用户名: 密码: 验证码:
通信信号测向与分析技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分析与识别日益复杂的通信信号以及对其辐射源测向在军事以及民用领域中都有着非常重要的作用。确定信号的波达方向是电子侦察系统的一个重要方面。频率估计和频谱分析是在电子侦察系统中进一步分析复杂通信信号的基础。混沌直扩信号具有抗侦察、抗截获能力,将会在未来军事通信中发挥越来越重要的作用,对其的盲分析技术是近年来电子侦察中的研究热点之一。
     本文的主要工作是对通信信号电子侦察系统进行研究:针对二维波达方向估计中的高精度参数估计与配对问题,利用特定的阵列结构和信号时域特征开展研究;针对频域分析技术,研究了几种频率估计算法和频谱分析方法;最后分析了实值混沌直扩系统的盲解扩技术。本文的主要创新之处概括如下:
     针对单L阵二维波达方向估计中的配对算法开展了深入研究。提出了利用联合奇异值分解,实现了方位角与俯仰角的自动配对,同时提高了测向精度;两种改进互相关配对算法解决了原算法中对测向范围的限制;利用时间信息构成伪协方差矩阵,能实现到达角与频率的分别估计,最后通过伪协方差矩阵的互相关实现到达角与频率的配对。
     针对双L阵提出一种二维DOA估计算法,该算法利用了这种特殊的阵列结构形式所形成的空间角度约束,使用简单的算法即可实现方位角与俯仰角的配对;利用空间角度约束还能采用加权最小二乘算法来进一步提高角度估计精度,并给出了三种实现方案。
     针对单L阵提出了两种利用信号非圆特性的二维DOA估计算法。联合SVD算法同时通过利用非圆信号特征以及L阵的结构,能适应更多信号源个数,实现更高精度测向以及自动配对。快速算法由于利用了信号的非圆特性比常见的快速算法,如传播因子算法(PM)等具有更高的测向精度。
     针对频率估计技术提出了三种快速频率估计技术。多通道迭代的测频算法,具有测频精度高,测频信噪比门限低,具有易于硬件实现的特点。基于部分自相关技术的测频算法,比常用的基于自相关技术的频率估计方法计算量更小。基于前置滤波的单频信号估计算法的估计精度与待测信号频率无关,适合于电子侦察接收机使用。针对频谱分析,提出了一种非均匀傅里叶变换的快速计算算法,能实现对任意频谱上的频率分量的准确、快速计算,适合于电子侦察接收机使用。
     针对短码实值混沌直扩系统,提出了一种基于主元分析的算法,实现了在低信噪比下对直扩序列的盲估计。针对长码实值混沌直扩系统,提出了两种盲解扩算法。非线性建模预测的算法,实现了对长码实值直扩序列的盲解扩,以及扩频增益与信息码的同步等参数的估计;在已知上述参数时,可以利用混沌广义同步与无先导kalman滤波的方法来实现对长码实值直扩序列的盲解扩,该算法能在较低信噪比的情况下获得良好的性能。
It is very important to analyze and identify the complex communication signals, and also to locate the impinging sources in the military and civilian areas. Direction of arrival (DOA) estimation is an important topic in electronic reconnaissance system. Frequency estimation and spectrum analysis are the foundation of the analysis of complex communication signals in electronic reconnaissance system. Chaotic direct sequence spread spectrum (DSSS) communication systems have merits of anti-reconnaissance and low probability of intercept, and they will play an increasingly important role in future military communications. Blind estimation of chaotic DSSS signal has received considerable attention in recent years.
     The main work of this dissertation is studying the electronic reconnaissance system: (1) The structure of the array sensors together with the signal properties in time domain are used to study the problems of high-resolution two-dimensional (2-D) DOA estimation and pair-matching; (2) For spectrum analysis, several frequency estimation algorithms and spectrum analysis methods are developed; (3) Blind estimation techniques of chaotic DSSS signal are studied. The main creative works are concluded as follows.
     We make an in-depth study on pair-matching in joint estimation of 2-D DOA for L-shape arrays. A new method of 2-D DOA estimation based on joint SVD is proposed to achieve automatically pair-matching with better estimation precision. Furthermore, two modified pair-matching algorithms based on the cross-correlation matrix are developed, which extend the range of the elevation and azimuth angles. An algorithm of joint estimation frequency and DOA based on the pseudocovariance matrix in time domain is investigated. The DOA and frequency are estimated respectively, and the pair-matching can be achieved with the cross-correlation of pseudocovariance matrices.
     A new algorithm of joint estimation of 2-D DOA for double L-shape arrays is investigated. This method makes use of a restriction of space direction formed by the special structure of array sensors. The new method can not only be used to pair the elevation angles and azimuth angles, but also improve the estimation accuracy by weighted least squares algorithm. Three implementation schemes are given at last.
     Two methods of 2-D DOA estimation for L-shape arrays with noncircular sources are proposed. The method of joint SVD can be adaptive to more signal sources, achieve a better estimation precision and automatically pair 2-D angle estimates by the merits of noncircular characteristics and the structure of L-shape arrays. By using the noncircular characteristics, the fast algorithm provides a better performance than the traditional fast algorithm such as propagator method (PM).
