用户名: 密码: 验证码:
桨叶几何对梢涡空泡起始影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着舰船航速的增加,螺旋桨将先后出现各种不同类型的空泡,舰船的临界航速是指空泡最先起始时的航速,而螺旋桨梢涡空泡由于其尺度效应非常显著,通常是最先起始的空泡。空泡一旦产生,螺旋桨的辐射噪声会显著增加,有时甚至会引起船尾的振动。水面舰船的临界航速是低噪声船舶的重要性能参数,因此,推迟梢涡空泡的起始对于提高舰船的安静性是非常有必要的。在螺旋桨设计中,采用梢部卸载是一种典型的抑制梢涡空泡的有效措施。然而,该措施是以牺牲推进效率为代价的,而且其主要改变的是随边梢涡的强度,对导边涡和局部梢涡的影响不明显。研究桨叶梢部的几何形状,比如侧斜形式、纵倾和厚度分布等参数对推迟梢涡空泡起始的影响也受到了螺旋桨设计者的关注,其工程应用性较强。
     因此,本文研究的目的是建立一种能够对梢涡空泡起始进行评估的方法,该方法可以对几何变化影响梢涡空泡的起始进行有效性分析,可适用于多方案的相对比较;然后,从梢涡结构和涡核压力等流动机理出发,分析梢部几何形状对梢涡和梢涡空泡起始的影响。目前的研究主要包含了以下几个方面:
     首先,为了便于分析梢涡的流动结构细节,设计了一只具有现代水面船螺旋桨叶片几何轮廓及负荷特征的三维扭曲水翼,为研究螺旋桨梢涡特征的流动结构提供了很好的对象。并且在中国船舶科学研究中心的空泡水筒利用LDV开展了梢涡区域的流场结构、梢涡轨迹测量和梢涡空泡观测试验,获得了丰富的梢涡速度场分布的数据,也为梢涡流动的数值模拟方法提供了丰富的试验验证数据。
     其次,采用数值RANS方法模拟了水翼和螺旋桨的梢涡流动,对比分析了不同计算模型对计算结果的影响,认为采用边界层网格和梢涡区域局部加密网格相结合的计算模型更有利于捕捉梢部区域的局部梢涡、导边分离涡等不同类型涡的流动细节。然后,利用这样的计算模型分析了梢部几何参数对梢涡形成和涡流场特征的影响。为了定量评估梢涡空泡的起始,基于CFD计算结果,应用了一个简化的涡模型来计算涡核内的压力分布。针对三维扭曲水翼,通过涡模型计算结果和空泡起始试验测量结果的相关分析,获得了修正系数‘K’。这个修正系数也被应用在了螺旋桨的算例中,与试验结果的比较认为该评估方法可以用来分析评估梢涡空泡抑制效果的有效性,提供了一种可相对比较的方法。
     在本文的研究中,通过梢部几何的变化来实现抑制和推迟梢涡空泡的起始是最终的研究目标。为此,首先基于所设计的三维扭曲水翼,独立分析了梢部局部的厚度分布变化、侧斜和纵倾形式的变化对梢涡的影响。从流动变化上研究了推迟梢涡空泡起始的机理。梢部几何的变化能够延缓导边分离涡卷入局部梢涡,使得梢部的横向流动减弱。这些变化可以帮助减弱梢涡的强度,延迟梢涡空泡的起始。
     最后,以三维扭曲水翼的研究结果为基础,针对一个已有的参考螺旋桨,在保持原桨负荷分布不变的条件下,通过改变梢部的几何参数重新设计了一个螺旋桨方案,该梢部几何的变化包括了侧斜形式、纵倾分布和梢部的厚度分布变化。这样的改变目的是为了能够相比于参考桨方案推迟梢涡空泡的起始。在空泡水筒中完成了参考桨和新设计桨的模型试验,设计目的实现了试验结果的验证,新设计桨的梢涡空泡起始得到了有效的推迟。数值计算结果也反映出了与试验结果相同的趋势,但数值计算结果仍然采用了三维水翼数值分析中相同的经验修正系数,这个修正系数的实用性问题还需要在未来的研究中更进一步的验证。
     本文的研究指出了一种通过几何变化来推迟梢涡空泡起始的技术方向,根据数值分析结果,在螺旋桨设计阶段能够有效的评估梢涡空泡起始延迟效果的有效性,本文所提出的几何变化措施具有较好的工程应用前景。
Tip vortex cavitation of propeller generally appears firstly when ship speed increasingand a speed, at which any type of cavitation incepts is defined as cavitation inception speed.Once cavitation appears the noise dramatically increases and in some cases it may inducestrong stern vibration. Inception speed of a surface navy ship is one of the importantparameters characterizing the stealthiness of the ship. So delaying tip vortex cavitationinception is a necessary measure to enhance the stealthiness of a ship. Designing a tipunloading propeller has become a classical way to delay tip vortex cavitation. However it mayreduce propeller efficiency or it is not enough in nowadays. Therefore, investigating the bladeshape, e.g. the form of skew, rake and thickness distribution closing to tip for delaying the tipvortex cavitation is interesting to propeller designers.
