用户名: 密码: 验证码:
道路参数监测预警系统中的数据传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
道路灾害通常是指在自然和人为条件下,道路以及其附属结构的功能性丧失,从而导致道路结构无法发挥原有的功能,影响公路的正常运营。季节冰冻区道路灾害主要包括路基沉降引起的灾害、道路边坡滑坡灾害、冰雪灾害及桥梁病害等。随着科学技术的进步和发展,对于相关的影响参数进行实时监测并且进行实时的状态评估和发布具有重要的安全意义。本文的目的就是对于监测的道路参数数据进行实时的状态评估并且将得到的预报预警监测数据进行及时传送。
     道路参数监测预警系统在减少道路灾害损失、保护道路行驶人员人身安全方面起着重要作用。这一工作具有数据量大、数据结构不统一、传输速度要求高、实时性要求高、预警结果计算量大等特点,一般需要具有网络带宽高、计算速度快以及存储效率高的硬件系统支持,属于土木监测仪器、地质环境监测、现代通信技术、计算机网络技术和自动化技术等多学科交叉结合的应用性高新技术领域。
     我国大部分地区自然环境复杂,气象条件多变,台风、冰雪、地震等自然灾害频发,各种各样的地质灾害对居民日常生活以及国民经济产生了不利的影响。对于季冻区道路大范围灾害还没有形成快速、有效的动态监测成套技术。当冻土路段、软基路段和山区高边坡路段道路运营后,如何快速、高精度、大范围监测复杂地区的道路路基沉降、变形,边坡滑坡以及动态监测道路积雪、结冰灾害成为保障道路安全运行的关键问题。目前,虽然在一些领域已经采用了一些对策,但由于监测范围大、危险点确定困难,没有实时监测和灾害分析,难以形成预警预报网络平台。在一些地区已经采用传感器和其他装置进行远距离监测,但在准确性及反应速度方面非常欠缺。因此,对道路灾害监测和预警的能力急需加强。
     现有的道路监测预警系统只能针对特定类型的道路灾害进行监测预警并且监测的参数类型固定,都采用基于IPv4协议的服务器/客户端模式构建,随着监测对象增多为所有监测点分配IPv4地址会越来越困难。为此本文依托863国家高技术研究发展计划项目《季节冰冻区大范围道路灾害参数监测与辨识预警系统研究》(2009AA11Z104),针对道路参数监测预警系统数据传输过程中的数据获取方法、数据传输发布方法、数据接收存储方法以及系统架构进行研究,主要开展了以下几个方面的工作:
     1、道路参数监测数据的获取。道路参数监测数据的类型和数据量是直接关系到数据传输技术的重要因素,也是预警计算模型的关键元素。目前参数信息来源主要包括气象资料、地质资料、设计资料、交通信息资料和现场监测数据。而有效的监测技术是准确获取大范围道路灾害参数的基本手段,为此本文研究了道路边坡稳定性参数监测数据的获取方法、路基变形与整体稳定性参数监测数据的获取方法、路面冰雪监测参数数据的获取方法和桥梁静动力参数监测数据的获取方法。
     2、道路参数监测数据发布传输技术研究。道路参数监测数据的发布传输是整个预警系统当中必不可少的重要环节。为此本文提出一种基于IPv6对等网络的道路参数监测预警数据传输方法,该方法网络层支持IPv6协议,应用层使用P2P对等网络。为解决P2P网络带宽消耗高的问题,使用小世界模型网络拓扑算法,快速建立对等网络,使用多中心节点代替服务器,网络中各节点是对等的,这样可以降低了中心服务器的性能依赖,保证预警数据的快速传输和预警的实时性。
     3、道路参数监测数据接收存储技术研究。道路参数监测数据的存储类型直接决定了预警系统的可扩展性。现有道路灾害监测预警系统无法扩展的原因是其数据存储格式固定并且其数据解析计算功能是基于此固定数据格式的。为解决道路灾害监测预警系统的监测指标和监测类型不能扩展的问题,本文提出一种基于半结构化数据的道路灾害监测预警数据存储方法,该方法使用半结构化数据模型存储监测预警数据,可在满足极少约束(或无约束)情况下动态改变自身结构,因此其格式可自由扩展。
     4、道路参数监测预警系统的构建。本文根据季节冰冻区的道路实际情况,开发了大范围灾害预报预警系统。该系统从使用功能上来说,分为评价系统和发布系统;从内容上来说,可划分为道路边坡状态预警子模块、道路路基状态预警子模块、道路冰雪状态预警子模块以及桥梁状态预警子模块。该预报预警系统的运行过程为:首先接收到监测数据进而启动相应的灾害评价子模块,依据评判标准对灾害进行定量评价,将评价结果通过发布平台发布。
The road disasters usually refers to the loss of functionality of the road and itssubsidiary structure under natural and man-made conditions, leading to the road structurecan not play the original function, affecting the normal operation of the highway. Accordingto the actual situation of large range road disasters in seasonal frozen area, the road safetycan reflect by the slope stability, the subgrade stability, the bridge safety and the ice(snow)on the road. With the development of science and technology, real-time monitoringparameters and real-time assessment has important safety significance. The purpose of thisarticle is to estimate the road parameters monitoring and early-warning system and reaserchon the data transmission process.