     Three fast frequency estimation techniques are discussed respectively. The iterative method of frequency estimation based on multi-channels, with high estimation precision, low SNR threshold, is easy to implement with hardware. The method based on partial auto-correlation technique is computationally efficient. And the estimation precision of the algorithm based on pre-filtering does not depend on the signal frequency to be estimated. For spectrum analysis, a fast algorithm for non-uniform Fourier Transform is developed to fast compute the signal spectrum at arbitrary frequency components, and it can be used in the receiver of electronic reconnaissance.
     A new method of blind estimation for short-code chaotic spread spectrum sequence is proposed, which is based on principal component analysis (PCA) and has good performance at low SNR condition. Two new methods are developed for blind estimation for long-code chaotic spread spectrum sequence. One is based on nonlinear modeling and prediction, and it can despread the long-code chaotic DSSS signal blindly and obtain the parameters, such as spread gain and information code synchronization. The other is based on the generalized synchronization (GS) and Unscented Kalman filter (UKF), and it can despread the long-code chaotic DSSS signal blindly and has a good performance at low SNR condition.
引文
[1] H. L. Van Trees. Optimum Array Processing, Part Ⅳ: Detection, Estimation, and Modulation Theory. New York: Wiley, 2002.
    [2] W. Wirth. Radar Techniques Using Array Antennas. New York. IET, 2001.
    [3] S. Haykin. Adaptive Radar Signal Processing. John Wiley & Sons, 2007.
    [4] M. L Skolnik.. Introduction to Radar Systems. New York: McGraw-Hill,, 1980.
    [5] H. Teutsch. Modal Array Signal Processing: Principles and Applications of Acoustic Wavefield Decomposition. Springer, 2007.
    [6] W. S. Burdic. Underwater Acoustic System Analysis 2nd edition. New Jersey: Prentice-Hall, 1991.
    [7] F. B. Gross. Smart antenna for wireless communications. New York: McGraw-Hill, 2005.
    [8] T. S.Rappaport. Smart Antennas. New York: IEEE Press, 1998.
    [9] L. C. Codara. Application of antenna arrays to mobile communications, PartⅠ: Performance improvement, feasibility, and system considerations. Proc. IEEE, 1997, 85(7): 1031-1060.
    [10] L. C. Codara. Application of antenna arrays to mobile communications, Part Ⅱ: Beamforming and direction-of-arrival considerations. Proc. IEEE, 1997, 85(8): 1195-1245.
    [11] A. Mileant, S. Hinedi. Overview of arraying techniques in the deep space network, TDA Progress Report 42-104, 1991,2: 109-139.
    [12] T. Yamazaki, B. W. van Dijk, H. Spekreijse. The accuracy of localizing equivalent dipoles and the spatio-temporal correlations of background EEG. IEEE Trans. Biomed. Eng., 1998, 45(9): 1114-1121.
    [13] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 1969, 57(8):1408-1418.
    [14] D. L. Adamy. EW102: A Second Course in Electronic Warfare. Horizon house publications, Inc. 2004.
    [15] H. Akaike. A new look at the statistical model identification. IEEE Trans. Automatic Control. 1974, 19(10): 716-723.
    [ 16] J. Rissanen. Modeling by shortest data description, Automatica, 1978, 14: 465-471.
    [17]M.Wax,T.Kailath,Detection of signals by information theoretic criteria.IEEE Trans.ASSP.,1985,33(4):387-392.
    [18]T.J.Wu,A.Sepulveda.The weighted average information criterion for order selection in time series and regression models,Stat.Prob.Lett.,1998,39(1):1-10.
    [19]P.Chen,T.-J.Wu,J.Yang.A comparative study of model selection criteria for the number of signals.IET Radar Sonar Navig.,2008,2(3):180-188.
    [20]H.-T.Wu,J.-F.Yang,F.-K.Chert.Source number estiamtiors using transformed Gerschgorin Radii.IEEE Trans.Signal Process.,1995,43 (6):1325-1333.
    [21]T.J.Shan,A.Paylray,T.Kailath.On smoothed rand profile tests in eigen structure methods for directions-of-arrival estimation.IEEE Trans.on ASSP,1987,35(10):1377-1385.
    [22]J.H.Cozzens,M.J.Sousa.Source enumeration in a correlated signal.Environment.IEEE Trans.Signal Process.,1994,42(2):304-317
    [23]R.J.Kozick,S.A.Kassam.A unified approach to coherent source decorrelation by autocorrelation matrix smoothing.Signal Process.,1995,45(1):115-130.
    [24]W.Chert,J.P.Reilly,K.M.Wong.Detection of the number of signals in noise with banded covariance matrices.IEE Proceedings Radar Sonar Navig.,1996,143(5):289-294.
    [25]J.-F.Gu,P.Wei,H.-M.Tai.Detection of the number of sources at low signal-to-noise ratio.IET Signal Process.,2007,1(1):2-8.
