用户名: 密码: 验证码:
滚珠丝杠副直线导轨进给单元动态性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机床的高速、高精、高效以及高自动化的发展对机床动态特性的要求越来越高,其中最主要的就是机床的振动性能,即机床的加工质量在很大程度上取决于机床所产生的振动。作为数机床进给系统中的关键功能部件,滚珠丝杠副是一种细长的低刚度零件,在外界交变力的作用下极易产生振动和噪声。尤其在加长型数机床中,由于工作台行程较长,丝杠也相应变长,导致进给系统的稳定性,刚性和抗振性等动态性能的下降,特别是在强力切削过程中振动比较严重,既影响了机床的加工精度和加工表面质量,又加速了刀具的磨损和损坏。直线滚动导轨副作为进给单元的支承导向装置,加工过程中的振动会增大导轨副的动态载荷,从而降低其寿命和精度的保持性。因此,研究滚珠丝杠副直线导轨进给单元动态性能具有很重要的理论和现实意义。
     本文采用理论分析与试验研究相结合的方法,依据动力学理论,Hertz接触理论、振动理论及试验模态分析理论,研究了滚珠丝杠副直线导轨进给单元的动态特性,研究内容主要包括:
     1)考虑进给单元中滚珠丝杠副、直线导轨副及支承轴承等结合面的影响,对滚珠丝杠副直线导轨进给单元进行了动力学建模,并根据拉格朗日方程推导了进给单元的振动微分方程,获得了进给单元的质量矩阵、刚度矩阵及阻尼矩阵。
     2)考虑两端支承轴承的影响,应用Hertz接触理论,分析了在外加工作载荷作用下滚珠丝杠进给系统的接触变形及刚度,得出了单、双螺母滚珠丝杠副轴向接触刚度的影响因素并进行了对比分析。
     3)建立了直线滚动导轨副接触刚度模型。该模型充分考虑了外加载荷,滚珠个数,滚珠预变形量等因素对接触刚度的影响。在此基础上,以LSA-45G型号的直线滚动导轨副为例,计算得到了直线滚动导轨副的Y向和Z向的接触刚度值。
     4)采用试验模态分析技术,对滚珠丝杠副直线导轨进给单元试验台进行了模态试验研究。通过力锤激励试验,获得了进给单元的主要模态参数,包括模态质量、模态刚度、模态阻尼及相关振型。
     5)根据振动理论,考虑丝杠两端轴承的弹性支承作用,建立了丝杠在两端弹性支承条件下的频率方程,推导了其振型函数,并将振型函数进行了正则化。结合模态试验获得的模态参数,研究了滚珠丝杠副直线导轨进给单元的振动模型,进行了考虑直线滚动导轨副的滚珠丝杠进给单元和不考虑直线滚动导轨副的滚珠丝杠进给单元的有限元模态分析,并与试验结果进行了对比,分析了进给单元的薄弱环节,并提出了改进意见。
     理论分析与试验研究结果表明:
     1)滚珠丝杠副中,滚珠与丝杠、螺母滚道结合面的轴向接触变形及刚度对滚珠丝杠副直线导轨进给单元的轴向动态特性有直接的影响。滚珠与丝杠、螺母滚道结合面的轴向接触变形及刚度受到轴向载荷、接触角、螺旋升角、滚珠个数、曲率比等设计参数的影响。
     2)合理设计滚珠丝杠副的结构参数可以提高滚珠丝杠副的轴向接触刚度。增大接触角可以使单螺母滚珠丝杠副的轴向接触刚度有明显的降低,而且呈非线性变化。滚珠个数与单螺母滚珠丝杠副轴向接触刚度的关系接近线性,随着滚珠个数的增加,轴向接触刚度也增加。螺旋升角对单螺母滚珠丝杠副的轴向接触刚度影响不显著。单螺母滚珠丝杠副的轴向接触刚度对曲率比的变化比较敏感,随着曲率比的增加而明显降低。轴向载荷的增加使单螺母滚珠丝杠副轴向接触刚度呈非线性增大。
     3)双螺母滚珠丝杠副的轴向接触刚度随着轴向载荷的增大而增大,而且随轴向载荷的变化近似线性。随着预紧力的增大,双螺母滚珠丝杠副的轴向接触刚度刚度明显增大,呈非线性变化。接触角、滚珠个数、螺旋升角以及曲率比的变化对双螺母滚珠丝杠副接触刚度的影响与其对单螺母滚珠丝杠副接触刚度的影响类似,只是相同条件下在数值上双螺母滚珠丝杠副接触刚度明显高于单螺母滚珠丝杠副接触刚度。因此在设计时需要寻找最优接触角,适当减小曲率比,增加滚珠数目,选择合适的预紧力,有利于提高滚珠丝杠螺母副的接触刚度。
     4)直线滚动导轨副的接触刚度受到其工作载荷、滚珠预变形量及滚珠个数等设计参数的影响。工作载荷的增加会使直线滚动导轨副的Y向接触刚度增大,Z向接触刚度减小;滚珠预变形量的增加,会使直线滚动导轨副的Y向接触刚度增大,Z向接触刚度降低;滚珠个数的增多,会使直线滚动导轨副的Y向接触刚度降低,Z向接触刚度提高。
     5)滚珠丝杠副直线导轨进给单元的主要振型为弯曲振动和扭转振动。滚珠丝杠副直线导轨进给单元的薄弱环节主要发生在丝杠螺母副及其与连接板的结合部位。滚珠丝杠副直线导轨进给单元的固有频率受到支承方式的影响:两端固定时其各阶固有频率明显高于一端固定一端简支的各阶固有频率。滚珠丝杠副直线导轨进给单元的固有频率受到螺母位置的影响:螺母位于丝杠固定端时的各阶固有频率比螺母位于丝杠简支端时的各阶固有频率要高,螺母位于丝杠两端时的各阶固有频率明显低于螺母位于丝杠中间位置时的各阶固有频率。考虑直线导轨副的滚珠丝杠进给单元的各阶固有频率要比不考虑直线导轨的滚珠丝杠进给单元的各阶固有频率更接近于试验结果,更加符合进给单元的实际真实情况。
     研究结果为减小滚珠丝杠副直线导轨进给单元的动态变形,提高进给单元的抗振性指明了努力方向,对滚珠丝杠副直线导轨进给单元的结构设计、造和工程应用具有重要的理论和实际指导意义。
The development of high-speed, high-precision, high-efficiency and high-automation NC machine tools has a demand in higher and higher processing performance and dynamic characteristics. And among all the dynamic characteristics, vibration performance is the most important, that is to say, processing quality of machine tools depends mainly on the vibration of itself. Research shows that the process quality depends largely on the vibration of NC machine tools, especially to high-speed, high-precision NC machine tools. Therefore, vibration of machine tools is an important problem in the study of dynamic characteristics of machine tool.
