用户名: 密码: 验证码:
铝板带材冷轧机板形板厚解耦控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板形与板厚是决定铝板带材几何尺寸精度最为重要的两大质量指标,厚度自动控系统(AGC)是为了保证铝板带材纵向厚度的精度,板形自动控制系统(AFC)是为了获取铝板带材横向厚度的均匀性和良好的平直度。经过几十年的发展,板形控制和板厚控制已经达到了较高的控制精度。然而板形板厚控制(AFC-AGC)系统实际上是一个耦合的复杂多变量控制系统,在铝板带材冷轧生产过程中,板厚控制和板形控制本质上都是对轧制过程中有载辊缝的控制,两者存在很强的耦合关系,实现板形板厚的解耦控制己经成为一个进一步提高控制精度急待解决的难题。
     板形板厚的耦合作用更多地表现为一个实时、动态作用过程,为此从AFC-AGC系统的耦合机理出发,系统深入地研究了系统的动态耦合模型及相应的动态解耦控制策略,并结合仿真试验结果,在生产轧制实践中验证了上述理论研究的正确性,提高了铝板带材轧制生产质量。主要研究内容如下所述:
     研究将板形控制和板厚控制系统作为一个整体来考虑,建立了AFC-AGC动态数学模型。针对AFC-AGC系统动态数学模型,应用不变性原理并结合PID控制算法对AFC-AGC系统进行了解耦控制,应用Smith预估器对纯滞后环节进行处理,仿真结果表明解耦控制效果良好,减小了板形板厚控制的耦合影响;当系统在运行过程中模型参数发生变化时,解耦控制性能会变差,基于模型参考自适应控制和解耦控制理论,提出了多变量自适应解耦控制方法,有效解决了解耦过程中系统模型参数的不确定因素影响控制性能的问题,仿真结果表明该控制策略提高了解耦控制精度;由于设定控制是AFC-AGC系统动态控制的起点,影响系统动态控制效果,为此,建立了基于设定控制的静态耦合模型,提出了板形板厚设定补偿解耦控制方法,形成了比较完整的板形板厚解耦控制策略。
     上述研究成果对于板带材轧制生产过程具有一定的普遍意义,对板形板厚解耦控制理论的实际应用有很好的参考价值。
As we know, strip flatness and gauge geometry dimension accuracy are the most important factors of product quality. The Automatic Gauge Control (AGC) system can guarantee the precision of the vertical thickness of aluminous board and strip and the Automatic Flatness Control (AFC) system can guarantee the precision of the horizontal thickness of aluminous board and strip. With the development of past few decades, both AFC and AGC can be obtained rather degree of control accuracy. However the Flatness and Gauge Control (AFC-AGC) system is a coupled complex multivariable control system, Gauge control and Flatness control are both master of the aperture of cold mill during the process of aluminous timber rolling, and intense coupling connection exists in both of their control loops, it is an active demand to solve the problem to improve control precision ulteriorly.
     The cross coupling process between AFC and AGC is real-time and dynamic, on the basis of deformation mechanism of AFC-AGC system, a dynamic coupling model and the corresponding dynamic decoupling control strategy are built, the decoupling methods applied to the production mill have been proved to be effective with the simulation experiments result. The main study content is described as follows:
     The strip rolling process is analyzed by the method that considers the AFC and AGC as a whole process in the research, and the dynamic mathematics model is proposed. The decoupling control based on the invariability principle and the PID control arithmetic is implemented when getting the dynamic mathematics model of the AFC-AGC system, and the dead-time tache is disposed with Smith-predictor at the same time, the decoupling control effect is proved by the simulation result, and the coupling influence of flatness and gauge control is decreased. The decoupling control performance will break up while the model parameters of the system change in the process of running. According to self-adaptive control of model reference and decoupling theory, the multivariable self-adaptive decoupling control method which solves the uncertain factor of system model parameters that affect the problem of control performance in the decoupling process is put forward, and the simulation result indicates the control precision is improved with this control strategy. As the setting control is the start point of dynamic control of AFC-AGC system, and the effect of dynamic control of the system will be influenced by it, therefore the static coupling model based on setup control is constructed, and the compensatory decoupling method in flatness and gauge setup programs is put forward, which makes decoupling control strategy of AFC-AGC system more integrity.
     The obtained harvest is general for the production process of board and strip, and it provides a good reference for the application of decoupling control theory of AFC-AGC system.