    [26]B.Dahanayake,K.Wong.Detection:a new approach[signals].Proc.IEEE ICASSP,1988:2773-2776.
    [27]H.Lee,F.Li.An eigenvector technique for detecting the number of emitters in a cluster.IEEE Trans.Signal Process.,Sept.1994,42 (9):2380-2388.
    [28]S.M.Kay.Modem Spectral Estimation:Theory and Application.Englewood Cliffs,NJ:Prentice Hall,1988.
    [29]P.Stoica,R.Moses.Introduction to Spectral Analysis,Englewood Cliffs.NJ:Prentice-Hall,1997.
    [30]H.Krim,M.Viberg.Two decades of array signal processing research.IEEE Signal Process.Mag.,1996,13(4):67-94.
    [31]P.S.Naidu.Sensor Array Signal Processing.Boca Raton,Florida:CRC Press LLC,2001.
    [32]A.J.van der Veen,E.F.Deprettere,A.L.Swindlehurst.Subspace-based signal analysis using singular value decomposition.Proc.IEEE,1993,81 (9):1277-1308.
    [33]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法.北京:清华大学出版社,2004.
    [34] R. O. Schmidt. A Signal Subspace Approach to Multiple Emitter Location and Spectral Estimation. [Ph.D. Thesis], Stanford: Stanford University, 1982.
    [35] R. O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag., 1986, 34(5): 276-280.
    [36] J. A. Cadzow, Y. S. Kim, D. C. Shiue. General direction-of-arrival estimation: a signal subspace approach. IEEE Trans on AES,1989,25(1):31-46
    [37] B. D. Rao, K. V. S. Hari. Performance analysis of root MUSIC. IEEE Trans. ASSP., 1989, 37(12):1939-1949.
    [38] R. Roy, A. Paulraj, T. Kailath. ESPRIT - A Subspace Rotation Approach to Estimation of Parameters of Cisoids in Noise. IEEE Trans. ASSP, 1986, 34(5): 1340-1344.
    [39] R. Roy, T. Kailath. ESPRIT - estimation of signal parameters via rotational invariance techniques. IEEE Trans. ASSP., 1989, 37(7): 984-995.
    [40] L.Ziskind, M.Wax. Maximum likelihood localization of mutiple sources by alternating projection. IEEE Trans. ASSP., 1988, 36(10): 1553-1560
    [41] P. Stoica, A. Nehorai. MUSIC, maximum likelihood and Cramer-Rao bound. IEEE ASSP, 1989, 37(5): 720-741.
    [42] B. Ottersten, M. Viberg, P. Stoica, A. Nehorai. Exact and large sample ML Techniques for parameter estimation and detection in array processing. Radar Array Processing. New-York: Springer-Verlag, 1993, 99-151.
    [43] M. Viberg, B. Ottersten. Sensor array signal processing based on subspace fitting. IEEE Trans. Signal Process., 1991, 39(5): 1110-1121.
    [44] J.A. Cadzow. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources. IEEE Trans ASSP., 1988, 36(7):965-979.
    [45] P. Stoica, K.C. Sharman. Maximum likelihood methods for direction-of-arrival estimation. IEEE Trans. ASSP., July 1990, 38(8): 1132-1143.
    [46] M. Viberg, B. Ottersten, T. Kailath. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans. Signal Process., 1991, 39 (11): 2436-2449.
    [47] V. Nagsha, S. Kay. On frequency estimation with the IQML algorithm. IEEE Trans. Signal Process., 1994,42 (9): 2509-2513.
    [48] A.YJ. Chan, J. Litva. MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array, IEE Proceedings Radar, Sonar and Navig., 1995, 142(3): 105-114.
    [49]M.Xia,C.Liu,R.Du,J.Li.An effective array for 2-D direction-of-arrival estimation.2006 First International Conference on Innovative Computing,Information and Control,vol.2:370-373.
    [50]C.P.Mathews,M.D.Zoltowski.Eigenstructure techniques for 2-D angle estimation with uniform circular arrays,IEEE Trans.on Signal Process.,1994,42(9):2395-2407.
    [51]M.D.Zoltowski,M.Haardt,C.P.Mathews.Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT.IEEE Trans.On Signal Process.,1996,44(2):316-322.
    [52]C.H.Gierull,Angle estimation for small sample size with fast eigenvector-free subspace method.IEE Proc.Radar,Sonar,Navig.,June 1999,146(3):126-132.
    [53]A.Eriksson,P.Stoica,T.S(o|¨)derstr(o|¨)m.On-line subspace algorithms for tracking moving sources.IEEE Trans.Signal Process.,1994,42(9):2319-2330.
    [54]S.Marcos,A.Marsal,M.Benidir.The propagator method for source bearing estimation.Signal Processing,1995,42(1):121-138.
    [55]S.Kikuchi,H.Tsuji,A.Sano.Pair-matching method for estimating 2-D angle of arrival with a cross-correlation matrix.IEEE Antennas Wireless Propag.lett.,2006,5:35-40.