     Road parameters monitoring and early-warning system plays an important role inreducing road disaster losses and protecting the personal safety on roads. Road parametersmonitoring and early-warning system has the following features: huge amounts ofmonitoring data, real-time demanding, non-uniform data structure, a large number ofcalculations, is the application of interdisciplinary combination of high-tech fields includingcivil monitoring instruments, geological environmental monitoring, automation technology,modern communications technology and computer network technology etc.
     In most parts of our country, the natural environment is complex and the weathercondition is changeable. Typhoons, snow, earthquakes and other natural disasters occurfrequently. A variety of geological disasters had a negative impact on the daily lives ofresidents as well as the national economy. A wide range of seasonal frozen area road disasterhas not yet formed a set of fast, efficient, real-time monitoring technology. Monitoringsubgrade settlement, slope landslides, and the ice(snow) on large-scale road fastly,high-precision has become the key issues to protect the safe operation of the road afterfrozen sections, soft-road, mountain high slope sections put into use. Some countermeasureshave been adopted in some areas, but due to the difficulties of monitoring dangerous point inthe large range area and no real-time monitoring and disaster analysis, it is difficult to formthe warning forecast network platform. Sensors and other devices for remote monitoringhave been applied in some areas, but most of them lack accuracy and speed. Therefore, roadhazard monitoring and warning capacity should be strengthened.
     The traditional road parameters monitoring and early-warning system has the followingdisadvantages: first, monitoring type of disaster is fixed, so that unable to meet the demandfor rapid development path disasters scalability and security assessment scalability. Second,the amount of the road disaster monitoring data is huge, so that the server load is serious andcan’t guarantee the real-time nature of the system. Third, the system is generally based onIPv4protocol, and allocating IPv4addresses to all monitoring points will becomeincreasingly difficult. To solve these problems, the paper relies on the National HighTechnology Research and Development Program ("863"Program) of China named "Theresearch of wide range season frozen road disasters parameter monitoring and identificationof warning system "(2009AA11Z104), and mainly includes the following aspects:
     1. Road parameter monitoring data acquisition. Monitoring data type and the dataamount is directly related to the important factors for data transmission technology, but alsothe key elements of the warning calculation model. The current monitoring data sourcesinclude meteorological data, geological data, design data, traffic information and on-sitemonitoring data. Because of effective monitoring technology is the basic means of access toa wide range of road hazard parameters accurately, this paper studies the road slope stabilityparameter monitoring data acquisition method, subgrade deformation and the overallstability of parameter monitoring data acquisition method, pavement snow and icemonitoring parameter data acquisition methods and bridges static and dynamic parametersmonitoring data acquisition method.
     2. The road parameters monitoring data released transmission technology. The roadparameters monitoring data released transmission is the essential part in the entire earlywarning system. In this paper, we used the small world theory to build an IPv6p2pnetwork structure, which supports IPv6protocol in the network layer and supports P2Pnetwork in the application layer. In order to solve the problem of high bandwidthconsumption, the P2P network using the small-world model topology algorithm to quicklyestablish a P2P network, and using multi-center node instead of the server, so that each nodeis a peer-to-peer which can reduce the server load to ensure the fast data transmission andreal-time warning.
