用户名: 密码: 验证码:
高速滚珠丝杠副动力学性能分析及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密滚珠丝杠副是数机床的关键功能部件,随着高速切削技术的发展,对滚珠丝杠副的线速度提出了越来越高的要求。滚珠丝杠副的高速化同时带来了振动、噪声和由于摩擦引起的温升等诸多问题,噪声和温升成为约滚珠丝杠副高速化的关键因素。研究摩擦和噪声等高速滚珠丝杠副的动力学性能,分析影响滚珠丝杠副高速性能的关键因素,为高速滚珠丝杠副的设计和造提供理论和技术支持,具有重要的理论价值和实际意义。
     本文应用接触力学、碰撞力学、弹流动力润滑和结构噪声的理论,结合实验研究了滚珠丝杠副的摩擦力矩和高速下的噪声问题,研究内容主要包括:
     1)应用Hertz接触理论,在考虑螺旋升角的情况下,分析了滚珠在工作滚道中的接触特性及各结构参数对接触特性的影响。
     2)根据运动学理论,分析滚珠丝杠副中滚珠与丝杠轴之间的运动关系,探讨各结构参数对滚珠自旋和滑移运动的影响。
     3)应用Hertz接触模型和牛顿第二定律,建立了滚珠与返向器碰撞的力学模型,设计了测量碰撞接触时间的试验装置。研究分析了碰撞角度、结构和材料参数对碰撞力的影响。分析了滚珠碰撞后的运动变化情况,以及在循环返向滚道中的运动流畅性。
     4)根据滚珠丝杠副的结构特点,研究分析了滚珠丝杠副摩擦力矩的产生机理,建立了摩擦力矩的分析模型,分析讨论了滚道造误差对摩擦力矩的影响。运用弹流动力润滑理论分析滚珠丝杠副的润滑状态,实验研究了导致滚珠丝杠副摩擦力矩低频波动的原因。
     5)实验研究了端部偏转式返向结构滚珠丝杠副的噪声特性,分析了其主要噪声与振动之间的联系,通过对滚珠丝杠副径向振动激励频率的计算,确定了端部偏转式高速滚珠丝杠副的主要噪声机理。
     理论分析和试验研究表明:
     1)滚珠丝杠副中滚珠与丝杠滚道的接触压力和变形大于滚珠与螺母滚道的接触压力和变形。随着接触角的增大,接触压力和变形减小,螺旋升角对接触特性无显著影响,接触特性对曲率比的变化非常敏感,随着曲率比的增大,接触压力和变形显著上升。
     2)滚珠丝杠副在正常转速下,滚珠中心的线速度不高,自转速度却相当高;滚珠直径大小对旋滚比影响不大,接触角的变化对旋滚比影响比较明显,在接触角为38°时,旋滚比最小;随着螺旋升角和滚珠直径的增大,滚珠的滑移率增大。
     3)碰撞接触时间的测量结果表明,本文建立的滚珠与返向器的碰撞力学模型符合实际情况。碰撞角度越大,初始速度越高,则碰撞力越大,通过减小碰撞角度、采用小直径钢球或陶瓷球、或者采用弹性模量较低的工程塑料作返向器,可以有效降低碰撞力。返向器的材料应选择弹性模量小、法向恢复系数小,而摩擦特性良好的材料。
     4)滚珠丝杠副的滚道加工误差对摩擦力矩的影响具有“平均效应”,造误差的存在从总体上增大了滚珠丝杠副的摩擦力矩。滚珠丝杠接触副中很难建立起完全弹流油膜,低速下,油膜润滑参数Λ小于1,处于边界润滑状态,润滑不良导致的摩擦系数过大可能是滚珠丝杠副摩擦力矩较大的主要原因。
     5)低速下油润滑时,滚珠丝杠副的摩擦力矩较大,内循环和外循环插管式结构滚珠丝杠副的摩擦力矩常出现归一化频率为1Hz的波动,脂润滑时,摩擦力矩较小,而且非常平稳。分析表明,归一化频率为1Hz的波动是由润滑不良引起的滚珠的拥堵和散开所导致的。
     6)端部偏转式结构滚珠丝杠副的噪声明显小于插管式丝杠副,且音质有显著改善。其噪声主要频率随丝杠转速的变化而改变,与螺母相连的工作台的振动与滚珠丝杠副的主要噪声无关,端部偏转式结构滚珠丝杠副的主要噪声机理为丝杠滚道波纹度激起的螺母强迫振动,滚珠与返向器的碰撞噪声已不是该结构滚珠丝杠副的主要噪声。脂润滑时,噪声频率特性不变,但噪声水平略有降低。
A ball screw driven mechanism is a key component of numerical control machine tools. With the development of high-speed cutting technology, the feed rate of the ball screw becomes faster and faster. However, with the development of ball screws tends towards high-speed, problems such as noise, high temperature resulted from fiction become more and more badly. Therefore the problem of the noise and friction becomes the key factor to increase the ball screw speed. Therefore, it is significant to study the dynamical performance of ball screw mechanism and research the pivotal influencing factors on the performance. The study provides effective guidance to increase the dynamic performance of high-speed ball screw mechanism.