     As a key functional part of NC machine tool feed system, ball screw, which is an elongated low rigidity component, easily produces vibration and noise in the external alternating force. Especially in large CNC machine tools, ball screw become longer with the longer travel of worktable, which results in a decline in such dynamic characteristics of feed system as stability, rigidity and vibration resistance, and so on, especially during heavy cutting, vibration becomes more serious, which both affects the machining precision and process quality of the surface and easily causes the rapid wear and damage of the tool.
     Linear rolling guide works as supporting and guiding device of the feed unit, large vibration may increase the dynamic load of the guide during the processing and thus reduce its life and accuracy retention. As a result, there is important theoretical and realistic value about research on the dynamic characteristics of Ball Screws Linear Guide Feed Unit.
     In this paper, by means of theoretical analysis and experimental research, on the basis of Dynamics theory, the Hertz contact theory, vibration theory and experimental modal analysis, the dynamic characteristics of Ball Screws Linear Guide Feed Unit is researched. The study contents are as follows:
     1) Considering the influence of ball screws, linear rolling guide and ball bearing joint interfaces of Ball Screws Linear Guide Feed Unit, the Dynamics model is built, and the vibration differential equation is derived on the base of Lagrange equation.
     2) Considering the influence of ball bearing in the end and on the basis of the Hertz contact theory, the contact deformation and stiffness analysis of ball screw feeding system under the external force is analyzed, and the structural influence factors on contact stiffness of the single and double nut ball screws is obtained and contrasted.
     3) The model of contact stiffness of linear rolling guide is built, which consider such influence factors as external force, the number and pre-deformation of balls, etc. on the contact stiffness. Taking linear rolling guide LSA-45G for example, contact stiffness value in Y and Z direction is calculated.
     4) By means of experimental modal analysis technique, experimental modal research on Ball Screws Linear Guide Feed Unit Test is investigated. Through the impulse test, a system main modal parameters are obtained, including modal mass, modal stiffness, modal damping and vibration shape.
     5) According to vibration theory and considering the elastic supporting of ball bearing at both ends of ball screw, frequency equation under this condition and the function of vibration shape is derived. Using the experimental modal parameters, vibration shape of Ball Screws Linear Guide Feed Unit is researched. The finite element modal analysis of Ball Screws Linear Guide Feed Unit and ball screw feed system unconsidering linear rolling guide are carried on and compared with the experimental result. The weak links of the system is obtained and some suggestions for improvement are put forward.
