用户名: 密码: 验证码:
电磁波在对流层中传输与散射若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁波在对流层晴空大气及降雨、降雪、沙尘等气象环境中的传输效应对无线电电子系统有重要的影响,电磁波在对流层中的传播与散射特性研究,是一项既取得了一定的理论和实验成果同时也面临着新挑战的课题。随着无线电电子技术的发展,电波传播工作者开始考虑一些新问题,例如:未来的通信频段和对信号的传输质量要求将会不断提高,那么电磁波在对流层中传输、散射效应的计算及预报模型的精度能否适应新频段、新技术和新精度的要求;空间环境控制和人工改变技术是空间环境军用和民用的重要方面,能否通过某种人为干预手段,改善无线电电子系统通信效果,拓展其在军事、民用等方面的应用,开发新的通信技术;如何结合随机介质中的波传播理论,研究和评估信号在对流层中的传输、散射效应对新的通信技术的影响机理及影响程度,如何对抗这些影响。所以,研究电磁波在对流层中的传输、散射特性,对提高无线电电子系统的性能和发展无线通信技术有重要的理论意义和实用价值,本文就电磁波在对流层中的传输、散射的若干问题展开研究,主要工作及研究成果如下:
     研究了声波干扰改变晴空大气折射指数起伏特性的机理,推导出了大气折射指数起伏特性与声波参数的关系,得到了声波干扰下单位体积散射截面的计算公式,且做出计算、仿真和讨论。结合降雨、沙尘等离散随机介质的介电特性研究状况,分析了部分现有模型的特点,提出一个改进的计算离散随机介质等效介电常数的计算模型,以降雨环境为例进行了计算、仿真和讨论,并且对模型进行了分析和评估。
     利用本文得到的等效介电常数计算模型,提出了修正计算雨致特征衰减的ITU-R模型中参数的方法,该方法可以结合特定地区降雨的物理特征,更精确地考虑雨致特征衰减ITU-R计算模型参数受雨滴尺寸、分布和温度等影响,提高对雨衰的计算精度。以Weibull谱为例做了计算、仿真和分析,得出了Weibull谱分布情况下,对ITU-R模型参数的修正结果,利用修正结果计算了雨致特征衰减,并且与实测结果做了比较。
     拓展了现有文献中利用非一分钟降雨率预报雨衰的建模方法,提出了利用10分钟累积降雨率预报降雨衰减的建模方法。以我国部分地区的10分钟降雨率测量结果和鑫诺I号等卫星参数及雨衰测量结果为例,建立了利用10分钟降雨率预报雨衰的模型,对模型做出评价和分析。
     分析了降雨和雨衰时间序列的特点,以雨衰时间序列为基础,建立了预报雨衰短期、实时、动态特性的ARIMA预报模型。利用实验测量的雨衰时间序列的频谱特性,对文中预报模型得到的降雨衰减实时、动态序列进行了检验,并且对本文得到的模型进行了评估和分析。
     以圆柱目标和降雨环境为例研究了随机离散介质环境中目标的信杂比,研究结果表明,信杂比最优化与收、发天线极化状态密切相关,而且雨滴粒子的形状对最优信杂比对应的极化状态影响明显,所以实际应用中需要根据降雨环境物理特征,计算目标回波信号信杂比与收发天线极化状态关系,以便及时调整天线最佳极化状态,使得接收信号信杂比最优化。本文的讨论方法对沙尘和降雪等环境也适用。
     分析了多径传输环境下接收端信号特点,以及研究接收信号包络概率密度函数的必要性。用随机介质中的波传播理论,研究、分析了降雨、降雪等恶劣气象环境对多径信道包络概率密度的影响机理,分析了在降雨、降雪等环境中多径传输模式可能发生的变化。以降雨环境和全向天线为例仿真、计算了降雨对多径信道包络概率密度的影响。对本文的仿真结果做出了分析,结果表明本文处理问题的方法和研究结果,对于高增益、窄波束天线情况也适用。
     研究了对流层大气及其中沉降粒子对通信系统噪声的影响机理及重要性。以本文研究结果为基础,仿真了ITU推荐各雨区的降雨特征衰减的年时间统计分布,利用本文得到的雨衰预报模型,以鑫诺I号等卫星参数为例,仿真了我国部分地区降雨导致的噪声温度年时间百分比分布,以及由于降雨影响导致系统G/T下降的年时间百分比分布。研究结果表明,降雨对噪声温度的贡献不可忽略,在具体的通信系统需要结合特定地区降雨、降雪等气象环境的物理特征,精确分析衰减和散射特性,评估它们对系统噪声的影响。
     探讨了恶劣气象环境如何影响MIMO系统,分析了降雨、降雪等对流层气象环境可能对MIMO系统的影响。从理论角度探讨了降雨、降雪等对流层气象环境对MIMO系统信道容量的影响,以降雨环境和特定的天线结构为例,仿真了降雨衰减对MIMO系统信道容量的影响,结果表明降雨衰减对MIMO系统信道容量的影响明显。因此,对MIMO通信系统的设计过程中有必要考虑对流层气象环境的影响因素。
     研究了声波干扰下对流层散射通信系统的散射损耗,将声波干扰下的散射损耗与没有声波干扰情况下散射损耗进行了对比,并且对研究结果做出分析、讨论。研究结果表明,声波干扰可以有效减小对流层散射通信散射损耗,声波干扰可以有效改善散射通信系统的性能和稳定性,声波干扰对流层对扩大散射通信系统应用领域可望有广阔的应用前景。
The most important impacts on wireless communication systems is from troposphere, clear atmosphere and some meteorologic environments, for example rain, snow, dust-storm and so on. The study on some problems for radio wave propagating and scattering in troposphere is a project, about which some theoretical and experimental results have been given, but there are some new challenges. Some new problems are presented by pursuers on radio wave propagating with the developing of radio-technology, For example: If the precision of calculating and predicting models can satisfy the new request for new frequency, new communication technology, and new precision in future more higher frequency and more higher desire of signal quality; It is important application for military affairs and civilian affairs to control and