     The problems of friction torque and noise in high-speed of ball screw mechanism are studied by applying contact mechanics, impact mechanics, the theory of elastohydrodynamic lubrication (EHL) and structural noise, and combining the friction torque and noise test. The contents of this paper are as follows.
     1) Considering helical angle, the contact characteristic between balls and grooves is studied based on the theory of Hertz. And the influences of structural parameters on the contact characteristic are investigated.
     2) Based on kinematics theory, the kinematic relation between balls and screw shaft is analyzed and the influences of important structural parameters on spinning and slip of balls are investigated.
     3) The mechanical model of impact between the ball and the returner is proposed based on the theory of Hertz contact and the Newton Second Law. A special device is designed to measure the time of impact-contact process. The influences of impact angle, structural parameters and material of ball screw mechanism on the impact force are investigated. Furthermore, the motion of the balls on the groove after impact and the fluency of the balls in returner groove are investigated.
     4) According to the design features of ball screw mechanism, a model of friction torque is proposed to analyze the composition and generation of friction torque. The influence of manufacturing errors of grooves on friction torque is analyzed. And the lubrication state of the ball screw mechanism is investigated by applying the theory of elastohydrodynamic lubrication. Combining the test result and spectrum of friction torque, the reason of the fluctuation of friction torque of ball screw mechanism is investigated.
     5) The noise characteristic of end-cap type ball screw mechanism is compared with return pipe type ball screw mechanism through spectrum analysis of noise. The relation between noise and vibration of end-cap type ball screw in high speed is investigated and the noise generating mechanism of this type ball screw is ascertained.
     The conclusions of theoretical analysis and experimental study results are as follows:
     1) The contact stress and deformation between balls and screw shaft groove are larger than the side between balls and nut groove. The contact stress and deformation decrease with increasing of the contact angle. And the variation of helical angle has no noticeable influence on contact characteristic of ball screw mechanism. However, the contact characteristic is very sensitive to the variation of the curvature ratio. The contact stress and deformation increases remarkably as the curvature ratio increases.
     2) At normal rotational speed, although the motion speed of ball center is not high, the rotational speed is quite high. The size of a ball has no noticeable influence on the spin-to-roll ratio of a ball, but the contact angle is of remarkable influence on the spin-to-roll ratio. When the contact angle is equal to 38°, the spin-to-roll ratio reaches the minimum point. The slippage ratio of a ball is increased with the increase of helical angle and the size of a ball.
     3) The test result proves that the model of impact behavior between ball and returner based on Hertz contact model and the Newton Second Law is reliable. The impact force increases greatly with the increase of impact angle and the incipient speed of the ball. The impact force can be decreased through using smaller steel balls or ceramic balls, decreasing impact angle, or making returner with engineering plastic whose elastic modulus is smaller than the steel. The small elastic modulus, small restitution coefficient and good friction characteristic material is the best selection to make returner.
     4) The manufacturing errors of groove in ball screw mechanism affect the value of the friction torque averagely. The errors increase the total value of the friction torque. For the ball screw contact couple, it is difficult to built full elastohydrodynamic lubricating film. Usually, the parameter A of lubrication state is smaller than one, and the contact couple runs on conditions of boundary lubrication. Therefore the high friction coefficient resulted from poor lubrication may be the primary reason of the high friction torque.
     5) When the ball screw mechanism runs at lower speed and is lubricated by oil, the friction torque of ball screw is higher than at high speed. And the friction torque of the inner-return type and bayonet-tube type ball screw mechanism often fluctuates at the normal frequency of 1Hz. When the ball screw mechanism is lubricated by grease, the friction torque is smaller and changes smoothly. Analysis indicates that the fluctuation of the friction torque at the normal frequency of 1Hz is resulted from the jam and fall off of balls because of poor lubrication.