     Theoretical analysis and experimental study results are as follows:
     1) The axial contact stiffness and the deformation of ball and raceway contact area have the direct influence on the axial dynamic characteristics of Ball Screws Linear Guide Feed Unit.Such design parameters as axial force, contact angle, helix angle, ball number, principal curvature, and so on, have an important influence on the axial contact stiffness and deformation on the ball and raceway contact area.
     2) Reasonable design of structure parameters of ball screw pair can improve the axial stiffness of ball screw pair.the increase of contact angle can result in the nonlinear decrease of the axial contact stiffness of the single nut ball screws. The increase of ball number can result in the linear decrease of the axial contact stiffness of the single nut ball screws. The change of helix angle has an unobvious influence on the axial contact stiffness of the single nut ball screws. But the axial contact stiffness of the single nut ball screws changes sensitively with principal curvature. The increase of axial force can result in the nonlinear increase of the axial contact stiffness of the single nut ball screws.
     3) Comparatively, the increase of axial force can result in the linear increase of the axial contact stiffness of the double nut ball screws, the increase of preload can result in the nonlinear increase of the axial contact stiffness of the double nut ball screws. Contact angle, ball number, helix angle and principal curvature have a similar influence on the axial contact stiffness of the double nut ball screws to the single nut ball screw, but under the same condition, the axial contact stiffness of the double nut ball screws is obviously higher than that of the single nut ball screws. Therefore, finding optimal contact angle, reducing the curvature ratio, increasing the number of balls and selecting the appropriate preload during the design of ball screw is conducive to improve the contact stiffness of the ball screw nut pair.
     4) Such design parameters as external force, pre-deformation and the number of balls,etc have influence on the contact stiffness of linear rolling guide. The increase of external force can result in the increase of contact stiffness in Y direction and the decrease of contact stiffness in Z direction of linear rolling guide. The increase of pre-deformation can increase the contact stiffness in Y direction and decrease the contact stiffness in Z direction of linear rolling guide.The increase of the number of balls can decrease the contact stiffness in Y direction and increase the contact stiffness in Z direction of linear rolling guide.
     The vibration shape of Ball Screws Linear Guide Feed Unit is mainly bending and twist motion.The weak links occurs mainly in the ball screw and the connection part of the connecting plate and ball screw.The natural frequencies of Ball Screws Linear Guide Feed Unit are affected by the support form of itself:natural frequencies of Ball Screws Linear Guide Feed Unit fixed at two ends are obviously higher than those of Ball Screws Linear Guide Feed Unit fixed at one end and simply supported. The natural frequencies of Ball Screws Linear Guide Feed Unit are affected by the location of the nut:The natural frequencies when the nut locates at two ends are higher than those when the nut locates at simply supported end, The natural frequencies when the nut locates at two ends are higher than those when the nut locates at middle.The natural frequencies of Ball Screws Linear Guide Feed Unit are more close to the experimental results than those of feed unit without linear rolling guide.
     Research results provide research direction for the decline of dynamic deformation and the increase of vibration resistance of Ball Screws Linear Guide Feed Unit, and have an important theoretical and realistic guiding value for the structure design, manufacturing and engineering application of Ball Screws Linear Guide Feed Unit.
引文
[1]诸乃雄.机床动态设计原理与应用[M].上海:同济大学出版社,1987:1~3.
    [2]杨橚,唐恒龄,廖伯瑜.机床动力学Ⅰ[M].北京:机械工业出版社,1983:1~2.
    [3]王富强.精密机床床身的动态特性分析与优化[D].兰州:兰州理工大学.2007.
    [4]王飞月.机床的动态特性分析[J].河北工业科技,2001,18(4):11~14.
    [5]安琦瑜,冯平法,郁鼎文.基于FEM的滚珠丝杠进给系统动态性能分析[J].造技术与机床,2005,(10):85~88.
    [6]黄祖尧.21世纪初海外滚动功能部件发展动态[J].世界造技术与装备市场,2003,(1):20~23.
    [7]M.C. Lin. Design and mechanics of the ball screw mechanism [D]. The University of Wisconsin-Madison,1989.
    [8]Belyaev,V. G, Malyuga, V. S. Force transfer factor in the return channel of a ball and screw mechanism. Soviet Engineering Research, v3, n2, Feb,1983, p78-80.
    [9]Hual-Te T. Huang. B. Ravani. Contact stress analysis in ball screw mechanism using the tubular medial axis representation of contacting surfaces. Transactions of the ASME vol.119 (1997), p8-14.
    [10]Yoshida T, Tozaki Y, Matsumoto S. Study on load distribution and ball motion of ball screw. Journal of Japanese Society of Tribologists 48 (8),p659-666,2003(in Japanese).