     The aim of this research is to find a method for predicting tip vortex inception, as muchas possible to understand some insight of the tip vortex and the pressure inside the core, andfinally to investigate the influence of blade shape on the tip vortex and its cavitationinception.
     Therefore present study covers following aspects:
     For easier to capture the location of tip vortex and understanding the tip vortex structurein details, a3D twisted foil was designed. Its geometry including the contour, swept, anhedral,thickness distribution and spanwise load distribution was similar to propeller’s blade contour,skew, rake, thickness distribution and radial loading distribution respectively. LDVmeasurements for the foil were carried out in CSSRC’s large cavitation tunnel to get thespacial location of the tip vortex cavitation. The velocity distributions in the region of tipvortex on a number of cross sections were measured by LDV. The test data were thefoundation for the validation of the numerical analysis.
     RANS method was adopted to simulate the tip vortex flow around the foil and thepropeller. A grid scheme with boundary layer grid, together with a local refined grid in the tipvortex can capture the local tip vortex and leading edge vortex near the tip region. The formation of the tip vortex and the vortical flow characteristics influenced by the geometryparameters were analyzed. Based on the CFD results, a simplified vortex model was appliedto calculate the pressure distributions in the vortex core. Based on the correlation analysisbetween the calculated and the measured inception condition, a correlation factor ‘K’ has beenformulated from the data of the twisted foil. This factor has also been applied in the propellercase. The approach can be used for analyzing the effectiveness of the measures to delay tipvortex cavitation inception and providing a relative comparison.
     Present research, the influences from the variation of thickness in tip region, skew andrake form have been analyzed separately for the foil. The mechanism of the delay of tipvortex inception was studied. The variations of the geometry can defer the leading edgevortex rolling into the local tip vortex and weaken the cross flow at the tip. It can help toreduce the tip vortex strength and delay inception of cavitation.
     Based on the investigation on the3D twisted foil, the geometry of a reference propellerwas modified that including the modification of the skew form, rake form, and the thicknessat tip region. It intends to delay the inception of tip vortex cavitation. Model tests have beencarried out for the reference propeller and the new propeller. The experimental results validatethat the tip vortex cavitation was delayed. The trend of calculation results were reflected inthe test results. But the calculation results had to be modified with an empirical correlationcoefficient. So there is a correlation problem remaining.
     The research indicates a direction of the way for delaying tip vortex cavitation inceptionby geometry variations. According to analysis of the numerical calculation result, theeffectiveness of delay can be evaluated at propeller design stage. The presented variations ofgeometry are very promising in engineering application.
引文
[1] Arndt, R. E. A., Arakeri, V. H., Higuchi, H.1991. Some observations of tip-vortex cavitation. J.Fluid. Mech., Vol.229, pp269-289.
    [2] Arndt, R. E. A., Keller, A. p.1992. Water quality effects on cavitation in a trailing vortex. ASMEcavitation’91, FED vol.116, J. Fluids Eng., Vol.114.
    [3] Arndt, R. E. A. and Maines.1994. Viscous effects in tip vortex cavitation and nucleation.20thSymposium on naval hydrodynamic,1994.