    [56]Y.Wu,G.Liao,H.C.So.A fast algorithm for 2-D direction-of arrival estimation.Signal Process,2003,83(10):1827-1831.
    [57]N.Tayem,H.M.Kwon.L-Shape 2-Dimensional arrival angle estimation with propagator method.IEEE Trans.Antennas Propag.,May 2005,53(5):1622-1630.
    [58]N.Tayem,H.M.Kwon,Yong Hoon Lee.Azimuth and elevation angle estimation with no failure and no eigen decomposition.Signal Processing,2006,86(1):8-16
    [59]任勋立,廖桂生,曾操.一种低复杂度的二维波达方向估计方法.电波科学学报,2005,4(20):526-530.
    [60]陶建武,石要武,常文秀.一般阵列误差情况下信号二维方向角估计.电波科学学报.2006,4(21):606-611.
    [61]陶建武,石要武,常文秀.基于均匀圆阵的信号二维方向角高精度估计.航空学报.2006,4(27):687-691.
    [62]王建英,陈天麒.频率、二维到达角和极化联合估计.电子学报,2000,11(27):74-76.
    [63]V.S.Kedia,B.Chandna.A new algorithm for 2-D DOA estimation.Signal Processing,1997,60(2):325-332.
    [64]吕泽均,肖先赐.一种在冲击噪声环境中基于协变异的二维波达方向估计算法.声学学报,2004(2):149-154.
    [65]Y.Hua,T.K.Sarkar,D.D.Weiner.An L-shaped array for estimating 2-D directions of wave arrival.IEEE Trans.Antennas Propag.,1991,39(2):143-146.
    [66]Y.Hua,T.K.Sarkar,D.D.Weiner.L-shaped array for estimating 2-D directions of wave arrival.1989 Proceedings of the 32nd Midwest Symposium on Circuits and Systems,voll:390-393.
    [67]殷勤业,邹理和,R.Newcomb.一种高分辨率二维信号参数估计方法—波达方向矩阵法.通信学报,1991,4(12):1-7.
    [68]金梁,殷勤业.时空DOA矩阵方法.电子学报,2000,7(28):8-12.
    [69]金梁,殷勤业.时空DOA矩阵方法的分析和推广.电子学报,2001,3(39):300-303.
    [70]L.Gan,P.Wei,J.F.Gu.Automatic pair-matching method for estimating 2-D angle of arrival.2008 International Conference on Communication,Circuits and Systems (ICCCAS2008) vo12:914-917.
    [71]L.Gan,J.F.Gu,P.Wei.Estimation of 2-D DOA for noncircular sources using simultaneous SVD technique.IEEE Antennas Wireless Propag.lett.,2008,7:385-388.
    [72]L.Gan,P.Wei.Comments on “pair-matching method for estimating 2-D angle of arrival with a cross-correlation matrix”.IEEE Antennas Wireless Propag.lett.,2008,7:807-807.
    [73]M.Li,L.Gan,P.Wei.Improvement of 2-D direction finding algorithm based on two L-shape arrays,2008 International Conference on Signal Processing,(ICSP2008),vol.1:366-369.
    [74]L.Jin,M.L.Yao,Q.Y.Yin,2D angle and array response estimation with arbitrary array configuration.1999 ISCAS Vol.4,507-510.
    [75]Liu Tsung-Hsien,J.M.Mendel.Azimuth and elevation direction finding using arbitrary array geometries.IEEE Trans.Signal Process.,1998,46(7):2061-2065.
    [76]Y.Hua,K.Abed-Meraim.Techniques of eigenvalues estimation and association,Digital Signal Process.,1997,7:253-259.
    [77]M.Wax,T-J.Shah,T.Kailath.Spatio-temporal spectral analysis by eigenstructure methods,IEEE Trans.ASSP,1984,32(4):817-827.
    [78]M.C.Wicks,M.Rangaswamy,R.Adve,T.B.Hale.Space-time adaptive processing—a knowledge-based perspective for airborne radar.IEEE Signal Processing Mag,2006:51-65.
    [79]Y.Hua.Estimation two-dimensional frequencies by matrix enhancement and matrix pencil.IEEE Trans.Signal process.,1992,40 (9):2267-2280.
    [80] L. Xu, P. Stoica, J. Li. Complex amplitude estimation in the known steering matrix and generalized waveform case. IEEE Trans. Signal Process., 2006, 54 (5):1716-1726.
    [81] L. Xu , P. Stoica, J. Li. A diagonal growth curve model and some signal-processing applications, IEEE Trans. Signal Process., 2006, 54(9): 3363-3371.
    [82] Y. Jiang, P. Stoica, J. Li. Array signal processing in the known waveform and steering vector case. IEEE Trans. Signal Process., 2004, 52 (1):23-35.
    [83] N. Wang, P. Agathoklis, A. Antoniou. A new DOA estimation technique based on subarray beamforming. IEEE Trans. Signal Process., 2006, 54 (9): 3279-3291.