    [11]Shimoda. H. Stiffness analysis of ball screw:Influence of load distribution and manufacturing error. International Journal of the Japan Society for Precision Engineering 33 (3): p168-172,1999.
    [12]Nakashima Katuhiro, Takafuji Kazuki. Stiffness of a ball screw including the deformation of screw, nut and screw thread (1st report, single nut). Transactions of the Japan Society of Mechanical Engineers, Part C, v 54, n 505,1988, p 2181-2187(in Japanese).
    [13]Takafuji Kazuki, Nakashima Katuhiro. Stiffness of a ball screw including with consideration to deformation of the screw, nut and screw thread (2nd Report:Preloaded double nuts). Transactions of the Japan Society of Mechanical Engineers, Part C, v 55, n 515, Jul,1989, p 1734-1740.
    [14]Takafuji Kazuki, Nakashima Katuhiro. Stiffness of a ball screw including with consideration to deformation of the screw, nut and screw thread (3rd Report:Effect of Contact Angle Change). Transactions of the Japan Society of Mechanical Engineers, Part C, v 57, n 538, Jul,1991, p 2041-2046.
    [15]Takafuji Kazuki, Nakashima Katuhiro. Stiffness of a ball screw including with consideration to deformation of the screw, nut and screw thread (4th Report:Effect of Preloading Method and Load Condition). Transactions of the Japan Society of Mechanical Engineers, Part C, v 58, n 547, Mar,1992, p 896-901.
    [16]Takafuji Kazuki, Nakashima Katuhiro. Stiffness of Pre-Loaded Ball Screw. Transactions of the Japan Society of Mechanical Engineers, Part C, v 53, n 492, Aug.1988, p 1898-1904
    [17]Belyaev V. G, Kogan A. I. Effect of geometrical errors on contact angle in ball screw transmission. Machines & Tooling (English translation of Stanki i Instrument), v44, n5,1973, p 25-29.
    [18]Xuesong Mei. Study on the load distribution of ball screw with errors. Mechanism and Machine Theory 38(2003),p 1257-1269.
    [19]SHIGEO SHIMIZU滚珠丝杠基本额定动载荷及寿命公式的重新评价[J].国外轴承技术,2008,(2):5~13.
    [20]Shimoda Hirokazu. Estimation of resistance force generated in ball circulating unit of end-cap type ball screw. Journal of Japanese Society of Tribologists, v39, n6,1994, p533-540.
    [21]Olaru D, Puiu GC, Balan LC, Puiu V. A new model to estimate friction torque in a ball screw system. Product Engineering:Eco-Design, Technologies and Green Energy:2004, p333-346.
    [22]Belayev V. G, Turavinov V. P. Effect of the lubricant on the performance characteristics of a ball and screw drive. Soviet Engineering Research, v 3, n 12, Dec.1983, p62-64.
    [23]Murase, Z. Statical friction of ball screw. Japan Society of Precision Engineering-Bulletin, v 1, n2, Mar.1965, p 52-57.
    [24]Guevarra Dominic S, Kyusojin Akira, Isobe Hiromi, Kaneko Yoshiaki. Development of a new lapping method for high precision ball screw. Journal of the International Societies for Precision Engineering and Nano-technology.26 (2002),389-395.
    [25]Wei,Chin Chung, Lin,Jen Fin, Horng,Jeng-Haur.Analysis of a ball screw with a preload and lubrication.Tribology International, V42, n11-12, Dec.2009, p1816-1831.
    [26]五十岚昭南,德长靖,大熊一成.Studies on the Sound and Vibration of a Ball Screw(1st Report, Sound Characteristics of a Ball Screw). Transactions of the Japan Society of Mechanical Engineers, Part C,1987:617-622(in Japanese).
    [27]德长靖,五十岚昭南,杉浦哲郎.Studies on the Sound and Vibration of a Ball Screw(2nd Report, Characteristics and Generating Mechanism of Pulse Sound). Transactions of the Japan Society of Mechanical Engineers, Part C,1989:2945-2950(in Japanese).
    [28]德长靖,五十岚昭南,桥爪一宏.Studies on the Sound and Vibration of a Ball Screw(3rd Report, Sound Caused by Waviness on Flank of Screw Shaft). Transactions of the Japan Society of Mechanical Engineers, Part C,1991:1874-1879(in Japanese).
    [29]五十岚昭南,德长靖,德嵩敬浩.Studies on the Sound and Vibration of a Ball Screw(4th Report, Effect of Various Factors on Sound of a Ball Screw). Transactions of the Japan Society of Mechanical Engineers, Part C,1993:3907-3913(in Japanese).
    [30]五十岚昭南,德长靖,上村尚司.Studies on the Sound and Vibration of a Ball Screw (5th Report, Sound Caused by Random Waviness on Flank Surface). Transactions of the Japan Society of Mechanical Engineers, Part C,1995:3369-3374(in Japanese).