    [4] Arndt, R. E. A.2002. Cavitation in vertical flows. Auu, Rev. Fluid Mech,2002,34:143-75.
    [5] Anderson, S. V. and Anderson, P.1987. Hydrodynamic design of propellers with unconventionalgeometry. Trans. Royal Institution of Naval Architects, Vol.129.
    [6] Anderson, P. and Schwanecke, H..1992. Design and model test of tip fin propellers. Trans. RoyalInstitution of Naval Architects, Vol.134.
    [7] Astolfi et al.1999. A model for tip vortex roll-up in the near field region of three-dimensional foilsand the prediction of cavitation onset. Eur. J. Mech. B-Fluid18:757-75.
    [8] Akihisa Konno et al.2002. On the mechanism of the bursting phenomena of propeller tip vortexcavitation. Journal of Marine Science and Technology.
    [9] Amromin et al.2006. Numerical analysis of Reynolds number effects on sheet cavitation. SixthInternational Symposium on Cavitation(CAV2006).
    [10] Billet, M.L. and Holl, J.W.1979. Scale effects on various type of limited cavitation. ASMEInternational Symposium on Cavitation Inception, New York, USA.
    [11] Bailar J.w., S.D.Jessup and Y.T.shen.1992. Improvement of Surface Ship Propeller CavitationPerformance Using Advanced Blade Sections.23rd American Towing Tank Conference, NewOrleans, USA,1992.
    [12] Briancon-Marjollet and Merle.1996. Inception development and noise of a tip vortex cavitation.21th Symposium on naval hydrodynamic.
    [13] Berntsen et al.2001. Numerical modeling of sheet and tip vortex cavitation with FLUENT5.4thInternational Symposium on Cavitation(CAV2001).
    [14] Brewer et al.2003. A design method for investigating cavitation delay.8th Numerical shipHydrodynamic.
    [15] Bulten N. and Oprea A.I.2006. Evaluation of McCormick’s rule for propellers tip cavitation basedon CFD results. CAV2006, Wageningen, The Netherlands.
    [16] Chesnakas, C.,&Jessup, S.1998. Cavitation and3-D LDV tip-flow field measurements of propeller5168. Hydromechanics Directorate Research and Development Report, CRDKNSWC/HD-1460-02.
    [17] Carolyn Q. Judge, Ghanem F. Oweis, Steven L. Ceccio and Jessup, et al.2001. Tip leakage vortexinception on a ducted rotor. Cav2001, A6.001.
    [18] Chow, J.S., Zilliac, G.G., and Bradshaw, P.1994. Turbulence measurements in the near-field of awingtip vortex. ASME Forum on Turbulence in Complex Flows, Chicago, Illinois, USA.
    [19] Chen, Y. and Heister, S. D.1994. Two-Phase modeling of cavitated flows. ASME FED190,299-307.
    [20] Chahine, G. L.1990. Non-spherical bubble dynamics in a line vortex. Proceedings of the ASMEFED Cavitation and multiphase flow form, Toronto, Furuya O, Kluwer Academic Publishers,98,121-126.
    [21] Chahine, G. L. and Hsiao C. T.1994. Strong interactions bubble/bubble and bubble/flow. BubbleDynamics and Interface Phenomena, J. R. Blake et al.,195-206.
    [22] Chahine, G. L. and Hsiao C. T.2002. Prediction of vortex cavitation inception using coupledspherical and Non-spherical models. Proc.24th Symp. of Naval Hydrodynamics, Fukuoka, Japan,July8-13,2002.
    [23] Chesnakas, C., and Jessup, S.2003. Tip vortex induced cavitation on a ducted propeller. Proc.4thASME-JSME Joint Fluids Eng. Conf., FEDSM2003-45320, Honolulu, Hawaii.
    [24] Choi, J.K and Chahine.2003. Non-spherical bubble behavior in vortex flow fields. Computationalmechanics, vol.32, pp.281-290,2003.
    [25] Choi, J.K and Chahine.2003. A mumerical study on the bubble noise and the tip vortex cavitaioninception.8th Numerical ship Hydrodynamic,2003.