     3. The road parameter monitoring data receiving storage technology. The roadparameter monitoring data receiving storage type directly determines the scalability of theearly warning system. Existing roads disaster monitoring and warning system can not beextended because the fixed format of the data storage and its data analysis calculation function is based on a fixed data format. In order to solve the problem, this paper proposed anew method of monitoring and early-warning information storage based on semi-structureddata, which achieved the storage of monitoring data by using semi-structured data so that canhandle any type of road disasters and all types of monitoring data. Semi-structured data candynamic changes in its structure under the minimal constraints (or unconstrained). Thereforethe data format can be extended freely.
     4. Road parameters monitoring and early-warning system. According to the actualsituation of large range road disasters in seasonal frozen area, we developed a large rangeroad parameters monitoring and early-warning system. The system consists of four parts,which are slope monitoring system, subgrade monitoring system, bridge monitoring systemand ice(snow) monitoring system. The system can be divided into the evaluation system andrelease system from the use of functions. The running of the early warning system: First ofall, receive monitoring data; and then start the appropriate hazard assessment module,quantitative evaluation based on the criteria of disaster; finally, the evaluation resultspublished by publishing platform.
引文
[1]李立冬.基于实时无线传感网络的高速公路山体及桥隧安全监测系统研究[D].吉林大学,2010,12.
    [2]夏凌燕.自然灾害监测预警系统科技成果转化模式研究[D].大连海事大学,2012,6.
    [3]张以晨.吉林省地质灾害调查与区划综合研究及预报预警系统建设[D].吉林大学,2012,6.
    [4]刘传正,刘艳辉.地质灾害区域预警原理与显式预警系统设计研究[J].水文地质工程地质,2007.6:109-115.
    [5]杜榕恒等.长江三峡库区滑坡与泥石流研究[M].四川:四川科学出版社,1991.
    [6]谢守益等.长江三峡库区典型滑坡降雨诱发的概率分析[J].工程地质学报,1995.6,3(2):60-69.
    [7]陈正洪等.湖北省2008年7月20—23日暴雨洪涝特征及灾害影响[J].暴雨灾害,2009.12,28(4):345-348.
    [8]单九生等.诱发江西滑坡的降水特征分析[J].气象,2004,30(1):13-15.
    [9]吴树仁等.滑坡预警判据初步研究——以三峡库区为例[J].吉林大学学报(地球科学版),2004.10,34(4):596-600.
    [10]吴跃东,向钒,马玲.安徽省地质灾害气象预警预报研究[J].灾害学,2008.12,23(4):25-29.
    [11]宋光齐,李云贵,钟沛林.地质灾害气象预报预警方法探讨——以四川省地质灾害气象预报预警为例[J].水文地质工程地质,2004.2,23(4):33-36.
    [12]彭轲,王宁涛,谭建明,李明.地质灾害气象预警区划方法研究——以湖北省巴东县为例[J].地质灾害与环境保护,2010.12,21(4):82-87.
    [13]刘传正,李云贵,温铭生等.四川雅安地质灾害时空预警试验区初步研究[J].水文地质工程地质,2004,31(4):21-32.
    [14]李观德.昭通地区滑坡泥石流预警系统及其减灾效益分析[J].灾害学,1998,13(1).
    [15]肖伟,黄丹,黎华,崔振昂,蒙格平.地质灾害气象预报预警方法研究[J].地质与资源,2005(4):274-278
    [16]陈百炼.降雨诱发地质灾害的气象预警方法研究[J].贵州气象,2002,(4):4-7.
    [17]张桂荣,殷坤龙,刘礼领等.基于WEBGIS和实时降雨信息的区域地质灾害预警预报系统[J].岩土力学,2005,26(8):1312-1317.
    [18]陈平,丛威青. GIS支持下的湖南省地质灾害气象预警系统建设探讨[J].成都理工大学学报,2006,33(5):532-535.