remodel space environment artificially. if some man-made disturbing can improve the communication quality of radio system, extend the applying fields for military affairs and civilian affairs, exploit new radio communication technology; How to investigate and evaluate the mechanism of the impacts induced by radio wave propagating and scattering in troposphere, how to investigate and evaluate the influencing degree and how to mitigate the effects, using the theory of radio wave propagating through random media.
     It has the theory and practicality significance for improving performance of communication systems and developing communication technologies to study the propagating and scattering characters of radio wave passing through troposphere. Some problems about propagating and scattering for radio wave through troposphere are studied in this thesis. The main investigated contents and results are following:
     The mechanism about disturbing the index of clear atmosphere by acoustic wave is investigated. The formulae calculating the scattering cross section of unit volume under acoustic wave disturbing are deduced. The relation between the fluctuant characteristics of refraction index of clear atmosphere and the parameters of acoustic wave is found. Some simulation and discussion are given. The status about the permittivity of meteorologic environments, for example rain, snow, dust-storm and so on. are investigated. The specialties of existing models are analyzed. A improved model for studying the equivalent permittivity of meteorologic environments is given. Some calculating, simulating and discussing are given, rain as an example.
     Using the model of calculating equivalent permittivity, the method for modifying the parameters of ITU-R model for calculating the specific attenuation induced by rain is discussed by detailedly analyzing the exiting model. The method can improve the precision of evaluating rain attenuation by take the effects of raindrop shape, size distribution, average temperature etc. into account. Some calculating and analyzing are given, and the parameters of ITU-R model for calculating rain-induced specific attenuation are modified under Weibull size distribution. Rain-induced specific attenuation is calculated using the modified results, and that is compared with measured data in Xi'an.
     The models for predicting rain-induced attenuation are investigated in detail. The method of modeling predicting rain-induced attenuation using no one minute rainfall rate is investigated. A new viewpoint of predicting rain-induced attenuation using 10-minute rain rate is discussed. Based on the rain-induced attenuation of the satellites of Xinnuo-No.1 etc. measured in some areas in China, and the ten minutes rainfall rate measured in Haikou etc., the steps and processes of modeling are researched. The predicting results using the model given in this thesis are evaluated using measured data.