    [84] A. Amar, A. J. Weiss. Direct position determination in the presence of model errors - known waveforms. Digital Signal Process, 2006, 16: 52-83.
    [85] J. Li, R. T. Compton. Maximum likelihood angle estimation for signals with known waveforms. IEEE Trans. Signal Process., 1993,41 (9): 2850-2862.
    [86] J. Li, B. Haider, P. Stioca, M. Viberg. Computationally efficient angle estimation for signals with known waveforms. IEEE Trans. Signal Process., 1995,43, (9): 2154-2163.
    [87] M. Cedervall, R. L. Moses. Efficient maximum likelihood DOA estimation for signals with known waveforms in the presence of multipath. IEEE Trans. Signal Process., 1997, 45 (3): 808-811.
    [88] J. F. Gu, P. Wei, H. M. Tai. Fast direction-of-arrival estimation with known waveforms and linear operators. IET Signal Processing, 2008,2(1): 27 - 36.
    [89] G Xu, T. Kailath. Direction-of-arrival estimation via exploitation of cyclostationarity - a combination of temporal and spatial processing. IEEE Trans. Signal Process., 1992, 40(7): 1775-1786.
    [90] Y. Lee, J. Lee. Direction-finding methods for cyclostationary signals in presence of coherent sources. IEEE Trans. Antennas and Propagat., 2001,.49(12): 1821-1826.
    [91] W. A. Gardner, A. Napolitano, L. Paura. Cyclostationarity: Haifa century of research. Signal Processing, 2006, 86: 639-697.
    [92] M.C.Do(?)an, J.M. Mendel. Applications of Cumulants to array processing-Part Ⅰ: Aperture extension and array calibration. IEEE Trans. Signal Process., 1995,43(5): 1200-1216.
    [93] E. Gonen, J. M. Mendel. Applications of cumulants to array processing. Ⅲ. Blind beamforming for coherent signals. IEEE Trans. Signal Process., 1997,45(9): 2252-2264.
    [94]E.Gonen J.M.Mendel,M.C.Do~an.Applications of cumulants to array processing— Part Ⅳ:Direction finding in coherent signals case.IEEE Trans.Signal Process.,1997,45(9):2265-2276.
    [95]刘学斌,韦岗,季飞.基于四阶累积量扩展孔径的线阵设计,电波科学学报,2006,21(1):126-130.
    [96]H.Abeida,J.P.Delmas.MUSIC-like estimation of direction of arrival for noncircular sources.IEEE Trans.Signal Process.,2006,54(7):2678-2690.
    [97]P.Charg(?),Y.Wang,J.Saillard.A non-circular sources direction finding method using polynomial rooting.Signal Processing,2001,81 (11):1765-1770.
    [98]H.Abeida,J.P.Delmas.Efficiency of subspace-based DOA estimators.Signal Processing,2007,87(12):2075-2084.
    [99]J.Liu,Z.T.Huang,Y.Y.Zhou.Azimuth and elevation estimation for noncircular signals.IET Electronics Lett.,2007,43(20):1117-1118.
    [100]F.Roemer,M.Haardt.Efficient 1-D and 2-D DOA estimation for non-circular sources with hexagonal shaped espar arrays.2006 IEEE Int.Conf.Acoustics,Speech,Signal Processing vol.1:881-884.
    [101]A.Leshem,A.J van der Veen.Direction-of-Arrival Estimation for Constant Modulus signals.IEEE Trans.Signal Process.,1999,47(11 ):3125-3129.
    [102]R.Gooch,J.Lundell.The CMarray:An adaptive beamformer for constant modulus signals.1986 Int.Conf.Acoustics,Speech,Signal Processing,Vol.4:2523-2526.
    [103]A.J.van der Veen,A.Panlraj.An analytical constant modulus algorithm,IEEE Trans.Signal Process.,1996,44(5):1136-1155.
    [104]A.J.van der veen.An adaptive version of the algebraic constant modulus algorithm.2005 IEEE Int.Conf.Acoustics,Speech,Signal Processing vol.1:873-876.
    [105]金梁,殷勤业,汪仪林.广义子空间拟合DOA估计原理.电子学报,2000,1(28):60-63.
    [106]T.H.Liu,J.M.Mendel.Application of cumulants to array signal processing.V.Sensitivity issues.IEEE Trans.on Signal Process.,1999,47(3):746-759.
    [107]H.Abeida.Imagerie d'antennepour signaux non circulaires:bornes de performance et algorithmes.[Ph.D.Dissertation],France Universit(?) Paris Ⅵ.
    [108]J.P.Delmas,H.Abeida.Ch.9:DOA estimation for noncircular signals:performance bounds and algorithms.Advances in Direction of Arrival Estimation.New York:Artech House 2006.
    [109] P Gounon, C. Adnet, J. Galy. Localization angulaire de signaux non circulaires. Traitement du Signal, 1998, 15(1): 17-23.