     6) The sound volume of the end-cap type ball screw mechanism is much smaller the bayonet-tube type, what's more the tone quality of the end-cap type is much better than the bayonet-tube type. The principal frequency of the noise varies with the rotational speed of the ball screw mechanism. The vibration of the table jointed with nut has nothing to do with the noise of ball screw mechanism. The noise of end-cap type ball screw mechanism is caused by the forced vibration of the nut which is inspired by the waviness of screw shaft groove, the noise caused by the impact between the ball and the returner is not the principle noise. When the ball screw mechanism is lubricated with grease, the spectral distribution remains the same, but the sound volume declinesslowly.
引文
[1]程光仁,施祖康,张超鹏.滚珠螺旋传动设计基础.北京,机械工业出版社,1987
    [2]黄祖尧.精密高速滚珠丝杠副的最新发展及其应用.航空造技术.2003(4):36-40
    [3]肖正义.滚珠丝杠副结构与性能发展动态.机床信息.2001(9):100-102
    [4]曹建国,陈世平.实现滚珠丝杠螺母副高速化的技术措施.机床与液压.2005(5):54-55
    [5]王志民,张西忠,厉勇.滚珠丝杠传动使用与发展.机电工程技术.2004(4):88-90
    [6]NSK.Recent Technical Trends in Ball Screws.NSK Technical Journal(Motions &Control),No.4,1998,1-12
    [7]黄祖尧.新时期滚动功能部件发展态势.现代造.2005(4):42-46
    [8]黄育全,喻忠志.我国滚珠丝杠副发展历程及未来趋势.机械传动.2004(10):60-62
    [9]黄祖尧.精密滚珠丝杠副实现高速化的前景.造技术与机床.2001(3):5-7
    [10]上银科技股份有限公司.滚珠丝杠高速化的技术对策.造技术与机床.2003(12):87-88
    [11]屈岳陵.高速化与高负荷滚珠丝杠之研究对策.世界造技术与装备市场.2004(3):68-71
    [12]#12
    [13]宫口和男.Ball screws for high speed drive.NSK Technical Journal,2002(673):99-102
    [14]Hollow ball screws deliver speed advantages.Machine Design,1999,Vol.71 Issue 20,110-110
    [15]天日和仁.滚珠丝杠的发热对策及环保技术.世界造技术与装备市场.2004(3):65-67
    [16]屈岳陵.Cool Type滚珠丝杠简介.造技术与机床.2002(8):63-65
    [17]宋现春.从CIMT2005中国国际机床展看数机床滚动功能部件的发展.机械工人 (冷加工).2005(6):49-50
    [18]于旭年,荆福义.滚珠丝杠的温升及热变形对策.农业装备与车辆工程.2005(3):43-44
    [19]孙继文.陶瓷滚珠丝杠副的试.磨床与磨削,1995(2):22-23
    [20]Yamaguchi H,Ohkubo T.Development of "NSK S1 Seris"ball screws and linear guides.NSK Technical Journal,2002(671):35-43
    [21]周元康,何锋.封闭槽母滚动螺旋的特点及其运动分析.机械设计,1998(10):16-19
    [22]日本株精工式会社上海事务所.滚珠丝杠的最新技术动向.现代造.2003(8):86-88
    [23]黄祖尧.紧随数字化造技术与装备同步发展的滚动功能部件产品.世界造技术与装备市场.2005(3):61-65
    [24]Lewis,John.Nut-driven ball screw conquers critical speed.Design News,2000,Vol.56 Issue 22,69-70
    [25]五十岚昭南,德长靖,大熊一成.Studies on the Sound and Vibration of a Ball Screw(1st Report,Sound Characteristics of a Ball Screw).Transactions of the Japan Society of Mechanical Engineers,Part C,1987:617-622(in Japanese)
    [26]德长靖,五十岚昭南,杉浦哲郎.Studies on the Sound and Vibration of a Ball Screw(2nd Report,Characteristics and Generating Mechanism of Pulse Sound).Transactions of the Japan Society of Mechanical Engineers,Part C,1989:2945-2950(in Japanese)