    [31]Hung, Jui-Pin; Shih-Shyn Wu, James; Chiu Jerry Y. Impact failure analysis of re-circulating mechanism in ball screw. Engineering Failure Analysis, v 11, n 4, Aug.2004, p561-573.
    [32]Jan Braasch, Dr. Ing海德汉进给传动精度系列讲座第1讲进给传动系统的结构[J].机械工人(冷加工),2004,(01):77~78.
    [33]Jan Braasch, Dr. Ing海德汉进给传动精度系列讲座第2讲进给系统的受力变形[J].机械工人(冷加工),2004,(02):80~81.
    [34]Jan Braasch, Dr. Ing.海德汉进给传动精度系列讲座第3讲滚珠丝杠轴承对定位精度的影响[J].机械工人(冷加工),2004,(03):71~73.
    [35]Jan Braasch.海德汉进给传动精度系列讲座第4讲滚珠丝杠长度方向温度分布的影响[J].机械工人(冷加工),2004,(04):82~84.
    [36]Won Soo Yun, Soo Kwang Kim, Dong Woo Cho. Thermal error analysis for a CNC lathe feed drive system. International Journal of Machine Tools and Manufacture, v 39, n7, July 1999, p1087-1101.
    [37]Ahn J.Y, Chung S.C. Real-time estimation of the temperature distribution and expansion of a ball screw system using an observer. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, v 218, n 12, December 2004, p1667-1681.
    [38]Kim S.K, Cho D.W. Real-time estimation of temperature distribution in a ball-screw system. International Journal of Machine Tools & Manufacture, v 37, n4, Apr,1997, p451-464.
    [39]Kodera Takehiko, et al. Real-time estimation of ball-screw thermal elongation based upon temperature distribution of ball-screw. JSME International Journal, Series C:Mechanical Systems, Machine Elements and Manufacturing, v47, n 4, Dec,2004, p1175-118.
    [40]黄祖尧.国外滚珠丝杠副的精度、性能检测动向[J].机床,1985(11):37~39.
    [41]沈守范.滚珠丝杠付返珠器正螺旋面型回珠曲线的计算[J].华东工程学院学报,1974(5):103~114.
    [42]毕兴国,刘爱丽.滚珠丝杠副反向器空间曲线设计[J].组合机床与自动化加工技术,2001(7):33~34.
    [43]曾政华.内循环反向器回珠槽设计.十一省市机械工程学会年会论文集[C].贵阳:贵州省机械工程学会,2003.
    [44]张超鹏.滚珠丝杠新型回珠槽曲线设计与分析[J].造技术与机床,1980,(12):5~13.
    [45]韩琦.滚珠丝杠副圆弧型返向回珠曲线设计[J].机械工艺师,1995(2):23-24.
    [46]卜庆国,毕善斌等.滚珠丝杠副回珠通道孔型的设计[J].哈尔滨工程技术大学学 报.1996(2):32~36.
    [47]翁新根,曹云峰,杨巧旭.微型滚珠丝杠副圆弧型反向器回珠曲线设计[J].江苏机械造及自动化,1995(4):42~44.
    [48]马志坚.滚珠丝杠中回珠器的几何结构[J].数学的实践与认识,1978(3):13~21.
    [49]马志坚.滚珠丝杠中回珠器的几何结构[J].数学的实践与认识,1978(4):52~55.
    [50]彭福田.内循环滚珠丝杠副反向器理想轨迹的设计[J].机械造,1999(9):18~18.
    [51]一机部机床研究所和北京实验机床厂滚珠丝杠攻关组.滚珠丝杠副的浮动反向器及其摩擦特性[J].机床,1980(10):14~16.
    [52]王希悦,杨宝庆,张华.插管式外循环滚珠丝杠副螺母回程角计算[J].轴承,2004(2):7~8.
    [53]宋现春.精密滚珠丝杠磨削技术研究[D].济南:山东大学,2000.
    [54]宋现春,张承瑞.精密丝杠热变形误差的计算及其简化计算[J].山东工业大学学报,2000(2):160~168.
    [55]宋现春,张承瑞等.精密丝杠热变形误差的实时及其智能预报补偿[J].山东工业大学学报,2000(4):378~381.
    [56]宋现春,林明星等.激光反馈螺纹磨床误差补偿系统的智能PID控制[J].工具技术,2001(10):13~15.
    [57]宋现春,林明星等.误差输入前馈补偿方法及其在滚珠丝杠磨削中的应用[J].机械工程学报,2002(4):100~102.
    [58]宋现春,王兆坦,刘现银.精密滚珠丝杠磨削加工中的热变形控制[J].造技术与机床,2006(1):59~61.