     Based on the in-depth investigating the statistical peculiarities of rain-induced attenuation time series, the time series of rain-induced attenuation are simulated. An ARIMA model for forecasting the dynamic specialties of rain-induced attenuation is modeled. The spectrum of predicting results using the model given in this thesis accords with that of measured rain-induced attenuation time series. The model given in this thesis is analyzed and evaluated.
     The SCR(Signal-to-Clutter-Ratio) of a cylinder target in rain is discussed. The results show that the effect of shape of raindrop on SCR changing with polarization state is obvious. So, it is necessary for adjusting polarization state of antenna that SCR need be calculated taking the characters of rainfall in certain area, for example the shape of raindrop, into account. The method used in this thesis is available for snow, dust etc.
     The characters of received signal in multi-path channel are discussed. The necessary to study the PDFs (probability density functions) in multipath channels is analyzed. The mechanism of weather phenomena impacting on the PDFs in multipath channels, rain, snow etc. for instance, is investigated and analyzed by the theory of radio wave propagating in random media. Some computing and simulating about the effect are made under the assuming of rain environment and isotropy antenna. The simulating results are analyzed. The way used in this thesis is valid for antenna with high gain and narrow beam.
     The mechanism of producing noise to communication systems by troposphere is investigated. The importance of the effects is analyzed. Based on the introducing for atmospheric noise temperature and antenna noise temperature, the contribution of rain and other sedimentation particles to antenna noise temperature is discussed. The annual CDFs (Cumulative Distribution Functions) of specific attenuation for every zone ITU recommended are simulated based some results in this thesis. The annual CDFs of noise temperature and the reduction of G/T induced by rain in some areas in China are discussed by the prediction model for rain attenuation under the link parameters of the satellites of Xinnuo-No.1 etc. The results show that the contribution of rain to noise temperature can not be neglected. It is necessary to invested in detail the effects of weather phenomena on antenna noise temperature, for instance rain, snow, dust-storm and so on.
     The possible impacts induced by troposphere weather phenomena, rain, snow, dust-storm etc. for instance, on MIMO communication systems are theoretically introduction. And, it is theoretically analyzed that how troposphere weather phenomena, rain, snow, dust-storm etc. for instance, impact on MIMO communication systems. The effect of attenuation induced by rain or snow etc. on MIMO channel capacity are theoretically discussed, which is computed and simulated under rain environment and given antenna. The results show that it is necessary to take the impacts induced by troposphere weather phenomena, rain, snow, dust-storm etc. for instance, on MIMO communication systems into account.
     The theory for calculating scattering loss in troposphere scattering communication is analyzed. Scattering loss under acoustic wave disturbing is simulated, which is discussed and compared with that under no acoustic wave disturbing. The results show that the performance and stability of troposphere scattering communication system can be improved by acoustic wave disturbing, which has the theory and practicality significance for extending the applying fields of troposphere scattering communication.
引文
[1]熊皓.无线电波传播[M].第一版.北京:电子工业出版社,2000.487-531。
    [2]赵振维.水凝物的电波传播特性与遥感研究[D].西安电子科技大学博士学位论文,2001.1-114。
    [3] Liebe, H. J., T. Manabe, and G Huford. Millimeter-wave atenuation and delay rates due to fog/cloud condition[J]. IEEE Trans. Antennas Propag.. 1989, 37(12). 1617-1623.
    [4] Stutzman W.L., Dishman W.K., A simple model for the estimation of rain-induced attenuation along earth-space paths at millimeter wavelengths[J]. Radio Science. 1982, 17. 1465-1476.
    [5]刘圣民,熊兆飞.对流层散射通信技术[M].第一版.北京:国防工业出版社,1982.8-51。
    [6]熊皓.无线电波传播[M].第一版.北京:电子工业出版社,2000.466-474。
    [7]弓树宏,黄际英,刘忠玉.大气折射指数人工控制理论探索[C].第六届西北地区计算物理学术会议论文集,2008.117-120。
    [8]邹震.声波干扰下对流层散射通信机理研究[D].西安电子科技大学硕士学位论文,2008.1-52。
    [9]张明高.对流层散射传播[M].第一版.北京:电子工业出版社,2004.1-54。
    [10]李道本.散射通信[M].第一版.北京:人民邮电出版社,1982,1-300。
    [11] Verma, A.K. Jha, K.K. Tewari, R.K.. Effect of the atmosphere on radio and radar performance[C]. TENCON '89. Fourth IEEE Region 10 International Conference. 1989. 844–847.