    [27]德长靖,五十岚昭南,桥爪一宏.Studies on the Sound and Vibration of a Ball Screw(3rd Report,Sound Caused by Waviness on Flank of Screw Shaft).Transactions of the Japan Society of Mechanical Engineers,Part C,1991:1874-1879(in Japanese)
    [28]五十岚昭南,德长靖,德嵩敬浩.Studies on the Sound and Vibration of a Ball Screw(4th Report,Effect of Various Factors on Sound of a Ball Screw).Transactions of the Japan Society of Mechanical Engineers,Part C,1993:3907-3913(in Japanese)
    [29]五十岚昭南,德长靖,上村尚司.Studies on the Sound and Vibration of a Ball Screw(5th Report, Sound Caused by Random Waviness on Flank Surface). Transactions of the Japan Society of Mechanical Engineers, Part C, 1995: 3369~ 3374(in Japanese)
    [30] M.C. Lin, B. Ravani and S.A. Velinsky, Kinematics of the ball screw mechanism. Journal of Mechanical Design, Transactions of the ASME. 1994, 116 (3):849~855
    [31] M.C. Lin. Design and mechanics of the ball screw mechanism [D]. The University of Wisconsin-Madison, 1989
    [32] Hual-Te T. Huang. B. Ravani. Contact stress analysis in ball screw mechanism using the tubular medial axis representation of contacting surfaces. Transactions of the ASME vol.119 (1997), 8—14
    [33] Belyaev, V. G, Malyuga, V. S. Force transfer factor in the return channel of a ball and screw mechanism. Soviet Engineering Research, v 3, n 2, Feb, 1983, 78~80
    [34] Jones A.B. Ball Motion and Sliding Friction in Ball Bearings. Trans ASME, Journal of Basic Engineering, 1959, 1~12
    [35] Yoshida T, Tozaki Y, Matsumoto S. Study on load distribution and ball motion of ball screw. Journal of Japanese Society of Tribologists 48 (8): 659~666, 2003(in Japanese)
    [36] Shimoda. H. Stiffness analysis of ball screw. International Journal of the Japan Society for Precision Engineering 1999, 33 (3): 168~ 172
    [37] Nakashima Katuhiro, Takafuji Kazuki. Stiffness of a ball screw including the deformation of screw, nut and screw thread (1st report, single nut). Transactions of the Japan Society of Mechanical Engineers, Part C, v 54, n 505, 1988, 2181~218(in Japanese)
    [38] Takafuji Kazuki, Nakashima Katuhiro. Stiffness of a ball screw including with consideration to deformation of the screw, nut and screw thread (2nd Report: Preloaded double nuts). Transactions of the Japan Society of Mechanical Engineers, Part C, v 55, n 515, Jul, 1989, 1734-1740
    [39] Belyaev V. G, Kogan A. I. Effect of geometrical errors on contact angle in ball screw transmission. Machines & Tooling (English translation of Stanki i Instrument), v 44, n 5,1973,25-29
    [40]Jan Braasch,Dr.Ing.海德汉进给传动精度系列讲座 第1讲 进给传动系统的结构.机械工人(冷加工),2004,(01):81-83
    [41]Jan Braasch,Dr.Ing.海德汉进给传动精度系列讲座 第2讲 进给系统的受力变形.机械工人(冷加工),2004,(02):80-81