    [110] P. Charg(?), Y. Wang, J. Saillard. A root-MUSIC for non circular sources. 2001 IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 5:2985-2988
    [111] Haardt M, R(?)mer F. Enhancements of unitary ESPRIT for non-circular sources. 2004 IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 2: 1101-1104.
    [112] H. Abeida, J. P. Delmas. Stochastic Cramer-Rao bound for noncircular signals with applications to DOA estimation. IEEE Trans. Signal Process., 2004, 52(11): 3192-3199.
    [113] H. Abeida, J. P. Delmas. Gaussian Cramer-Rao bound for direction estimation of noncircular signals in unknown noise fields. IEEE Trans. Signal Process., 2005, 53(12): 4610-4618.
    [114] F. R(?)mer, Haart M. Deterministic Cramer-Rao Bounds for strict sense non-circular sources. 2007 International ITG/IEEE Workshop on Smart Antennas (WSA'07).
    [115] E. J. Hannan. The Estimation of Frequency. Journal of Applied Probability, 1973, 10: 510-519.
    [116] D. C. Rife. Digital tone parameter estimation in the presence of Gaussian noise. Polytechnic Institute of Brooklyn, 1973
    [117] J. R. Shim. Real time frequency estimators. [Ph. D. Dissertation]. USA: University of Missouri Columbia, 1995.
    [118] B. G. Quinn. The estimation and tracking of frequency. New York: Cambridge University Press, 2001.
    [119] B. Boashash. Estimating and interpreting the instantaneous frequency of a signal. Ⅰ. Fundamentals. Proceedings of the IEEE, 1992, 80: 520-538.
    [120] B. Boashash. Estimating and interpreting the instantaneous frequency of a signal. Ⅱ. Algorithms and applications. Proceedings of the IEEE, 1992, 80: 540-568.
    [121] W. G. Cowley, M. Rice, A. N. McLean. Estimation of frequency offset in mobile satellite modems. 1993 Proceedings of the Third International Mobile Satellite Conference, Vol.1: 417-422.
    [122] S. Kay. Fast and accurate single frequency estimator. IEEE Trans. ASSP., 1989, 37(12) 1987-1990.
    [123] S. A. Tretter. Estimating the Frequency of a Sinusoid by Linear Regression. IEEE Trans. Inform. Theory, 1985, 31: 832-835.
    [124] P. Handel. On the performance of the weighted linear predictor frequency estimator. IEEE Trans. Signal Process., 1995,43(12): 3070-3071.
    [125] V. Clarkson, P. J. Kootsookos, B. G. Quinn. Analysis of the variance threshold of Kay's weighted linear predictor frequency estimator. IEEE Trans on Signal Process., 1994, 42(10): 2370-2378.
    [126] P. D. Fiore, S. W. Lang. Efficient phase-only frequency estimation. 1996 IEEE International Conference on Acoustics, Speech and Signal Processing, Vol.4: 2809-2812.
    [127] H. C. So, F. K. W. Chan. A Generalized Weighted Linear Predictor Frequency Estimation Approach for a Complex Sinusoid. IEEE Trans. Signal Process., 2006, 54(4): 1304-135.
    [128] D. Kim, M. J. Narasimha, D. C. Cox. An Improved Single Frequency Estimator. IEEE Signal Processing Letters, 1996, 3:212-214.
    [129] M. L. Fowler, J. A. Johnson. Extending the threshold and frequency range for phase-based frequency estimation. IEEE Trans, on Signal Process., 1999,47(10): 2857-2863.
    [130] H. Fu, P.Y. Kam. ML estimation of the frequency and phase in noise, 2006 Proc. IEEE Globecom.
    [131] H. Fu, P.Y. Kam. Kalman Estimation of Single-Tone Parameters and Performance Comparison With MAP Estimator. IEEE Trans. Signal Process., 2008,56(9): 4508 - 4511.
    [132] H. Fu, P.Y. Kam. MAP/ML Estimation of the Frequency and Phase of a Single Sinusoid in Noise. IEEE Trans. Signal Process., 2008, 55(3): 834 - 845.
    [133] H. Fu, P.Y. Kam. Improved weighted phase averager for frequency estimation of single sinusoid in noise. Electronics Letters, 2008,44(3): 321-322
    [134] M. P. Fitz. Further results in the fast estimation of a single frequency. IEEE Trans, on Commun., 1994, 42: 862-864.
    [135] S. W. Lang, B. R. Musicus. Frequency estimation from phase differences. 1989 IEEE International Conference on Acoustics, Speech and Signal Processing, vol..4: 2140-2143.
    [136] M. Luise, R. Reggiannini. Carrier Frequency Recovery in All-Digital Modems for Burst-Mode Transmissions. IEEE Trans. Commun., 1995, 43: 1169-1178.
    [137] G. W. Lank, I. S. Reed, G. E. Pollon. A Semicoherent Detection and Doppler Estimation Statistic. IEEE Trans. AES., 1973. 9: 151-165.
    [138] B. G. Quinn. Estimating frequency by interpolation using Fourier coefficients. IEEE Trans. Signal Process., 1994,42(7): 1264-1273.