    [12] AKIR A Ishimaru. Theory and application of wave propagation and scattering in random media[J]. Proceedings of the IEEE. 1977, 65(7). 1030–1061.
    [13] H. Sizun. Radio wave propagation for telecommunication applications[M]. New York: Springer Berlin Heidelberg, 2003. 13-254.
    [14] Marie Edith Gimonet. et.al. Chapter 2.3: Scintillation/Dynamics of the Signal[M]. COST Project 255, Final Report, Office for official publications of the European Community, Luxembourg. 2002. 2.3-2-9.
    [15] Christian Ho, Stephen Slobin and Kelly Gritton. Atmospheric Noise Temperature Induced by Clouds and Other Weather Phenomenaat SHF Band (1-45 GHz)[C]. Prepared for the United States Air Force Spectrum, Efficient Technologies for Test and Evaluation and Advanced Range Telemetry for Edwards Air Force Base,California, JET Propulsion Laboratory Calisornia Institute of Technology. 2005. 5-119.
    [16] Frank Silvio Marzano. Modeling Antenna Noise Temperature Due to Rain Clouds at Microwave and Millimeter-Wave Frequencies[J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. 2006, 54(4). 1305-1317.
    [17] Kraus, J.D.. Radio astronomy[M]. 2nd Ed., Cygnus-Quasar Books. 1986, 1-200.
    [18] Chu, T. S.. Rain induced cross-polarzation at centimeter and millimeter[J]. Bell Syst. Tech. J.. 1974, 53(8). 1559-1579.
    [19]徐英霞.沙尘暴与降雨对Ka频段地空路径传输效应研究[D].西安电子科技大学硕士学位论文,2003.1-51。
    [20] M.P.M.霍尔著,梁卓英张忠治译,沙踪校.对流层传播与无线电通信[M].第一版.北京:国防工业出版社,1984.1-38。
    [21] Roger L. Freeman. Radio System Design for Telecommunications[M]. Third Edition. New York: IEEE-Wiley , The Institude of Electrical and Electronics Engineers, Inc., 2007. 305-380.
    [22]吕海寰,蔡剑铭,甘仲民等.卫星通信系统[M].第二版.北京:人民邮电出版社,2001.45-73。
    [23] Gong Shuhong, Huang Jiying, Zhao Xiaolong. Rain-induced effects on the envelope probability density functions in multipath channels[J]. Radio Sci. 2008, 43. RS2001, doi:10.1029/2007RS003759.
    [24]李超峰.MIMO信道电波传播特性[D].西安电子科技大学博士学位论文,2006.1-22。
    [25] Stridh, R.Kai Yu.Ottersten, B. Karlsson, P.. MIMO channel capacity and modeling issues on a measured indoor radio channel at 5.8 GHz[J]. Wireless Communications IEEE Transactions on. 2005. 895–903.
    [26]曹恺,吴援明.户外散射环境下的MIMO信道容量分析[J].弹箭与制导学报.2005,25(2).97-103。
    [27]王岩,朱世华,王磊.多输入多输出系统信道容量研究[J].电子与信息学报.2005,27(4).588-591。
    [28] Chuah C N, Tse D, Kahn J M, et.. Capacity scaling in MIMO wireless systems under correlated fading[J]. IEEE Trans. on information Theory. 2002, 48(3). 637-651.
    [29]弓树宏,黄际英,王芳.雨介质等效复折射指数系统辨识研究[J].西安电子科技大学学报(自然科学版).2004,31(5).675-677。
    [30] Gong Shuhong, Huang Jiying. Accurate analytical model of equivalent dielectricconstant for rain medium[J], Journal of Electromagnetic Waves And Applications. 2006, 20(13). 1775-1783.
    [31]李应乐,黄际英,杨廷梧.雨介质的等效介电常量模型[J].光子学报.2003,32(3).378-381。
    [32]彭伟才,陈康华.磁性纤维随机混合媒质等效电磁参数的计算[J],稀有金属材料与工程.2005,34(9).1047-1410。
    [33] M.Z.Gao, T.S.Yeo, P.S.Kooi and M.S.Leong. Rain Attenuation Calculation Using Dielectric Mixturewith Deformed Rain Drops[C], Geoscience and Remote Sensing Symposium. 1993, IGARSS '93. Better Understanding of Earth Environment., International. 1250-1252.