引文
[1]卢秉林.板形板厚综合控制方法的探讨[J].冶金设备,2002,8(4):9-12
    [2]彭鹏,杨荃.冷连轧机板形板厚综合解耦控制系统[J].钢铁,2007,42(8):15-18
    [3]Sabatini B,Yeomans K A.An Algebra of Strip Shape and Its Application to Mill Scheduling[J],Journal of Iron and Steel Institute,1968(12):1207-1213
    [4]徐乐江.板带冷轧机板形控制与机型选择[M].北京:冶金工业出版社,2007
    [5]朱书善.基于神经网络的连轧机板形板厚解耦控制[D]:硕士学位论文.北京:北方工业大学,2005
    [6]Falb P L,Wolovich W.A Decoupling in the Design and Synthesis of Multivariable Control Systems[J].IEEE Trans on the Automatic Control.1967(12):651-659
    [7]Pires C T A,Ferreira H C,Sales R M,et al.Set-up Optimization for Tandem Cold Mills:A case study[J].Materials Processing Technology,173(2006)368-375
    [8]陈志旺,杨景明,王洪瑞.冷连轧机板形板厚解耦设定补偿研究[J].冶金设备,2005,6(3):11-15
    [9]V.B.金兹伯格.高精度板带材轧制理论与实践[M].北京:冶金工业出版社,2002
    [10]Hu X,Jiao Z J,He C Y,et al.Forward and backward slip models in MAS rolling process and its on-line application[J].Journal of Iron and Steel Research,International,2007,14(4):15-19
    [11]王国栋,刘相华,王军生.冷连轧厚度自动控制[J].轧钢,2003,20(3):38-41
    [12]Jelali M.Performance assessment of control systems in rolling mills-application to strip thickness and flatness control[J].Journal of Process Control,2007,17(5):805-816
    [13]Sachs G,Latorre J V,Chakko M.Roll Wear in Finishing Trains of Hot Strip Mills[J].Iron and Steel Engineer,1961,38(12):71-92
    [14]连家创.板形控制的理论基础[J].东北重型机械学院学报,1978
    [15]孙一康.带钢冷连轧计算机控制[M].北京:冶金工业出版社,2002
    [16]华建新,王贞祥.全连续式冷连轧机过程控制[M].冶金工业出版社,2000
    [17]张莉,张立静,郑泽华,等.单机架可逆式冷带轧机计算机控制系统[J].冶金丛刊,2007,168(2):19-21
    [18]Wang X D,He A R,Yang Q,et al.Study and application of crown feedback control in hot strip rolling[J].Journal of University of Science and Technology Beijing,2007,14(2):190-194
    [19]白埃民.试论实现高精度板形和厚度一体化控制的途径[J].轧钢,2001,18(1):10-13
    [20]祁晓野.板形板厚综合调节液压控制系统的研究[D]:[硕士学位论文].沈阳:东北重型机械学院,1986
    [21]严树平.带钢冷连轧板形与板厚综合系统最优控制[D]:[硕士学位论文].沈阳:东北工学院,1988
    [22]于海斌.四辊可逆冷轧机板形控制(AFC)、板厚控制(AGC)综合最优控制的研究[D]:[硕士学位论文].沈阳:东北大学,1986
    [23]曹建国,张杰,陈先霖,等.热轧带钢板形板厚综合控制系统的耦合关系[J].北京科技大学学报,2000,22(6):551-553
    [24]曹建国,张杰,陈先霖,等.宽带钢热连轧机板形设定的解耦与应用.钢铁,2001,36(4):42-46
    [25]曹建国,张杰,陈先霖,等.热轧带钢板形板厚耦合特性变化机理与参数求解[J].北京科技大学学报,2001,23(5):452-455
    [26]McDermot P E,Melilchamp D A.A decoupling pole-placement self-tuning controller for a class of multivariable process[J].Optimal Control Applications and Methods,1985(7):862-867
    [27]Falb P L,Wolovich W A.Decoupling in design and synthesis of multivariable Control systems[J].IEEE Trans.Aut.Control AC(12):651-669
    [28]柴天佑.多变量自适应解耦控制及应用[M].北京:科学出版社,2001,1-10
    [29]Brandt R D,Lin F.Adaptive interaction and its application to neural network[J].Information Science,1999,12(1):201-215
    [30]王莉,葛平,孙一康.基于模糊RBF神经元网络的冷连轧板形板厚多变量控制[J].北京科技大学学报,2002,10(5):556-559
    [31]Nicklaus F P.An application of Neural Networks in Rolling Mill[J].Automation-Iron and Steel Engineer,1995,(4):33-36
    [32]孙一康.带钢热连轧的模型与控制[M].北京:冶金工业出版社,2002
    [33]连家创.刘洪民.板厚板形控制[M].北京:冶金工业出版社,1996