    [19]傅朝义,张鑫林,李再凯等.广东省地质灾害预警系统流程设计[J].中国地质灾害与防治学报,2006,17(1):51-55.
    [20]刘会平,潘安定,王艳丽等.广东省地质灾害与防治对策[J].自然灾害学报,2004,13(2):101-105.
    [21]王川,刘勇,张宏.陕西省地质灾害预报预警研究[J].陕西气象,2003,6(6):10-12.
    [22]林孝松,郭跃.滑坡与降雨的耦合关系研究[J].灾害学,2001,16(2):87-92.
    [23]周国兵,马力,廖代强.重庆市山体滑坡气象条件等级预报业务系统[J].应用气象学报,2003,14(1):122-124.
    [24]许强,黄润秋,李秀珍.滑坡时间预测预报研究进展[J].地球科学进展,2004,19(3):4782483.
    [25]李晓.重庆地区的强降雨过程与地质灾害的关系[J].中国地质灾害与防治学报,1995,6(3):24-32.
    [26]孙晏一.道桥结构健康监测中的数据甄别处理技术研究[D].吉林大学,2010,12.
    [27]陈世民.桥梁监测系统中海量数据分析理论与应用[D].重庆大学,2011,5.
    [28] Yang Wang, Jerome P. Lynch, Kincho H. Law. A wireless structural health monitoringsystem with multithreaded sensing devices: design and validation [J]. Structure andInfrastructure Engineering: Maintenance, Management, Life-Cycle Design andPerformance,2007,3(2):103-120.
    [29] Mustafa Gul, F. Necati Catbas. Ambient Vibration Data Analysis for StructuralIdentification and Global Condition Assessment [J]. Journal of Engineering Mechanics,2008,134(8):650-663.
    [30] N. Metje, D.N. Chapman, C.D.F. Rogers, P. Henderson, M. Beth. An Optical FiberSensor System for Remote Displacement Monitoring of Structures—Prototype Testsin the Laboratory [J]. Structural Health Monitoring,2008,7(1):51-63.
    [31] Jian-Huang Weng, Chin-Hsiung Loh, Jerome P. Lynch, Kung-Chun Lu, Pei-Yang Lin,Yang Wang. Output-only modal identification of a cable-stayed bridge using wirelessmonitoring systems [J]. Engineering Structures,2008,30(7):1820–1830.
    [32] Samir N. Shoukrya, Mourad Y. Riadb. Longterm sensor-based monitoring of an LRFDdesigned steel girder bridge [J]. Engineering Structures,2009,31(12):2954–2965.
    [33] Attoh-Okine, N, Mensah, S.A. Sensor Fusion and Civil Infrastructure SystemsMonitoring: A Valuation Algebras Analysis of Output Data [J]. Sensors Journal, IEEE,2009,9(11):1518–1526.
    [34] Picozzi. M, Milkereit. C, Zulfikar. C, Ditommaso. R, Erdik. M, Safak. E, Fleming. K,Ozel.O, Zschau. J, Apaydin. A. Wireless technologies for the monitoring of strategiccivil infrastructures: an ambient vibration test of the Faith Bridge, Istanbul, Turkey [J].EGU General Assembly,2009.
    [35] A.J. Cardini, J.T. DeWolf. Long-term Structural Health Monitoring of a Multi-girderSteel Composite Bridge Using Strain Data [M],2009.
    [36] Filipe Magalh es, álvaro Cunha, Elsa Caetano. Online automatic identification of themodal parameters of a long span arch bridge [J]. Mechanical Systems and SignalProcessing,2009,23(2):316–329.
    [37] Gwanghee Heo, Joonryong Jeon. A smart monitoring system based on ubiquitouscomputing technique for infra-structural system: Centering on identification ofdynamic characteristics of self-anchored suspension bridge [J]. KSCE JOURNAL OFCIVIL ENGINEERING,2009,13(5):333-337.
    [38] Bart Peetersa, G. Couvreurb, O. Razinkovb, C. Kündigb, H. Van der Auweraera, G. DeRoeckc. Continuous monitoring of the resund Bridge: system and data analysis [J].Structure and Infrastructure Engineering: Maintenance, Management, Life-CycleDesign and Performance,2009,5(5):395-405.