    [34]吕小红,黄际英.毫米波段随机雨介质等效复折射指数的神经网络模型[J].西安电子科技大学学报(自然科学版).2001,28(3).357-360。
    [35] Bean, B.R., B.A. Cahoon, C.A. Samson and G.D. Thayer. A world atlas of atmospheric radio refractivity[M], ESSA Monograph 1, Department of Commerce, Washington, USA.1966. 1-138.
    [36] Craig, K.H. and T.G. Hayton. Climatic mapping of refractivity parameters from radiosonde data[C]. in NATO/AGARD Conf. Proc. CP-567, North Atlantic Treaty Organization, Paris, France. 1995. 43.1-12.
    [37] ITU-R. Propagation data and prediction methods for the design of terrestrial line-of-sight systems[S]. Rec. P.530-8, International Telecommunication Union, Geneva, 1999.
    [38] Segal, B..Surface-based meteorological parameters for use in global modelling of clear-air microwave fading characteristics[C]. Proceedings URSI Comm. F Symposium. Climpara’96, Oslo,Norway.1996. 10-11.
    [39] Hayton, T.G. and K.H. Craig. Mapping of radiosonde-derived clear air climatic parameters[C]. URSI Climpara 96 conference. Oslo. 1997. 329-333.
    [40] Ana Benarroch, Laurent Blanchard et.al. Chapter 3.1: Clear air (Refractivity part)[M]. COST Project 255, Final Report, Office for official publications of the European Community, Luxembourg. 2002. 3.1-2-37.
    [41] I.E. Otung and B.G. Evans. Tropospheric scintillation and the influence of wave polarisation[J]. Electronics Letters 15th. 1996, 32(4). 307-308.
    [42] Ifiok., Otung. Prediction of tropospheric amplitude scintillation on a satellite link[J]. IEEE transactions on antennas and propagation. 1996, 44(12). 1600-1608. [43 ] ITU-R. The radio refractive index: its formula and refractivity data[S], Rec. P.453-7, International Telecommunication Union, Geneva, 1999.
    [44] Marina Boumis, Ermanno Fionda et. al.. Chapter 2.1: Propagation Effects Due to Atmospheric Gases and Clouds[M]. COST Project 255, Final Report, Office for official publications of the European Community, Luxembourg. 2002. 2.1-2-39.
    [45]杨瑞科,吴振森,赵振维.微波斜径传播对流层大气湍流结构常数模型[J].微波学报.2003,19(2).64-68。
    [46]李应乐黄际英罗惠霞.电磁波在湍流介质中的衰减效应[J].西北大学学报(自然科学版).2003,3.256-258。
    [47] Medhurst, R. G. Rainfall atenuation of centimeter waves; comparison of theory and measurement[J], Trans, Antennas Propagat. 1965, 13(4). 550-564.
    [48] Prupacher, H. R. and R. L. Pitter. A semi-empirical determination of the shape of clouds and rain drops[J]. J. Atmos. Sci. Jan. 1971, 28. 86-94.
    [49] Oguchi, T.. Attenuation of electromagnetic wave due to rain with distorted raindrops[J]. J. Radio Res. Lab.(Japan). 1960, 7(33). 467-485.
    [50] Oguchi,T. Atenuation and phase rotation of radio waves due to rain: calculations at 19.3 and 34.8 GHz[J]. Radi Sci.. 1973, 8(1). 31-38.
    [51] Olsen, R. L., D. V. Rogers and D. B. Hodge. The aRb relation in calculation of rain attenuation[J]. IEEE Trans. Antennas Propag.. 1978, 26(2). 318-329.
    [52] Maggiori, D.. Computed transmission through rain in the 1-400GHz frequency range for spherical and elliptical drops and any polarization[J], Alta Frequenza. 1981, L(5). 262-273.
    [53] ITU-R. Specific atenuation model for rain for use in prediction methods[S]. ITU-R Rec. P.838, International Telecommunication Union, Geneva. 1994.