    [26] Choi, J.K.2003. Noise due to extreme bubble deformation near inception of tip vortex cavitation.4th ASME_JSME Joint fluid engineering conference,2003.
    [27] Choi, J.K.2006. Dynamics and noise emission of vortex cavitation bubbles in single and multiplevortex flow. Sixth International Symposium on Cavitation(CAV2006).
    [28] Crump, S. F,1948. The effect of bulbous blade tip on the development of tip vortex cavitation onmodel marine propellers. David Taylor Model Basin Report C-99.
    [29] Chahine, G. L., Frederick, G. F., and Bateman, R. D.1993. Propeller tip cavitation suppression usingselective polymer injection. ASME Journ. of Fluids Engineering. Vol.115, No.3, pp.497-503.
    [30] Dugue, C., Daniel, M., Fruman, D.H.1989. Effect of a pressure field on tip vortex cavitation. ASMECavitation and Multi-phase Flow Forum-1989, FED-Vol.79.
    [31] Deshpande, M., J. Feng, and C. L. Merkle.1994. Cavity flow predictions based on the EulerEquations. Journal of Fluids Engineering116,36-44.
    [32] Delannoy, Y. and J. L. Kueny.1990. Two-Phase flow approach in unsteady cavitation modeling.ASME FED98.
    [33] Duan, S. Z., Green, S. I., and Acosta, A. J.1992. Lift/Drag performance of conventional andducted-tip wings. ASME FED-vol.135, Los Angeles, California, USA.
    [34] De Jong, K., Sparaenberg, J. A., Falcao de Campos, F. A. C., and Van Gent, W.1992. Model testingof an optimally designed propeller with two-sided shifted endplates on the blades.19th Symposiumon Naval Hydrodynamics, Seoul, Korea.
    [35] Dai, C., Fraser, J., Coffin, P., Garala, H., and Rappl, G..1995. Hydrodynamic simulation of passiveblade control for tip vortex cavitation control. PROPCAV ‘95Conference on Propeller Cavitation,Newcastle upon Tyne, UK.
    [36] Dular et al.2006. Experimental and numerical investigation of swept leading edge influence on thedeveloped cavitation. Sixth International Symposium on Cavitation(CAV2006).
    [37] Francis, T. B., Katz, J.1988. Observations on the development of a tip vortex on a rectangularhydrofoil. ASME J. Fluids Engineering, Vol.110, No.2.
    [38] Fruman, D. H., Dugue, C., Cerruti, P.1991. Tip vortex roll-up and cavitation. ASME Cavitation andMultiphase Flow Forum-1991, FED-Vol.109.
    [39] Fruman, D. H., Dugue, C., Pauchet, A., Cerruti, P., Briancon-Marjollet, L.1992. Tip vortex roll-upand cavitation.19th Symposium on Naval Hydrodynamics.
    [40] Fruman, D.H., Cerruti, P., Pichon, T., and Dupont, P.1995. Effect of hydrofoil planform on tipvortex roll-up and cavitation. ASME Journ. of Fluids Engineering, Vol.117.
    [41] Fruman, D.H., Castro, F., Pauchet, A., and Pichon, T.1994. On tip vortex turbulence, wandering andcavitation occurrence.2ndInternatioinal Symposium on Cavitation, Tokyo, Japan.
    [42] Francesco Salvatore, Heinrich Streckwall, Tom van Terwisga.2009. Propeller Cavitation Modellingby CFD-Results from the VIRTUE2008Rome Workshop. First International Symposium onMarine Propulsors (smp’09), Trondheim, Norway, June2009.
    [43] Faller, W., Farhat, F., and Avellan, F.1992. Some effects of surface roughness on cavitation inception.STG/HSVA International Symp. on Propulsors and Cavitation, Hamburg, Germany.
    [44] Fruman, D. H. and Aflalo, S. S.1989. Tip vortex cavitation inhibition by drag-reducing polymersolution. ASME Journ. of Fluids Engineering, Vol.111, pp.211-216.
    [45] Green, S. I., Acosta, A. J.1991. Unsteady flow in trailing vortices. J. Fluid Mechanics, Vol.227, pp.107-134.