    [39] Matteo Ceriotti, Luca Mottola, Gian Pietro Picco, Amy L. Murphy, Stefan Guna,Michele Corra, Matteo Pozzi, Daniele Zonta, Paolo Zanon. Monitoring heritagebuildings with wireless sensor networks: The Torre Aquila deployment,'09Proceedings of the2009International Conference on Information Processing in SensorNetworks:277-288.
    [40] Nader M. Okasha, Dan M. Frangopol. Integration of structural health monitoring in asystem performance based life-cycle bridge management framework [J]. Structure andInfrastructure Engineering: Maintenance, Management, Life-Cycle Design andPerformance,2010.
    [41] R Zaurin, F N Catbas. Integration of computer imaging and sensor data for structuralhealth monitoring of bridges [J]. Smart Mater. Struct,2010,19(1):15-19.
    [42] Glauco Feltrin, Jonas Meyer, Reinhard Bischoff, Masoud Motavalli. Long-termmonitoring of cable stays with a wireless sensor network [J]. Structure andInfrastructure Engineering: Maintenance, Management, Life-Cycle Design andPerformance,2010,6(5):535-548.
    [43] Ibrahim. M. R, Jaafar. J, Yahya. Z, Samad, A. M. A feasibility study of buildingstructural deformation monitoring using Global Positioning System (GPS), terrestrialsurveying technique (TST) and crack gauge measurement (CGM)[J]. SignalProcessing and Its Applications (CSPA),2010,5.
    [44] Kyung Jun Gil, Prasetiyo, R.B, Hyun Ju Park, Sang Boem Lim, Yang Dam Eo. Firemonitoring system based on Open Map API [J]. Networked Computing and AdvancedInformation Management (NCM),2010.
    [45] H. Burak Gokce, F. Necati Catbas, Dan M. Frangopol. Evaluation of Load Rating andSystem Reliability of Movable Bridge [J]. Transportation Research Record: Journal ofthe Transportation Research Board,2011,22(51):114-122.
    [46] Seunghee Park, Ju-Won Kim, Changgil Lee, Sun-Kyu Park. Impedance-based wirelessdebonding condition monitoring of CFRP laminated concrete structures [J]. NDT&EInternational,2011,44(2):232–238.
    [47] Kerri Stone, Charles Oden, Brian Hoenes, Tracy Camp. Hardware for a WirelessGeophysical Monitoring Testbed [M],2011.
    [48] Anne S. Kiremidjian, Garo Kiremidjian, Pooya Sarabandi. A wireless structuralmonitoring system with embedded damage algorithms and decision support system [J].Structure and Infrastructure Engineering: Maintenance, Management, Life-CycleDesign and Performance,2011,7(12):881-894.
    [49] Maurizio Bocca, Lasse M. Eriksson, Aamir Mahmood, Riku J ntti, Jyrki Kullaa. ASynchronized Wireless Sensor Network for Experimental Modal Analysis in StructuralHealth Monitoring [J]. Computer-Aided Civil and Infrastructure Engineering,2011,26(7):483–499.
    [50] Brownsell. S, Bradley. D, Cardinaux. F, Hawley, M. Developing a Systems andInformatics Based Approach to Lifestyle Monitoring within Health [J]. HealthcareInformatics, Imaging and Systems Biology (HISB),2011.
    [51] Gaetana Ganci, Annamaria Vicari, Luigi Fortuna, Ciro Del Negro. The HOTSATvolcano monitoring system based on combined use of SEVIRI and MODISmultispectral [J]. ANNALS OF GEOPHYSICS,2011,54(5):5334-5338.
    [52] C. Rainieri, G. Fabbrocino, G. Manfredi, M. Dolce. Robust output-only modalidentification and monitoring of buildings in the presence of dynamic interactions forrapid post-earthquake emergency management [J]. Engineering Structures,2012,34:436-446.
    [53] Junhee Kim, Jerome P. Lynch. Experimental analysis of vehicle–bridge interactionusing a wireless monitoring system and a two-stage system identification technique [J].Mechanical Systems and Signal Processing,2012.