    [54] ITU-R. Propagation data and prediction methods required for the design of terrestrial line-of-sight system[S]. ITU-R Rec. P.530-6. P Series Volume, Radiowave propagation, Geneva.1996.
    [55] ITU-R. Propagation data and prediction methods required for the design of earth-space telecommunication systems[S]. ITU-R.Rec. P618-1. P Series Volume, Radiowave propagation, Geneva. 1996.
    [56] ITU-R Document 2/36-E. Draft revision to Recommendation[S]. ITU-R P.618-5, ITU-R study group 3 meeting, Geneva. 1999.
    [57] Max van de Kamp, Antonio Martellucci, Aldo Paraboni. Chapter 2.2:Rain Attenuation[M]. COST Project 255, Final Report, Office for official publications of the European Community, Luxembourg. 2002. 2.2-2-62.
    [58] Lin, S. H. Nationwide long-term rainrate statistic and empirical calculation of 11 GHz microwave rain attenuation[J]. Bell syst. Tech. J.. 1977, 56(9). 1581-1604.
    [59] Fedi, F.. Atenuation due to rain on terrestrial path[J]. Alta Frequenza. 1979, 66(4). 167-184.
    [60] COST 235 Final Report. COST 235- Radiowave propagation efects on next-generation fixed-services terrestrial telecommunication systems[M]. Brussels: Ofice for oficial publications of the European Communities. 1996. 1-407.
    [61] Zhao Zhenwei, Lin Leke, Liu Yuinei. Prediction Models for Rain effects on Earth-space Links[C]. Radio Science Conference. 2004 Asia-Pacific, 24-27 Aug. 2004. K22-K25.
    [62]卢昌胜.降雨衰减的预报模式研究[D].电子科学研究院硕士学位论文,2008.1-72。
    [63] Oguchi, T.. Scattering from hydrometeors: A survey[J]. Radio Sci.. 1981, 16(5). 691-730.
    [64] Oguchi, T.. Scatering properties of Pruppacher- and-Piter form raindrops and cross polarization due to rain: Calculations at 11, 13, 19.3, and 34.8GHz[J]. Radio Sci.. 1977, 12(1). 41-45.
    [65] Max van de Kamp et. al.. Chapter 2.4:Rain and Ice Depolarisation[M]. COST Project 255, Final Report, Office for official publications of the European Community, Luxembourg. 2002. 2.4-1-32.
    [66] Fukuchi H.. Prediction of depolarisation distribution on earth-space paths[J]. IEE Proceedings. 1990, 137(6). 10.
    [67] Van de Kamp M.. Depolarisation due to rain: the XPD-CPA relation[J]. Int. J. Sat. Com.. 2001, 9(3). 285-301.
    [68] Chu, T. S.. A semi-empirical formula for microwave depolarization versus rain on earth-space paths[J]. IEEE trans. Commun.. 1982, 35. 2550-2554.
    [69] Stutzman, W. L., and D. L. Runyon. The relationship of rain-induced cross-polarisation discrimination to attenuation for 10 to 30 GHz earth-space radio links[J]. IEEE Trans. Antennas Propagat.. 1984,AP-32(7). 705-710.
    [70] Nowland W.L., Olsen R. L., Shkarofsky. Theoretical relationship between rain depolarisation and attenuation[J]. Electronics Letters. 1977, 13(22). 676-678.
    [71] Dissanayake, A. W, D. P. Haworth, and P. A. Watson. Analytical models for cross-polarization on earth-space radio paths for frequency range 9-30GHz[J]. Ann Telecommunic.. 1980, 35(6). 398-404.
    [72] Dissanayake, A.W., Allnut, J.E., and Fatim Haidara. A Prediction Model that Combines Rain Attenuation and Other Propagation Impairments Along Earth-Satellite Paths[J]. IEEE Trans. on Antennas and Propagation. 1997, 45(10),1546-1558.