    [46] Green, S. I.1991. Correlating single-phase flow measurements with observations of trailing vortexcavitation. Journal Fluids Engineer,1991.
    [47] Gowing, S., Briancon-Marjollet, L., Frechou, D. and Godeffroy, V.1995. Dissolved gas and nucleieffects on tip vortex cavitation inceptioin and cavitating core size. CAV’95International Symposiumon Cavitation, Deauville, France.
    [48] Green, S.I.1989. Tailored air bubble determination of trailing Vortex core pressure. ASMEFED-Vol.79, La Jolla, California, USA.
    [49] Gindroz, B. and Billet, M.1993. Influence of the nuclei on the cavitation inception for different typeof cavitation on ship propeller. ASME FED-Vol.177, New Orleans, Loisiana, USA.
    [50] G.L. Chahine, C.T., Hsiao and J.K. Choi.2008. A numerical study of cavitation inception in complexflow fields. DYNAFLOW, INC, Report2M4001-1-ONR.
    [51] Green, S. I., Acosta, A. J., and Akbar, R.1988. The influence of tip geometry on trailing vortexrollup and cavitation. ASME FED-Vol.64Cincinnati, Ohio, USA.
    [52] Green, S. I. and Duan, S. Z.1996. The ducted tip a hydrofoil tip geometry with superior cavitationperformance. ASME Journal of Fluids Engineering, Vol.177, pp.665-672.
    [53] Goodman, T. R. and Breslin, J. P.1980. Feasibility study of the effectiveness of tip sails on propellerperformance. Stevens Inst. Of Technology Report MA-RD94081006.
    [54] Hsiao C-T and Pauley.1998. Numerical study of the steady-state tip vortex flow over a finite spanhydrofoil. J. Fluids Eng.120:345-49,1998.
    [55] Hsiao, C.-T. and L. L. Pauley.1999. Study of tip vortex cavitation inception using Navier stokescomputatioin and bubble dynamics model. Journal of Fluids Engineering121(1),198-204.
    [56] Hsiao, C.-T. and G. L. Chahine.2001. Numerical simulation of bubble dynamics in a vortex flowusing Navier-Stokes computations and moving chimera grid scheme. Proc.4th Int. Symp. onCavitation, California Institute of Technology, Pasedena, CA, June20-23,2001.
    [57] Hsiao, C.-T.2003. Scaling of tip vortex cavitation inception noise with a bubble dynamics modelaccounting for nucleus size distribution.4th ASME_JSME Joint fluid engineering conference,2003.
    [58] Hsiao, C.-T and Chahine, G. L.2003. Effect of vortex/vortex interaction on bubble dynamics andcavitation noise.5th International symposium on cavitation,2003.
    [59] Hsiao, C-T and Chahine, G. L.2004. Prediction of tip vortex cavitation inception using coupledspherical and nonspherical bubble models and Navier-Stokes computatioins. J. of Marine Sci. andTech.8,99-108.
    [60] Hirt, C. W.1990. Computational modeling of cavitation. Proceedings of2nd InternationalSymposium on Performance Enhancement for Marine Applications, Newport, Rhode Island.
    [61] Heinrich Streckwall.2003. Numerical models for cavitation and propeller pressure fluctuations. STGSprechtag ‘kavitation’, hamburg, Jan,30th,2003.
    [62] H-J. Heinke.2003. The influence of test parameters and wake field simulation on the cavitation andthe propeller induced pressure fluctuations. Fifth International Symposium on Cavitation(CAV2003).
    [63] Itoh, S., Tagori, T., Ishii, N., and Ide, T.1986. Study of the propeller with small blades on the bladetips (1st Report). Journ. of Society of Naval Architects of Japan, Vol.159.
    [64] Jessup, S. D.1989. An experimental investigation of viscous aspects of propeller blade flow. PhDThesis, Catholic University of America.
    [65] Jessup et al.2004. Cavitation performance evaluation of naval surface ship propeller with standardand advanced balde section.20th Symposium on naval hydrodynamic.
    [66] Jessup.2001. Tip-leakage vortex inception on a ducted rotor. Fourth International Symposium onCavitation(CAV2001).