    [54] Y. Q. Ni, K. Y. Wong, Y. Xia. Health Checks through Landmark Bridges to Sky-highStructures [J]. Advances in Structural Engineering,2011,14(1):103-119.
    [55] Jun Hu, Xingzong Liu. Design and Implementation of Tailings Dam SecurityMonitoring System [J]. Procedia Engineering,2011,26:1914–1921.
    [56] Wei Chuang, Huang Lin. Research on Monitoring System of Aquiculture withMulti-environmental Factors [J]. Wearable Computing Systems (APWCS),2010.
    [57] Bo Chen, Wenjia Liu. Mobile Agent Computing Paradigm for Building a FlexibleStructural Health Monitoring Sensor Network [J]. Computer-Aided Civil andInfrastructure Engineering,2010,25(7):504–516.
    [58] Y. L. Xu, B. Chen, C. L. Ng, K. Y. Wong, W. Y. Chan. Monitoring temperature effect ona long suspension bridge [J]. Structural Control and Health Monitoring,2010,17(6):632–653.
    [59] Zheng Ruan, Feng Li, Mei Gao, Wenhua Zhang, Lianshu Jie. Information Analysis andDissemination Using WebGIS-Based Mesoscale Weather Monitoring and Warning [J].Information Science and Engineering (ICISE),2009.
    [60] Y. Q. Ni, Y. Xia, W. Y. Liao, J. M. Ko. Technology innovation in developing thestructural health monitoring system for Guangzhou New TV Tower [J]. StructuralControl and Health Monitoring,2009,16(1):73-98.
    [61] J. M. Ko, Y. Q. Ni, H. F. Zhou, J. Y. Wang, X. T. Zhou. Investigation concerningstructural health monitoring of an instrumented cable-stayed bridge [J]. Structure andInfrastructure Engineering: Maintenance, Management, Life-Cycle Design andPerformance,2009,5(6):497-513.
    [62] Mosbeh R. Kaloop, Hui Li. Monitoring of bridge deformation using GPS technique [J].KSCE JOURNAL OF CIVIL ENGINEERING,2009,13(6):423-431.
    [63]丁辰.地质灾害监测预警示范系统之滑坡远程监测子系统的研究[D].清华大学,2004,6.
    [64]陈涛.山区高速公路高边坡稳定性监测与评价[D].武汉:同济大学硕士学位论文,2006.6.
    [65]徐立凯,李世海,刘晓宇等.三峡库区奉节天池滑坡实时遥测技术应用实例[J].岩土力学与工程学报,2007,26(增刊2):4476-4483.
    [66]何满潮.滑坡地质灾害远程监测预报系统及其工程应用[J].岩石力学与工程学报,2009,28(6):1081-1090.
    [67]叶英,穆千祥,张成平.隧道施工多元信息预警与安全管理系统研究[J].岩石力学与工程学报,2009,28(5):900-907.
    [68]张成平,张顶立,骆建军等.地铁车站下穿既有线隧道施工中的远程监测系统[J].岩土力学,2009,30(6):1861-1866.
    [69]梁桂兰,徐卫亚,何育智等.边坡工程监测信息可视化分析系统研发及应用[J].岩土力学,2008,29(3):849-853.
    [70]张强勇,陈晓鹏,刘大文等.岩土工程监测信息管理与数据分析网络系统开发及应用[J].岩土力学,2009,30(2):362-373.
    [71]段伟强,支鹏飞,韩旭.驿宛高速公路路堑高边坡监测与稳定性评价[J].路基工程,2009(1):167-169.
    [72]钟庆元.漳龙高速公路高路堤边坡稳定性监测与评价[J].华东公路,2005(2):65-68.
    [73]程强,黄绍槟,周永江.公路深挖路堑边坡工程施工监测与动态设计[J].岩石力学与工程学报,2005,24(8):1335-1340.
    [74]王在泉.边坡动态稳定预测预报及工程应用研究[J].岩石力学与工程学报,1998,17(2):117-122.