    [139] B. G. Quinn. Estimation of frequency, amplitude, and phase from the DFT of a time series. IEEE Trans. Signal Process., 1997,45(3): 814-817.
    [140]M.D.Macleod.Fast nearly ML estimation of the parameters of real or complex single tones or resolved multiple tones.IEEE Trans.Signal Process.,1998,46(1 ):141-148.
    [141]Y.V.Zakharov,V.M.Baronkin,T.C.Tozer.DFT-based frequency estimators with narrow acquisition range.IEE Proceedings Communications,2001,148(1):1-7.
    [142]Y.V.Zakharov,T.C.Tozer.Frequency estimator with dichotomous search of periodogram peak.Electronics Letters,1999,35:1608-1609.
    [143]E.Aboutanios,B.Mulgrew.Iterative Frequency Estimation by Interpolation on Fourier Coefficients.IEEE Trans.Signal Process.2005,53(4):1237-1242.
    [144]M.V.Dragosevic,S.S.Stankovic,Generalized Least Squares method for frequency estimation,IEEE Trans.ASSP.,1989,37(5),:805-819.
    [145]R.Kumar.Fast frequency acquisition via adaptive least-squares algorithm.IEE Proceedings-F Radar & Signal Processing,1989,136(2),:155-160.
    [146]H.C.So.Adaptive algorithm for direct estimation of sinusoidal frequency.Electronics Letters,2000,36(10):pp.759-760.
    [147]H.C.So,P.C.Ching.Analysis of an adaptive single-tone frequency estimation algorithm.2000 International Conference on Signal and Image Processing,Vol.1:465-468.
    [148]S.Bittanti,S.M.Savaresi.On the parameterization and design of an extended Kalman filter frequency tracker.IEEE Trans.Automatic Control,2000,45(11):1718-1724.
    [149]O.Besson,P.Stoica.Analysis of MUSIC and ESPRIT frequency estimates for sinusoidal signals with lowpass envelopes.IEEE Trans.Signal Process.1996,44:2359-2364.
    [150]沈颖.混沌在信息处理中的应用研究.[博士论文].南京:南京理工大学,1999年12月.
    [151]李文化,王智顺,何振亚.用于跳频多址通信的混沌跳频码.通信学报,1996,17(6):17-21.
    [152]张家树.混沌信号的非线性自适应预测技术及其应用研究.[博士论文].成都:电子科技大学,2001年1月.
    [153]G.Mazzini,G.Setti,R.Rovatti.Chaotic complex spreading sequences for asynchronous CDMA-Part Ⅱ:some theoretical performance bounds.IEEE Trans.CAS-Ⅰ,1998,45(4):496-506.
    [154]L M Percora,T L.Carrol.Synchronization in chaotic systems.Phys.Rev Lett,1990,64(8):821~823.
    [155]P.Christopher,M.Albert.Introduction to chaos-based communication and signal processing.2000 Aerospace Conference Proceedings:279~299.
    [156]H.B.Ghobad,C.D.McGillen.A chaotic direct-sequences spread-spectrum communication system.IEEE Trans.Commun.,1994,42(2/3/4):1524~1527
    [157]U,Parlitz,S.Ergezinger.Robust communication based on chaotic spreading sequences.Phys.Lett.A,1994,188(2):146~150.
    [158]L.Cong,S.Songgeng,Chaotic frequency hopping sequences.IEEE Trans.Commun.1998,46(11):1433~1437.
    [159]T.Yang,L.Chua.Chaotic impulse radio:A novel chaotic secure communication system.Int.J.Bif.and Chaos,2000,10:345~357.
    [160]L.Cong,W.Xiaofu.Design and realization of an FPGA-based generator for chaotic frequency hopping sequences.IEEE Trans.Circuit.Syst.I,2001,48(5):521~532.
    [161]G.Mazzini,G.Setti,R.Rovatti.Chaotic complex spreading sequences for asynchronous CDMA Part Ⅱ:some theoretical performance bounds.IEEE Trans.CAS-Ⅰ,1998,45(4):496~506
    [162]M.K.Tsatsanis,G.B.Giannakis.Blind estimation of direct spread spectrum signals in multipath.IEEE Trans.Signal Process.,1997,45(5):1241~1252
    [163]B.Jovic,C.P.Unsworth.Chaos-based multi-user time division multiplexing communication system.IET Commun.,2007,1(4):549~555
    [164]T.Yang,L.B.Yan,C.M.Yang.Breaking chaotic secure communication using a spectrogram.Phys.Lett.A,1998,247:105-111.
    [165]E.Casillo,J.M.Gutierrez.Nonlinear time series modeling and prediction using functional networks:Extracting information masked by chaos.Phys.Lett.A,1998,244:71-84.
    [166]P.Tino,M.Koteles.Extracting finite-state representations from recurrent neural networks trained on chaotic symbolic sequences.IEEE Trans.Neural Networks,1999,10(3):284-302.
    [167]胡进峰,郭静波.一种破译混沌直接扩频序列保密通信的方法,物理学报,2008,57(3):1477~1484.