    [67] Jean-Pierre Franc and Jean-Marie Michel.2004. Fundamentals of Cavitation. Kluwer AcademicPublishers.
    [68] Jan A. Szantyr.2006. A computation model of the propeller cavitating tip vortex interacting with therudder. Sixth International Symposium on Cavitation(CAV2006).
    [69] Jingjun Zhong, Shaobing Han and Peng Sun.2011. The influence of suction-side winglet on tipleakage flow in compressor cascade, Preceeding of ASME Turbo Expo, June6-10,2011, Vancouver,British Columbia, Canada.
    [70] Kuiper, G.1978. Scale effect on propeller cavitation inception.12th Symposium on NavalHydrodynamic.
    [71] Kuiper, G.1979. Modeling of tip vortex cavitation on ship propeller.4th Lips Propeller Symposium.
    [72] Kuiper, G.1981. Cavitation inception on ship propeller models. Ph.D. Thesis, Delft TechnicalUniversity.
    [73] Kuiper, G.1983. Effect of artificial roughness on sheet cavitation.2nd Conf. On Cavitation, Inst.Mech. Eng., Edinburgh.
    [74] Kuiper, G.&Jessup, S.D.1993. A propeller design method for unsteady conditions. Proc. Of theSNAME, SNAME Centennial Metting, New York.
    [75] Kuiper, G.1994. Effects of skew and rake on cavitation inception for propellers with thick bladesections.20th Symposium on Naval Hydrodynamics, Santa Barbara, USA,1994.
    [76] Kuiper, G.1998. Cavitation research and ship propeller design. Applied scientific research,1998.
    [77] Kuiper, G., T. J. C. Van Terwisga, G-J. Zondervan.2006. Cavitation inception tests on a systematicseries of two bladed propellers.26th Symposium on Naval Hydrodynamics, Roma, Italy,17-22September,2006.
    [78] Keller and Rott.1999. Scale effects on tip vortex cavitation inception. Proc. JSME Fluids Eng.Symp., FEDSM99-7298,1999.
    [79] Kinnas, S.A., Lee, H. and Mueller, A.C.1998. Prediction of propeller blade sheet and developed tipvortex cavitation.22th Symposium on Naval Hydrodynamic,1998.
    [80] Kunz, R., Lindau, J.W., Kaday, T.A., and Peltier, L.J.2003. Unsteady RANS and Detach EddySimulations of Cavitating Flow over a Hydrofoil. Fifth International Symposium onCavitation(CAV2003), Osaka, Japan, Nov.2003.
    [81] Kawamura et al.2006. Simulation of unsteady cavitating flow around marine propeller using aRANS CFD code. Sixth International Symposium on Cavitation(CAV2006).
    [82] LAMB H.1932. Hydrodynamics. Cambridge University Press, London and New York.
    [83] Ligneul P and Latorre R.1989. Study on the capture and noise of spherical nuclei in the presence ofthe tip vortex of hydrofoils and propellers. Acoustica68:1-14,1989.
    [84] Ligneul P and Latorre R.1993. Study of nuclei distribution and vortex diffusion influence on nucleicapture by tip vortex and nuclei capture noise. J. Fluids Eng.115:504-7,1993.
    [85] L.Eca et al.1994. Prediction of incompressible tip vortex flows.20th Symposium on navalhydrodynamic,1994.
    [86] LEE, J-H, JUNG, J-K et al.2012. Experimental estimation of a scaling exponent for tip vortexcavitation via its inception test in full-and model-ship. Journal of Hydrodynamics,2012,24(5):658-667.
    [87] McCormick, B.W.1962. On cavitation produced by a vortex trailing from a lifting surface, ASMEJourn. of Basic Engineering, pp.369-379.
    [88] Maines and Arndt.1997. Tip vortex formation and cavitation. J. Fluids Eng.119:413-19,1997.
    [89] Moustafa Abdel-Maksoud.2003. Numerical and experimental study of cavitation behaviour of apropeller. Fifrth International Symposium on Cavitation(CAV2003).
    [90] Mitja Morgut and Enrico Nobile.2012. Numerical predictions of cavitating flow around model scalepropellers by CFD and advanced model calibration. International Journal of Rotating Machinery,volume2012, Article ID618180.