    [34]丁修堃.轧制过程自动化[M].北京:冶金工业出版社,2005
    [35]徐林.板形板厚综合控制研究[D]:[博士学位论文].沈阳:东北大学,2006
    [36]孔祥东.DC轧机板厚板形综合调节控制系统的理论与实践试验研究[D]:[博士学位论文].秦皇岛:燕山大学,1991
    [37]孙一康.带钢热连轧数学模型基础[M],冶金工业出版社,1979
    [38]杨节.轧制过程数学模型[M].北京:冶金工业出版社,1993
    [39]Ginzburg V B,Bakhtar F A,Issa R J.Application of Coolflex Model for Analysis of Work Roll Thermal Conditions in Hot Strip Mills[J].Iron and Steel Engineer,1997,74(11):45-48
    [40]令狐克志,何安瑞,杨荃,等.热轧带板形板厚反馈解耦控制[J].北京科技大学学报,2007,29(3):338-341
    [41]彭开香,童朝南,王路.板形板厚的自适应解耦控制[J].北京科技大学学报,2004,26(2):177-180
    [42]Lang S,Gu X Y,Chai T.Multivariablized self-tuning feedforward controller with decoupling design[J].IEEE Trans.AC,1986(5):474-477
    [43]Linnemann A,Wang Q G.Block decoupling with stability by unity output feedback-solution and performance limitations[J].Automatics(UK)29(3):735-744
    [44]令狐克志.热轧机板形板厚动态解耦控制研究[D]:[博士学位论文].北京:北京科技大学,2007
    [45]Desoer C A,Gundes A N.Decoupling linear multiinput multioutput plants by dynamic output feedback.An algebraic theory[J].IEEE Trans.AC(31):744-750
    [46]罗永军.热连轧宽带钢板板形板厚综合控制与研究的仿真[D]:[博士学位论文].北京:北京科技大学,2004
    [47]王莉.冷连轧板形板厚智能型自适应解耦控制系统的研究[D]:[博士学位论文].北京:北京科技大学,2002
    [48]王伟,张品涛,柴天佑,等.PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-355
    [49]朱晓东,王军,万红.基于Smith预估的纯滞后系统的控制[J].郑州大学学报(工学版),2004,25(3):77-81
    [50]Wang Z,Skogestad S.Robust control of time-delay systems using the Smith predictor[J].International Journal of Control,1993,57(6):1405-1420
    [51]Tan K K,Lee T H,Leu F M.Predictive PI versus Smith control for dead-time compensation[J].ISA Transactions 40(2001):17-29
    [52]Davison E J.A generalization of the output control of linear multivariable systems with immeasurable arbitrary disturbances[J].IEEE Trans.Automatic Control(20):778-795
    [53]宋仁杰,王云宽,范国梁.一种改进的Smith预估控制器[J].控制工程,2007,14(1):88-90
    [54]刘晨晖.多变量过程控制系统解耦理论[M].水利电力出版社,1984
    [55]舒迪前,饶立昌,柴天佑.自适应控制[M].沈阳:东北大学出版社,1994
    [56]王国栋,刘相华.金属轧制过程人工智能优化[M].北京:冶金工业出版,2000.45-62
    [57]Pratyush S.An on-line trained adaptive neural controller[J].IEEE Proc-Control Theory Apply,1995,142(2):764-766
    [58]Witermnark B,Middleton R,Goodwin G.Adaptive Decoupling of Multivariable Systems[J].Int.J.Control,1993-2009,1987(46)
    [59]Wahba A M,Sheirah M A.Adaptive decoupler for multivariable systems[J].International Journal of System Science,1993,24(1):97-109
    [60]尹怡欣.智能型简单自适应控制理论及应用研究[D]:[博士学位论文].北京:北京科技大学,2001
    [61]袁朝辉,褚仁林,张伟.直升机旋翼协调加载系统的模型参考自适应解耦控制[J].机床与液压,2007,35(8):182-184
    [62]刘慧明,刘亮,董洪灿.基于RBF网络的模型参考自适应控制[J].青岛科技大学学报(自然科学版),2008,29(1):68-71
    [63]刘晓霞,田兆福,孙金根,等.时滞系统的自适应模糊控制器的研究[J].信息与控制,2003,32(3):285-288
    [64]薛亮儒,王少萍,张凌霄.基于模型参考自适应的液压系统力解耦控制[J].液压气动与密封,2008,4(6):68-70
    [65]周旭东.板形板厚综合系统智能控制[D]:[博士学位论文].北京:北京科技大学,1998
    [66]祝东奎,张清东,魏钢城,等.热连轧机组板形预设定策略与模型[J].轧钢,2001,18(2):9-11
    [67]张进之.动态设定板形板厚自动控制系统[J].冶金设备,2000,123(5):6-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700