    [59]徐志良.精密长丝杠磨削加工中误差补偿技术的研究[D].武汉:华中理工大学,1993.
    [60]徐健.螺纹磨床运动误差实时测量与补偿的理论及应用[D].武汉:华中理工大学,1997.
    [61]王永业.精密长丝杠磨削过程的受力变形及综合误差控制的研究[D].武汉:华中理工大学,1998.
    [62]宋洪涛.精密长丝杠的“磨削过程卡”控制及热变形分析[D].武汉:华中理工大学,1998.
    [63]赵训贵,平舜娣.滚珠丝杠螺纹滚道参数误差对接触角和变位导程及摩擦力矩的影响及相互关系[J].磨床与磨削,1995(3):6~15.
    [64]黄寿荣,黄家贤.滚珠丝杠副摩擦力矩影响因素分析[J].东南大学学报.1993(增刊):135~138.
    [65]程光仁,施祖康,张超鹏.滚珠螺旋传动设计基础[M].北京:机械工业出版社,1987.
    [66]阳佳.丝杠副传动误差的计算机辅助检测与分析[D].武汉:华中理工大学,1998.
    [67]Bin Hongzan, Yamazaki K, Devries MF. A Stochastic Approach to the Measurement and Analysis of Lead screw Drive Kinematics Errors. Transactions of ASME,Journal of Engineering for Industry,1984,106(11):339-344.
    [68]阳佳,宾鸿赞.丝杠副动态综合精度的计算机辅助评定[J].光学精密工程,1998(6):101~106.
    [69]宋现春,于复生滚珠丝杠激光动态检查仪的微机化改造[J].工具技术.2003,37(3):46~47.
    [70]于复生,宋现春等.滚珠丝杠误差检测的速度自适应系统造[J].技术与机床,2004(4):85-87.
    [71]宋现春,刘剑.高速滚珠丝杠副综合性能试验台的研开发[J].工具技术,2005(3):34~36.
    [72]宋现春,张刚.滚珠丝杠副摩擦力矩测试技术研究[J].山东建筑大学学报,2007(6):38~42.
    [73]喻步贤,殷爱华等.滚珠丝杠导程误差计算机辅助动态测量系统的研[J].机械造,2004(2):13~15.
    [74]喻步贤,殷爱华,冯虎田,韩军.滚珠丝杠导程误差计算机辅助动态测量系统的研[J].机械造,2004(2):13-15.
    [75]焦洁,梅景登.滚珠丝杠副动态预紧转矩的测量技术[J].造技术与机床,1998(11):32~33.
    [76]焦洁.滚珠丝杠副综合行程测量技术[J].造技术与机床,1997(12):30~32.
    [77]姜洪奎.大导程滚珠丝杠副动力学性能与加工方法研究[D].济南:山东大学,2007.
    [78]Jui-Pin Hung, James Shih-Shyn Wu, Jerry Y. Impact failure analysis of re-circulating mechanism in ball screw. Engineering Failure Analysis.11(2004), p561-573.
    [79]Chin Chung Wei, Jen Fin Lin. Kinematic analysis of the ball screw mechanism considering variable contact angles and elastic deformations. Journal of Mechanical Design, Transactions of ASME.2003, vol.125, p717-733.
    [80]宋现春,刘剑,王兆坦,刘宪银,李保民.高速滚珠丝杠副综合性能试验台的研开发[J].工具技术.2005(39):34~36.
    [81]肖正义,焦洁.高速滚珠丝杠副的研发和测试技术[J].造技术与机床,2004,(4):95~98.
    [82]程丹.HJY-012五米激光滚珠丝杠(副)动态测量系统设计[D].南京:南京理工大学,2005.
    [83]徐起贺.滚动直线导轨理论与技术[M].西安:山西人民出版社,2003.
    [85]石川义雄,须田稔.直动玉轴受の摩擦力发生の要因[J].精密机械,1981,47(7):71-76.
    [86]石川义雄,须田稔.直动玉轴受の摩擦力变动[J].精密机械,1981,47(12):58~63.
    [87]须田稔,石川义雄.预压た与ぃぇた直动玉轴受の摩擦抵抗[J].精密机械,1975,41(10):63-68.
    [93]清水茂夫.直动玉轴受の负荷分布につぃて,润滑[J].1981,26(9):11~16.
    [94]井シ尺实,清水茂夫.轴方向运动球轴受の负荷分布に关すゐ研究(第一报)[J].精密机械,1974,40(12):49~56.
    [95]高本昭,鹤和夫.滚がり案内の动刚性[J].机械の研究,1986,38(8):33~38.