    [42]Jan Braasch,Dr.Ing.海德汉进给传动精度系列讲座 第3讲 滚珠丝杠轴承对定位精度的影响.机械工人(冷加工),2004,(03):71-73
    [43]Jan Braasch.海德汉进给传动精度系列讲座 第4讲 滚珠丝杠长度方向温度分布的影响.机械工人(冷加工),2004,(04):82-84
    [44]Shimoda Hirokazu.Estimation of resistance force generated in ball circulating unit of end-cap type ball screw.Journal of Japanese Society of Tribologists,v 39,n 6,1994,533-540
    [45]Murase,Z.Statical friction of ball screw.Japan Society of Precision Engineering—Bulletin,v 1,n 2,Mar,1965,52-57
    [46]Belayev V.G,Turavinov V.P.Effect of the lubricant on the performance characteristics of a ball and screw drive.Soviet Engineering Research,v 3,n 12,Dec,1983,62-64
    [47]Olaru D,Puiu GC,Balan LC,Puiu V.A new model to estimate friction torque in a ball screw system.Product Engineering:Eco-Design,Technologies and Green Energy:2004,333-346
    [48]Guevarra DS,Kyusojin A,Isobe H,Kaneko Y.Development of a new lapping method for high precision ball screw.Journal of the International Societies for Precision Engineering and Nano-technology.26(2002),389-395
    [49]Won Soo Yun,Soo Kwang Kim,Dong Woo Cho.Thermal error analysis for a CNC lathe feed drive system.International Journal of Machine Tools and Manufacture,Volume 39,Issue 7,July 1999,1087-1101
    [50]Ahn J.Y,Chung S.C.Real-time estimation of the temperature distribution and expansion of a ball screw system using an observer.Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,v 218,n 12,December,2004,1667-1681
    [51]Kim S.K,Cho D.W.Real-time estimation of temperature distribution in a ball-screw system.International Journal of Machine Tools & Manufacture,v 37,n 4,Apr,1997,451-464
    [52]Otsuka,Jiro,et al.Thermal expansion of the ball screw and its theoretical analysis.American Society of Mechanical Engineers,1984
    [53]Kodera Takehiko,et al.Real-time estimation of ball-screw thermal elongation based upon temperature distribution of ball-screw.JSME International Journal,Series C:Mechanical Systems,Machine Elements and Manufacturing,v 47,n 4,December,2004,1175-118
    [54]王希悦,杨宝庆,张华.插管式外循环滚珠丝杠副螺母回程角计算.轴承,2004(2):7-8
    [55]毕兴国,刘爱丽.滚珠丝杠副反向器空间曲线设计.组合机床与自动化加工技术,2001(7):33-34
    [56]曾政华.内循环反向器回珠槽设计.十一省市机械工程学会年会论文集,贵阳,2003,122-125
    [57]卜庆国,毕善斌等.滚珠丝杠副回珠通道孔型的设计.哈尔滨工程技术大学学报,1996(2)32-36
    [58]翁新根,曹云峰,杨巧旭.微型滚珠丝杠副圆弧型反向器回珠曲线设计.江苏机械造及自动化,1995(4):42-44
    [59]韩琦.滚珠丝杠副圆弧型返向回珠曲线设计.机械工艺师,1995(2):23-24
    [60]彭福田.内循环滚珠丝杠副反向器理想轨迹的设计.机械造,1999(9):18-18
    [61]张超鹏.滚珠丝杠新型回珠槽曲线设计与分析.造技术与机床,1980(12):5-9
    [62]沈守范.滚珠丝杠付返珠器正螺旋面型回珠曲线的计算.华东工程学院学报,1974(5):103-114
    [63]马志坚.滚珠丝杠中回珠器的几何结构.数学的实践与认识,1978(3):13-21
    [64]马志坚.滚珠丝杠中回珠器的几何结构.数学的实践与认识,1978(4):52-55
    [65]一机部机床研究所和北京试验机床厂滚珠丝杠攻关组.滚珠丝杠副的浮动反向器及其摩擦特性.14-16
    [66]沈守范.滚珠丝杠付的弹性点接触问题.华东工程学院学报,1979(1)118-133