    [168]顾建峰,魏平.基于伪协方差矩阵的频率和角度联合估计算法,通信学报,2007,28(8):40-45.
    [169]D.W.Tufts,R.Kumaresn.Estimation of frequencies of multiple sinusoids:making linear rediction perform like maximum likelihood.Proc.IEEE,1982,70(9):975-989.
    [170]T.F.Chan.An improved algorithm for computing the singular value decomposition.ACM Trans.Math.Soft.,1982,8(3):72-83.
    [171]P.Strobach.Total least squares phased averaging and 3-D ESPRIT for joint azimuth-elevation-cartier estimation.IEEE trans.Signal Process.,2001,49(1):54-62.
    [172]M.Viberg,P.Stoica.A computationally efficient method for joint direction fmding and frequency estimation in colored noise.1998 The Thirty-Second Asilomar Conf.on Signals,Systems and Computers:1547-1551.
    [173]N.Yuen,B.Friedlander.Asymptotic performance analysis of ESPRIT,higher order ESPRIT,and virtual ESPRIT algorithm,IEEE Trans.Signal Process.,1996,44(10):2537-2551.
    [174]顾建峰.阵列信号处理中的若干问题研究:[博士论文].成都:电子科技大学,2008年.
    [175]连小华,周建江.双L型阵列DOA估计的PM算法的性能分析与改进.航空学报,2007,28(5):1122-1129.
    [176]J.F.Gu,P.Wei,H.M.Tai.2-D direction-of-arrival estimation of coherent signals using cross-correlation matrix.Signal Processing,2008,88(1):75-85.
    [177]J.F.Gu,P.Wei.Joint SVD of two cross-correlation matrices to achieve automatic pairing in 2-D angle estimation problems.IEEE Antennas Wireless Propag.Lett.,2007,6;553-556.
    [178]T.Brown,M.Wang.An iterative algorithm for single-frequency estimation.IEEE Trans.SP.,2002,50(11):2671-2682.
    [179]Young-Hwan YOU,et.A1.A Simplified Autocorrelation-Based Single Frequency Estimator,.IEICE Trans.Commun.,2006,E89-B(7):2096-2098.
    [180]G.H.Golub,C.F.Van Loan.Matrix Computations 3rd Edition.Johns Hopkins University Press,1996.
    [181]J.W.Cooley,J.W.Tukey.Algorithm for the machine computation of complex Fourier series.Math.Comp.,1965,19(90):297-301.
    [182]S.Bagchi,S.K.Mitra.The nonuniform discrete Fourier transform and its applications in filter design.IEEE Trans.Circuits Syst.Ⅱ,1996,43(6):422-433.
    [183]A.Dutt,V.Rokhlin,Fast Fourier transforms for nonequispaced data.SIAM J.Sci.Comput.,1993,14(6):1368-1393.
    [184]G.Geylkin.On the fast Fourier transform of functions with singularities.Appl.Comput.Harmonic Anal.,1995,2(4),363-381.
    [185]Q.H.Liu,N.Nguyen.An accurate algorithm for nonuniform fast Fourier transforms (NUFFTs).IEEE Microw.Guided Wave Lett.,1998,(8):18-20.
    [186]J.A.Fessler,B.Sutton.Nonuniform fast Fourier transforms using min-max interpolation.IEEE Trans.Signal Process.,2003,51(2):560-574.
    [187]Yangcan Xiao,Ping Wei,Hengming Tai.Fast algorithms for computing nonuniform Fourier transform.Chinese Journal of Electronics,2006,15(1):117-119.
    [188]S.K.Mitra.Digital signal procesing:a computer-based approach,2nd ed.New York:McGraw-Hill,2001.
    [189]G.M.Phillips.Interpolation and approximation by polynomials,New York:Springer,2003.
    [190]张家树,肖先赐.用于混沌时间序列自适应预测的一种少参数二阶Volterra滤波器,物理学报,2001,50(7):1248~1254.
    [191]甘建超,肖先赐.基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅰ)线性自适应滤波,物理学报,2003,52(5):1096~1101.
    [192]H.Kantz,T.Schreiber.Nonlinear Time Series Analysis.2nd ed.Cambridge:Cambridge 2004.
    [193]S.Julier,J.Uhlmann,H.Durrant-Whyte.A New Approach for Filtering Nonlinear Systems.1995 Proceedings of American Control Conference:1628-1632.
    [194]S.Julier,J.Uhlmann.Reduced Sigma Point Filters for The Propagation of Means and Covariances Through Nonlinear Transformations.2002 Proceedings of American Control Conference,Vol.2:887-892.
    [195]Tao Yang,Lin-Bao Yang,Chun-Mei Yang.Breaking chaotic switching using generalized synchronization:examples.IEEE Trans.CAS-Ⅰ,1998,45(10):1062-1067.
    [196]闫华,魏平,肖先赐.基于Bemstein多项式的自适应混沌时间序列预测算法,物理学报,2007,56(9):5111-5118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700