    [107]孙健利,刘端,廖道训.直线滚动导轨副额定静载荷的计算[J].华中理工大学学报,1989,17(16):105~110.
    [108]孙健利,唐开庆,郭文平.直线滚动导轨副额定动载荷的计算[J].华中理工大学学报1990,18(增刊):241~246.
    [109]孙健利,谢峰.直线滚动导轨的寿命研究[J].湖北工学院学报,1993,8(2~3):14~18.
    [110]周传宏,孙健利,杨叔子.精密滚动直线导轨副工作台静刚度研究[J].机械设计,1999(5):30~32.
    [111]孙健利,方健,程远雄.基于IS014728-2标准滚动直线导轨副额定静载荷分析[J].造技术与机床,2006,(2):114~117.
    [112]孙健利,谢峰.精密数工作台静刚度研究[J].湖北工学院学报,1993,8(2~3):19~20.
    [113]孙健利.具有间隙时直线滚动导轨的刚度计算[J].华中理工大学学报,1990,18(增刊):229~234.
    [114]刘端.直线滚动导轨考虑滑块体弹性变形时的刚度计算[J].华中理工大学学报,1990,(S3):85~90.
    [115]孙健利.精密直线滚动导轨的预加载荷及刚度计算[J].华中理工大学学报,1988,16(6):125~130.
    [116]谢峰.数工作台静刚度、寿命及定位精度的理论研究[D].武汉:华中理工大学,1993.
    [117]孙健利.直线滚动导轨机构承受垂直载荷时的刚度计算[J].华中理工大学学报,1988,16(5):35~40.
    [118]唐开庆,直线滚动导轨额定动载荷、寿命及摩擦特性的研究[D].武汉:华中理工大学,1991.
    [119]周传宏,孙健利,杨叔子.滚动直线导轨副的振动模型研究[J].机械设计,1999(2):21~24.
    [120]周传宏,孙健利.滚动直线导轨副运动精度研究[J].机械设计,1998(4):32~35.
    [121]徐起贺.直线滚动导轨副反向器回珠曲线的设计[J].机械,1995,(04):7~8.
    [122]徐起贺,孙健利.直线滚动导轨副反向器设计的研究[J].现代机械,1995,(01):23~26.
    [123]徐起贺,孙健利.直线滚动导轨副反向器回珠槽的设计[J].造技术与机床,1995,(04):37~39.
    [124]徐起贺,张健利.直线滚动导轨副反向器回珠孔的设计[J].机械造,1995,(03):23~25.
    [125]沈晓庆.数机床直线滚动导轨动态特性研究[D].杭州:浙江工业大学.2009,10.
    [126]Ebrahimi M., Whalley R.. Analysis, modeling and simulation of stiffness in machine tool drives.Computers & Industrial Engineering, v38, n1,Jan.2000, p93-105.
    [127]Zaeh, M.F, Oertli, Th,Milberg, J. Finite element modelling of ball screw feed drive systems. Manufacturing Technology, v53, n1, p 289-293,2004.
    [128]Zaeh, Michael F.,Oertli, Thomas. Finite element formulation of pre-stressed ball screw drives. Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis-2004, v3, p289-296,2004.
    [129]Choi Y.H., Cha S.M., Hong J.H., Choi J.H.. A study on the vibration analysis of a ball screw feed drive system. Materials Science Forum, v 471-472, p149-154,2004, Advances in Materials Manufacturing Science and Technology.
    [130]Sato, Ryuta,Tsutsumi, Masaomi. Modeling, and controller tuning techniques for feed drive systems. American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, v74 DSC, n1 PART A, p 669-679,2005, Proceedings of the ASME Dynamic Systems and Control Division 2005.
    [131]Tsutsumi, Masaomi; Ohtomo, Seiji; Okazaki, Yuichi; Sakai, Koji; Yamazaki, Kazuo; Ge, Dong-Fang.Mathematical model of feed drive mechanical system and friction for CNC machine tools. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, v 61, n10, Oct.1995,p 1458-1462.
    [132]翁新根.微型滚珠丝杠副传动系统的刚度算法[J].机械造,1996,(12):16-18.
    [133]杨祖孝.进给滚珠丝杠副传动刚度的计算[J].造技术与机床,1999,(07):15~17.
    [134]吴南星,胡如夫,孙庆鸿.数车床丝杠进给系统刚度对定位精度的影响[J].中国工程科学,2004,(9):50~53.
    [135]王均杰,吴宗彦.数轴承磨床进给传动系统刚度分析[J].轴承,2004,(10):28~30.
    [136]郑子文.超精密机床伺服控制技术研究[D].长沙:国防科学技术大学,2001.
    [137]丘国富.数机床进给系统的研究[D].沈阳:东北大学,2006.