    [91] N. Chiba.1991. A relation between circulation distribution and tip vortex caivtation of marinepropellers. AIAA,27th Joint Propulsion Conference, June24-26,1991, Sacarmento, CA.
    [92] Oweis, G. F., Hout, I. E., Iyer, C., Tryggvason, G. and Ceccio, S.L.2005c. Capture and inception ofbubbles near line vortices. Phys. Fluids17(2),22105-22118.
    [93] Oprea, Norbert Bulten.2009. RANS simulations of a3D sheet-vortex cavitation. CAV2009,August17-22,2009, Ann Arbor, Michigan, USA.
    [94] Pogozelski, E.M., Shekarriz, A., Katz, J., and Huang, T. T.1993. Three dimensional near fieldbehavior of a tip vortex developing on an elliptic foil. AIAA Paper98-0865, Reno, Nevada, USA.
    [95] Pauchet, A., Briancon-Marjollet, L., and Fruman, D.H.1993. Recent results on the effect of crosssection on hydrofoil tip vortex occurrence at high Reynolds Numbers, ASME FED-Vol.153,Washington, DC, USA.
    [96] Pauchet.1996. Velocity and turbulence in the near-field region of tip vortices from elliptical wing itsimpact on cavitation.21th Symposium on naval hydrodynamic.
    [97] Pawel Flaszynski, Jan Szantyr, Pawel Dymarski, Marek Kraskowski.2009. Numerical Prediction ofVortex Generated by Hydrofoil. First International Symposium on Marine Propulsors SMP’09,Trondheim, Norway, June2009.
    [98] Platzer, G. P. and Souders, W. G.1980. Tip vortex cavitation characteristics and delay on athree-dimensional hydrofoil. Proc.19th ATTC Meeting, Ann Arbor, Michigan, USA.
    [99] Roland, Philippe Dupont and Francois Avellan.1998. Partial sheet cavities prediction on a twistedelliptical platform hydrofoil using a fully3D approach.3rd International symposium on cavitation,1998.
    [100] Roy Yakushiji et al.2008. Tip vortex cavitation suppression by water and polymer injection.27thSymposium on naval hydrodynamic,2008.
    [101] RinaldoLMiorini, HuixuanWu, JosephKatz.2010. The internal structure of the tip leakage vortexwith in the rotor of an axial waterjet pump. Proceedings of ASME Turbo Expo2010GT2010-23056:Power for Land, Sea and Air June14-18,2010, Glasgow, UK.
    [102] Suhrbier, K.R. and Lecoffre, Y.1986. Investigation of the influences of test techniques, water speedand nuclei seeding on the characteristics of a high speed model propeller in a cavitation tunnel andcorreclation with full scale measurement. International Symposium on Cavitatioin, Sendai, Japan.
    [103] Souders, W. G. and Platzer, G. P.1981. Tip vortex cavitation characteristics and delay of inception ona three-dimensional hydrofoil. DTNSRDC Research and Development Report81/007.
    [104] Smith, H. C.1980. Method for reducing the tangential velocities in aircraft trailing vortices. J.Aircraft, Vol.17, No.12.
    [105] Shen, Y. T. and Eppler, R.1981. Wing Sections for Hydrofoils-Part2: Nonsymmetrical Profiles. J.Ship Research, Vol.25,1981, PP39-45.
    [106] Stinebring et al.1991. The structure of a three-dimensional tip vortex at high Reynolds numbers. J.Fluids Eng.113:496-503.
    [107] Stanier, M. J.1995. The effect of radial circulation distribution on propeller cavitation.PROPCAV’95Conference on Propeller Cavitation, Newcastle upon Tyne, UK.
    [108] S. Gopalan.2000. On the flow structure tip leakage cavitation inception and associated noise.23thSymposium on naval hydrodynamic,2000.
    [109] S.Gopalan et al.2001. Tip leakage cavitation associated bubble dynamics noise flow structure andeffect of tip gap size. Fourth International Symposium on Cavitation(CAV2001).
    [110] Seiji hoshida.2001. Tip leakage vortex cavitation from the tip clearance of a simple hydrofoil.Fourth International Symposium on Cavitation(CAV2001).