    [67]施祖康.滚珠丝杠付的弹性接触变形问题.华东工程学院学报,1978(3):64-73
    [68]黄其圣,胡鹏浩.滚珠螺旋传动系统的刚度计算.工具技术,2000(1):29-32
    [69]靳谦忠,杨家军,孙健利.滚珠丝杠副和行星式滚柱丝杠副静刚度的比较研究.机械科学与技术,1999(2):230-232
    [70]杜平安.滚珠直旋副滚道弹性接触分析.电子科技大学学报,1994(3):280-285
    [71]赵训贵,平舜娣.滚珠丝杠副产生弹性变形时实际接触角的计算.机床,1989(10):22-26
    [72]杨孝祖.进给滚珠丝杠副传动刚度的计算.造技术与机床,1999(7):12-14
    [73]Xuesong Mei.Study on the load distribution of ball screw with errors.Mechanism and Machine Theory 38(2003):1257-1269
    [74]黄寿荣,黄家贤.滚珠丝杠副摩擦力矩影响因素分析.东南大学学报.1993(增刊):135-138
    [75]赵训贵,平舜娣.滚珠丝杠螺纹滚道参数误差对接触角和变位导程及摩擦力矩的影响及相互关系.磨床与磨削,1995(3):6-15
    [76]宋现春,林明星等.误差输入前馈补偿方法及其在滚珠丝杠磨削中的应用.机械工程学报,2002(4):100-102
    [77]宋现春,张承瑞.精密丝杠热变形误差的计算及其简化计算.山东工业大学学报,2000(2):160-168
    [78]宋现春,张承瑞等.精密丝杠热变形误差的实时及其智能预报补偿.山东工业大学学报,2000(4):378-381
    [79]宋现春,林明星等.激光反馈螺纹磨床误差补偿系统的智能PID控制.工具技术,2001(10):13-15
    [80]宋现春,王兆坦,刘现银.精密滚珠丝杠磨削加工中的热变形控制.造技术与机床,2006(1):59-61
    [81]宋现春.精密滚珠丝杠磨削技术研究:[博士学位论文].济南:山东大学,2000
    [82]宋洪涛.精密长丝杠的“磨削过程卡”控制及热变形分析:[博士学位论文].武汉:华中理工大学,1998
    [83]徐志良.精密长丝杠磨削加工中误差补偿技术的研究:[博士学位论文].武汉:华中理工大学,1993
    [84]王永业.精密长丝杠磨削过程的受力变形及综合误差控制的研究:[博士学位论文].武汉:华中理工大学,1998
    [85]徐健.螺纹磨床运动误差实时测量与补偿的理论及应用:[博士学位论文].武汉:华中理工大学,1997
    [86]李培生.丝杠磨削过程热变形的研究.华中理工大学学报,1991,(增刊2):75-81
    [87]岳明君.滚珠丝杠的闭环数磨削.造技术与机床,2000(11):35-36
    [88]赵衛.滚珠丝杠副导程误差分析及其微型机在线处理系统:[硕士学位论文].华中工学院,1986
    [89]阳佳.丝杠副传动误差的计算机辅助检测与分析:[硕士学位论文].武汉:华中理工大学,1998
    [90]Bin Hongzan,Yamazaki K,Devries MF.A Stochastic Approach to the Measurement and Analysis of Lead screw Drive Kinematics Errors.Journal of Engineering for Industry,Transactions of ASME.1984,106(11):339-344
    [91]阳佳,宾鸿赞.丝杠副动态综合精度的计算机辅助评定.光学精密工程,1998(6):101-106
    [92]宋现春,王兆坦.滚珠丝杠激光动态检查仪的微机化改造.工具技术.2003,37(3):46-47
    [93]于复生,宋现春等.滚珠丝杠误差检测的速度自适应系统造.技术与机床,2004(4):85-87
    [94]宋现春,刘剑.高速滚珠丝杠副综合性能试验台的研开发.工具技术,2005(3):34-36
    [95]焦洁.滚珠丝杠副综合行程测量技术.造技术与机床,1997(12):30-32
    [96]焦洁,梅景登.滚珠丝杠副动态预紧转矩的测量技术.造技术与机床,1998(11):32-33
    [97]宋现春,张刚.滚珠丝杠副摩擦力矩测试技术研究.山东建筑大学学报,2007(6):38-42
    [98]喻步贤,殷爱华等.滚珠丝杠导程误差计算机辅助动态测量系统的研.机械造,2004(2):13-15
    [99]喻步贤,殷爱华,冯虎田,韩军.滚珠丝杠导程误差计算机辅助动态测量系统的研 .机械造,2004(2):13-15
    [100]岳明君.大型丝杠动态综合误差的测量.计量技术,1995(8):4-6
    [101]肖正义,焦洁.高速滚珠丝杠副的研发和测试技术.造技术与机床,2004(4):95-98
    [102]王波,董申.利用滚珠丝杠的微动特性实现纳米级定位.航空精密造技术,1998(6):8-10
    [103]郑子文,李圣怡.滚珠丝杠传动机构的微动特性及轨迹跟踪控制.光学精密工程,2001(4):360-363
    [104]张涛,路长厚,李泉.基于扭距测量的交流伺服工作台摩擦建模与仿真研究.润滑与密封,2006(4):32-35
    [105]姜洪奎.大导程滚珠丝杠副动力学性能与加工方法研究:[博士论文].济南:山东大学,2007
    [106]Chin CW,Jen FL.Kinematic analysis of the ball screw mechanism considering variable contact angles and elastic deformations.Journal of Mechanical Design,Transactions of ASME.2003,vol.125,717-733