    [75] Morse T.F. Applications of Embedded Optical Fiber Sensor in Reinforced ConcreteBuildings and Struetures[C]. Proc.SPIE,1989,1170:60-69.
    [76] Mendez A. Overview of fiber optic sensors for NDT applications[C]. IV NDTPanamerican Conference,2007:1-11.
    [77]李宏男,李东升,赵柏东.光纤健康监测方法在土木工程中的研究与应用进展[J].地震工程与工程振动,2002,22(6):76-83.
    [78] Choquet P, Juneau.F, Dadoun.F. New Generation of Fiber-Optic Sensors for DamMonitoring[C]. Proeeedings of the1999International Conference on Dam Safety andMonitoring, In:Hubei, China,1999:713-721.
    [79] Aftab A. Mufti. Struetural Health Monitoring of Innovative Canadian Civil EngineeringStruetures[J]. Struetural Health Monitoring,2002,1(1):89-103.
    [80] Friebele J.E. Fiber Bragg grating strain Sensor: present and future applieations in smartstruetures[J]. Optics and Photonics News,1998,9:33-37.
    [81] Daniele Inaudi. Overview of fibre optic sensing to structural health monitoringapplieations[C]. International Symposium on Innovation&Sustainability of Structuresin Civil Engineering, In:Nanjing, China,2005:1-16.
    [82]王丹生,朱宏平.光纤光栅传感技术在桥梁结构健康监测中的应用[J].中外公路,2002,22(6):31-33.
    [83] Ferram Pietro, Natale De Giuseppe. On the possible use of optical fiber bagg gratingsas strain sensors for geodynamical monitoring[J]. Optics and Lasers in Engineering,2002(37):115-30.
    [84] Lau, C. K, Mak, W. P. N, Wong, K. Y, et al. Structural health monitoring of threecable-supported bridges in Hong Kong[J]. Structural Health Monitoring,1999:450-460.
    [85]郑小平,查开德,廖延彪.工程结构光纤应变传感器[J].光电工程,1997,24(5):15-21.
    [86]杨建良,查开德,郭照华.光纤网络用于复合材料结构状态检测的研究[J].应用光学,1999,20(4):32-36.
    [87]张林,蔡德所.光纤传感检测技术在水工结构模型试验研究中的应用[J].水利发电,2000(12):51-53.
    [88]蔡德所,戴会超,蔡顺德等.分布式光纤传感监测三峡大坝混凝土温度场试验研究[J].水利学报,2003(5):88-91.
    [89]姜德生,张圣配.光纤灵巧复合材料研究综述[J].武汉工业大学学报,1993,巧(1):51-57.
    [90]梁磊,姜德生,罗裴等.光纤Bragg光栅在结构健康监测中的实验研究[J].山东理工大学学报,2003,17(3):4-7.
    [91]梁磊,姜德生,周雪芳等.光纤Bragg光栅传感器在桥梁工程中的应用[J].光学与光电技术,2003,1(2):36-39.
    [92]姜德生,李盛,刘胜春.光纤光栅传感系统在桥梁重载车识别中的应用[J].中外公路,2007,27(3):153-155.
    [93]欧进萍,周智,武湛君等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报,2004,37(1):45-49.
    [94]田石柱,赵雪峰,欧进萍等.结构健康监测用光纤Bragg光栅温度补偿研究[J].传感器技术,2002,21(12):8-10.
    [95]万里冰,张博明,王殿富等.结构健康监测用光纤布拉格光栅应变传感器研究[J].激光杂志,2002,23(4):47-48.
    [96]万里冰,武湛君,张博明.埋光纤光栅传感器智能土木结构应变监测[J].力学与实践,2003,25(4):35-38.
    [97]张丹,施斌,吴智深等. BOTDR分布式光纤传感器及其在结构健康监测中的应用[J].土木工程学报,2003,36(11):83-87.
    [98]曹修定,阮俊,展建设等.滑坡的远程实时监测控制与数据传输[J].中国地质灾害与防治学报,2002,13(1):61-65.
    [99]龙建辉,李同录,蒋丽君.滑坡监测远程无线数据传输系统研制[J].地球科学与环境学报,2007,29(2):192-195.