    [111] Shin Hyung Rhee et al.2003. A study of propeller cavitation using a rans cfd method.8th Numericalship Hydrodynamic,2003.
    [112] Sung-Eun Kim.2004. Toward high-fidelity prediction of tip-vortex around lifting surface-what doesit take?25th Symposium on naval hydrodynamic,2004.
    [113] Salvatore.2006. Theoretical modelling of unsteady cavitation and induced noise”, SixthInternational Symposium on Cavitation(CAV2006).
    [114] S.R.Turnock.2007. Flow feature identification for capture of propeller tip vortex evolution.26thONR,2007.
    [115] S. Nagaya, Risa Kimoto, Kenji Naganuma and Takayuki Mori.2011. Observation and scaling of tipvortex cavitation on elliptical hydrofoils. Proceedings of the ASME-JSME-KSME, Joint FluidsEngineering Conference, July24-29,2011, Hamamatsu, Shizuoka, JAPAN.
    [116] Tuomas Sipil and Timo Siikonen.2012. RANS predictions of a cavitating tip vortex. Proceedingsof the Eighth International Symposium on Cavitation (CAV2012), August,2012, Singapore.
    [117] TERWISGA, T. VAN, KUIPER, G., RIJSBERGEN, M.X.VAN.1999. On Experimental Techniquesfor the Determination of Tip Vortex Cavitation on Ship Propellers. ASME/JSME Fluids EngineeringSummer Meeting, San Francisco,1999.
    [118] T. Persson et al.2006. Numerical simulation of the cavitating flow around a wing section using LES.Sixth International Symposium on Cavitation(CAV2006).
    [119] Th. Frank et al.2007. CFD simulation of cloud and tip vortex cavitation on hydrofoils.6thInternational conference on multiphase flow,2007.
    [120] Tomomi Uchiyama and Tomohiro Degawa.2007. Vortex simulation of the bubble flow around ahydrofoil. International Journal of Rotating Machinery, Volume2007, Article ID72697.
    [121] Van Gent, W., Falcao de Campos, F. A. C., and de Jong, K.1992. Model test results of an optimumpropeller with endplates and some practical aspects of application. MARIN Jubilee Meeting,Wageningen, The Netherlands.
    [122] Van Terwisga et al.2004. Effect of operational conditations on the cavitation inception speed ofnaval propellers.25th Symposium on naval hydrodynamic,2004.
    [123] Visonneau.2006. Computation of2D cavitating flows and tip vortex flows with an unstructuredRANS solver. Sixth International Symposium on Cavitation(CAV2006).
    [124] X. Viot, D. Fruman, F. Deniset and J. Billard.1998. Numerical Simulation of Tip Vortices Roll-Up.22th symposium on naval hydrodynamic,1998.
    [125] Y-Z.Kehr et al.1996. Calculations of pressure fluctuations on the ship hull induced by intermittentlycavitation propeller.21th Symposium on naval hydrodynamic.
    [126] Yin Lu Young&S.A.Kinnas.2003. Fluid and structural modeling of cavitating propeller flow.5thInternational symposium on cavitation,2003.
    [127] Yong Qun Han.2005. Diffused tip vortex structure generated by a slotted tip rotor blade.43rd AIAAAerospace Science Meeting and Exhibition,10-13January2005, Reno, NV.
    [128] Young T. Shen.2003. The effect of scale on propeller tip-vortex cavitation noise. HydromechanicsDirectorate Technical Report, NSWCCD-50-TR-2003/057, December2003.
    [129] Yoshitata Ukon et al.2004. Computational design of trans-cavitating propellers and experimentalevaluation of their performance.25th Symposium on naval hydrodynamic,2004.
    [130] Yonglaing et al.2006. Comparisons of turbulence models in predicting unsteady cavitation flow.Sixth International Symposium on Cavitation(CAV2006).
    [131] Zheng, Zhibo, Kuiper. G.2009. Blade Section Design of Marine Propellers with Maximum InceptionSpeed.7th Int. Symposium on Cavitation, CAV2009, Ann Arbor, Michigan, USA,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700