    [138]王淑坤.滚珠丝杠进给系统定位精度分析[D].大连:大连理工大学,2006.
    [139]吴沁,芮执元,杨建军,王富强.滚珠丝杠进给系统刚度建模及仿真[J].现代造工程,2010,(11):13~16.
    [140]吴南星,余冬玲.数机床伺服进给系统综合模型的探讨[J].机床与液压,2008,(8):71-73.
    [141]王丁磊.影响进给系统动特性的因素分析[J].机械设计与造,2010,(10):210~212.
    [142]王丁磊.基于ADAMS的进给系统动特性研究[J].造技术与机床,2010,(3):47~50.
    [143]Ding, Wenzheng; Huang, Xiaodiao.Study on dynamics of large machine tool feed system based on distributed-lumped parameter model.2010 International Conference on Mechanic Automation and Control Engineering, Jun.2010, p3078-3082.
    [144]韩会斌.机床结合面阻尼系数识别研究[D].北京:北京工业大学,2001.
    [145]洪福昌.数机床结合面特性参数的识别研究及其应用软件开发[D].北京:北京工业大学,2000.
    [146]王海滨.机床结合面实验设计及有限元建模的研究[D].北京:北京工业大学,2001.
    [147]许敏.机床固定结合面动态与热态特性分析[D].南京:东南大学,2006.
    [148]杜奕.MSY7115平面磨床的实验模态分析及动特性修改[D].昆明:昆明理工大学,2002.
    [149]梁志强.加工中心整机试验模态分析及主要结合部参数识别方法研究[D].昆明:昆明理工 大学,2004.
    [150]朱军.高速立式加工中心模态分析及结构优化设计[D].上海:上海交通大学,2010.
    [151]杨传启.XK717数铣床动态特性的试验研究[D].杭州:浙江工业大学,2006.
    [152]邰晓辉.XK717数铣床进给传动系统的动力学优化[D].杭州:浙江工业大学,2006.
    [153]章正伟.XK717数铣床结构件动态分析及优化[D].杭州:浙江工业大学,2005.
    [154]王培功.XK717数铣床进给传动系统的动力学建模及动态优化设计[D].杭州:浙江工业大学,2005.
    [155]李景奎.直线滚动导轨结合面对机床动态特性影响的研究[D].沈阳:东北大学,2006.
    [156]张会端.机床进给系统的动力学分析[D].吉林:吉林大学,2009.
    [157]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用-建模、分析、仿真、修改、控制、优化[M].北京:机械工业出版社,2004.
    [158]Burdekin M., Back N., Cowley A.. Analysis of the local deformation in machine joints. Journal of Mechanical Engineering Science, v21, n1, Feb.1979, p 25-32.
    [159]Beads C. F.. Damping in structural joints. Shock and Vibration Digest, v 21, n 4, Apr.1989, P3-5.
    [160]Harris T. A.(2000). Rolling Bearing Analysis[M]. New York:John Wiley& Sons.
    [161]万长森.滚动轴承的分析方法[M].北京:机械工业出版社,1987.
    [162]程光仁,施祖康,张超鹏.滚珠螺旋传动设计基础[M].北京:机械工业出版社,1987.
    [163]姜洪奎.大导程滚珠丝杠副动力学性能与加工方法研究[D].济南:山东大学,2007.
    [164]http://www.jsinfo.com.cn/more.asp?bigclassid=2.
    [165]http://www.jsinfo.com.cn/more.asp?bigclassid=2.
    [166]张志涌.精通Matlab 6.5版[M].北京:航空航天大学出版社,2003.
    [167]吴长宏.滚珠丝杠副轴向接触刚度的研究[D].吉林:吉林大学,2008.
    [168]曹建国,陈世平.实现滚珠丝杠螺母副高速化的技术措施[J].机床与液压,2005(5):54~55.
    [169]张佐营.高速滚珠丝杠副动力学性能分析及其实验研究[D].济南:山东大学,2008.
    [170]蒋书运,祝书龙.带滚珠丝杠副的直线导轨结合部动态刚度特性[J].机械工程学报,2010(1):92~99.
    [171]应强.滚动直线导轨副静刚度的研究及过渡曲线的设计[D].无锡:江南大学.2007.
    [172]廖伯瑜等.现代机械动力学及其工程应用:建模、分析、仿真、修改、控制、优化[M].北京:机械工业出版社,2005.
    [173]曹树谦,张文德,萧龙翔.振动结构模态分析:理论、试验与应用[M].天津:天津大学出版社,2001.
    [174]杨橚,唐恒龄,廖伯瑜.机床动力学Ⅱ[M].北京:机械工业出版社,1983.
    [175]许本文,焦群英.机械振动与模态分析基础[M].北京:机械工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700