplification assay for rapid detection of grass carp reovirus. Journal of virological methods, 2013,187:384-389
    197. Zhang QY, Ruan HM, Li ZQ, Zhang J, Gui JF. Detection of Grass Carp Hemorrhage Virus (GCHV) from Vietnam and Comparison with GCHV Strain from China. High technology letters,2003,9(2):7-13
    198. Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH.3.3 A Cryo-EM Structure of a Nonenveloped Virus Reveals a Priming Mechanism for Cell Entry. Cell,2010, 141(3):472-482

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700