    [100] T.Abdoun, L.Danisch, D.Ha. Advanced Sensing for Real-time Monitoring ofGeotechnical System[J]. Site Characterization and Modeling,2005,(4):164-173.
    [101]王仁波,周蓉生,章步云等.基于GPRS数据传输的滑坡位移实时监测系统[J].自然灾害学报,2008,17(3):163-166.
    [102]杨秀元,罗靖筠,高幼龙等.巫山县滑坡实时监测系统的建设与运行[J].西部探矿工程,2009,(8):82-87.
    [103]庞志勇,刘冬华,黄末.基于GPRS数据传输终端的实现[J].中山大学学报,2006,26(2):129-233.
    [104]文志成,张伟. GPRS网络技术[M].北京:电子工业出版社,2005,6.
    [105]孔德恩,胡爱群. GPRS数据终端的研究与实现[J].微计算机信息,2007,23(33):105-107.
    [106] http://baike.baidu.com/view/2818115.htm
    [107]袁国智,董毅明.我国物联网产业现状及其发展对策分析[J].商业时代,2011,4:28-29.
    [108] Masao Yamada, Shinichi Tosa. Introduction of web-based remote-monitoringsystemand its application to landslide disaster prevention [A].The10th InternationalSymposium on Landslides and Engineered Slopes, Xi, An, China,2008:1349-1353.
    [109]叶英,穆千祥,张成平.隧道施工多元信息预警与安全管理系统研宂[J].岩石力学与工程学报,2009,28(5):900-907.
    [110] Michael A. Duffy, Chris Hill, and Cecilia Whitaker. An Automated and IntergratedMonitoring Program for Diamond Valley Lake in California[A]. The10th FIGInternational Symposium on Deformation Measurements,2001,3:1-21.
    [111] Karl Sippel. Modern Monitoring System Software Development[A]. The10th FIGInternational Symposium on Deformation Measurements,2001,3:88-100.
    [112] Lee. J. S. Installation of real-time monitoring system for high-speed railroad tunnel[J]. Korean Tunnel Association,2001,(3):63-67.
    [120]包欢.大型建筑物实时形变监测系统理论及应用研宄[D].解放军信息工程大学,2009,4.
    [114] http://www.nfs-cq.com
    [115]刘光武.广州地铁安全预警与应急平台的研宄与应用[J].现代城市轨道交通,2011,1:18-22.
    [116]陈德智,何李.变形监测信息管理与工程安全预警系统简介[J].山西建筑,2009,35(35):352-353.
    [117]过静捃,李冬航,周百胜等.四川雅安滑坡自动化远程监测系统示范工程[J].测绘通报,2006,4:54-57.
    [118]刘祖强,张正禄,邹启新等.工程变形监测分析预报的理论与实践[M].北京:中国水利水电出版社,2008,12.
    [119]李汛,何川,汪波等.营运期隧道结构健康监测与安全评价研究[J].现代隧道技术,2008年增刊:289-294.
    [120]李宏男,任亮.结构健康监测光纤光栅传感技术[M].北京:中国建筑工业出版社,2008,5.
    [121]包欢.大型建筑物实时形变监测系统理论及应用研宄[D].解放军信息工程大学,2009,4.
    [122]徐忠阳.智能全站仪变形监测系统及其在地铁结构变形监测中的应用[D].解放军信息工程大学,2002,4.
    [123]余文坤等.多传感器滑坡监测远程数据采集软件设计与实现[J].工程勘察,2011,7:62-65.
    [124]汪菁.深圳市民中心屋顶网架结构健康监测系统及其关键技术研宄[D].武汉理工大学,2008,5.
    [125]朱星,许强,周建斌.基于GPS/GPRS滑坡位移监测系统的研制及应用[J].计算机测量与控制,2011,19(10):2373-2376.
    [126]大唐电信.山洪灾害监测预警系统在智慧水利中的物联网应用[J].电信技术,2011,11:74-75.
    [127]杨奎武.延迟容忍移动传感器网络数据传输关键技术研究[D].北京邮电大学,2012,5.
    [128]杨正益.制造物联海量实时数据处理方法研究[D].重庆大学,2012,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700