    [107]Jui-Pin Hung,James Shih-Shyn Wu,Jerry Y.Impact failure analysis of re-circulating mechanism in ball screw.Engineering Failure Analysis.11(2004),561-573
    [108J Harris TA.Rolling Bearing Analysis.John Wiley & Sons.2 000
    [109]万长森.滚动轴承的分析方法,北京:机械工业出版社,1987
    [110]姚小兴.深沟球轴承振动与噪声分析:[硕士论文].哈尔滨:哈尔滨工程大学,2001
    [111]韩维.斜碰撞振动系统动力学研究:[博士论文].南京:南京航空航天大学,2003
    [112]金栋平,胡海岩.碰撞振动及其典型现象.力学进展,1999,29(2):155-164
    [113]刘才山,陈滨,王玉玲.考虑摩擦作用的多柔体系统点—面碰撞模型.中国机械工程.2006(6):616-619
    [114]蔡振岩,杨诚成.球与平板碰撞时间的理论计算及实测.实验室研究与探索.1995(3):28-31
    [115]刘才山,陈滨.多柔体系统动力学碰撞研究中的若干基本问题.振动与冲击.1999(3):5-11
    [116]Yigit A S,Ulsoy A G,Scott R A.Dynamics of a radially rotating beam with impact,part 1:theoretical and computational model,J.of Vibration and Acoustics,1990,112:65-70
    [117]Thornton C.Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres,J.of Applied Mechanics,1997,64:383-386
    [118]刘晓慧,宋现春.滚珠丝杠副摩擦力矩影响因素及测试方法研究.工具技术.2006(6):59-61
    [119]#12
    [120]周晓文,李鸣鸣,刘海湘.大型球轴承摩擦力矩的计算.洛阳工学院学报.1996(9):18-22
    [121]Harris TA.Rolling element bearing dynamics.Wear,1973(23):311-337
    [122]И.В.克拉盖尔斯基等.摩擦磨损计算原理.北京:机械工业出版社,1982
    [123]SKF General Catalogue,1981
    [124]温诗铸,杨沛然.弹性流体动力润滑.北京:清华大学出版社,1992
    [125]Meldahl A.Contribution to the theory of the lubrication of gears and of the stressing of the lubricated flanks of gear teeth.Brown Boveri Review,V.28,N.11,1941
    [126]Stephenson RR,Osterle JE A direct solution of the elastohydrodynamic lubrication problem.Trans.ASLE,V.5,1962
    [127]Hamrock B J,Jacobson BO.Elastohydrodynamic lubrication of line contacts,Trans.ASLE,V.27,N.4,1984
    [128]Hamrock B.J,Dowson D.Isothermal elastohydrodynamic lubrication of point contacts,Part Ⅲ—Full flooded results.Journal of Lubrication Technology,Trans.ASME,V.99,N.2,1977
    [129]汪德涛.润滑技术手册.北京:机械工业出版社,2002
    [130]张朝辉,孙健利.滚动直线导轨的弹流润滑分析.机械设计,1997(9):27-29
    [131]Kauzlarich J.J,Greenwood J.A.Elastohydrodynamic librication of cylindrical roller bearings,Bull.JAME,N.3,1960
    [132]Poon S.Y.An experimental study of grease in elastohydrodynamic lubrication,Journal of Lubrication Technology,Trans.ASME,V.94,N.1,1972
    [133]Wada S,et al.Elastohydrodynamic lubrication of a Bingham solid.Bull.JSME,N.20,1977
    [134]吴保群,徐建生.重载丝杠螺母副的摩擦学系统模型的建立.机械设计与研究,2002(10):38-40
    [135]马小梅.精密轴承摩擦力矩及其波动性分析:[硕士论文].洛阳:河南科技大学,2006
    [136]李涛,李艾华,王涛等.短时AR谱分析及在内燃机故障诊断中的应用.振动、测试与诊断,2005,25(4):285-288
    [137]赵联春.球轴承振动的研究:[博士学位论文].杭州:浙江大学,2003
    [138]胡广书.数字信号处理.北京:清华大学出版社,2002
    [139]Marple L.A New Autoregressive Spectrum Analysis Algorithm.IEEE Trans.on ASSP,1980,28(4):441-454
    [140]张鄂.铁谱技术及其工业应用.西安:西安交通大学出版社,2001
    [141]马大猷.噪声与振动控制工程手册.北京:机械工业出版社,2002
    [142]马国华,王芳,胡桂兰.滚动轴承的噪声及产生机理.轴承,2001(9):35-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700