    [73]黄际英,陈丽红.毫米波段降雨引起的总场衰减与去极化[J].电波科学学报.1993,8(3).29-35。
    [74]黄际英,王一平.应用Weibull分布计算毫米波降雨去极化[J].电子学报.1993,21(12).93-96。
    [75]黄际英,张栋国.45°线极化的降雨去极化的计算与测试[J].电波科学学报.1986,1(1).45-50。
    [76]杨瑞科.对流层地-空路径电磁(光)波传播的若干问题研究[D].西安电子科技大学博士学位论文,2003.1-120。
    [77]赵振维.雨致交叉极化理论的二阶小变量近似及交叉极化预测[J].电波科学学报,1990,5(3).52-58。
    [78] Zhenwei Zhao and Zhensen Wu. Millimeter wave atenuation due to fog and clouds[J]. International Journal of Infrared and Millimeter wave. 2000, 21(10). 1607-1615.
    [79]仇胜柏.我国分钟降雨率分布[J].通信学报.1996,17(3).78-83。
    [80]吴波洋.雨衰估算方法的演变与问题[J].卫星通信广播电视.2001,30(7).33-35。
    [81]降雨衰耗估算.http://www.satcomengr.com/Satcom/kurain.htm#top。
    [82] Wang Y.P. and Huang J.Y.. A relation between XPD and CPA in millimeter wave band[J]. International Infrared and Millimeter Waves. 1988, 9(8). 705-710.
    [83]黄际英,马冠一,王一平.雨介质的相干去极化与非相干去极化效应[J].武汉大学学报,电波传播专刊.1991.84-89。
    [84]仇盛柏,陈京华.我国典型地区不同积分时间降雨的换算公式[J].电波科学学报.1997.12(1).112-117。
    [85]中国科学院物理研究所微波遥感组.中国晴空和云雨天气的微波辐射和传播特性[M].第一版.北京:国防工业出版社,1981.1-100。
    [86] L. de Montera1, C. Mallet, L. Barthès1 and P. Golé. Short-term prediction of rain attenuation level and volatility in Earth-to-Satellite links at EHF band[J]. Nonlin. Processes Geophys.. 2008, 15. 631-643.
    [87] August Burgueno, Enric Vilar, Manuel Puigcerver. Spectral analysis of 49 years of rainfall rate and relation to fade dynamics[J]. IEEE transactions on communication, 1990, 38(9). 1359-1366.
    [88] M J Willis (ed), N Thomas, K H Craig et.al.. Propagation Models for Dynamic Adaptive Radio[S]. 001930 BROADWAN, eliverable D17. 1-95.
    [89] Max van de Kamp. M.M.J.L:Rain attenuation as a markov process:how to make anevent[C]. cost 280, 2nd Int. Workshop of COST Action 280, Estec,Netherlands, 2003. 1-8.
    [90] Ashok Kumar Baldotra and I. S. Hudiara. Rain Attenuation Statistics Over Terrestrial Microwave Link at 19.4 GHz at Amritsar[J]. IEEE Transactions on Antennas and Propagation. 2004, 52(6). 1505-1508.
    [91] E. Matricciani. Physical-mathematical model of the dynamics of rain attenuation with application to power spectrum[J]. Electron. Lett.. 1994, 30. 522-524.
    [92] Yingxia Xu, Jiying Huang, and Yingle Li. The effect of attenuation induced by sand and dust storms on Ka-band electromagnetic wave propagation along earth-space paths[J]. International Journal of Infrared and Millimeter Waves. 2002, 23(11). 1677-1682.
    [93] S.O.Bashir and N.J.Mxewan. Microwave propagation in dust storms: a review[J]. IEE Proceedings-H. 1986, 133(3). 241-247.
    [94]陈祥占.从海湾战争看沙暴对无线电通信的影响[J].电波与天线.1991,6.1-4。
    [95] A.J.Ansari, B.G.Evans. Microwave propagation in sand and dust storms[J]. IEE Proceedings-F. 1982, 129(5). 315-322.
    [96] S.I.Ghobrial and S.M.Sharief. Microwave attenuation and cross polarization in dust storms[J]. IEEE Trans.on AP. 1987, 35(4). 418-427.
    [97] S.I.Ghobrial. Effect of sandstorms on microwave propagation[C]. IEEE National Telecommunication Conference. 1980, 2. 43.5.1-43.5.4.
    [98]赵树宗.沙尘暴及烟雾对微波毫米波传播的影响[J].电波与天线.1985, 2.36-53。
    [99]尹文言,肖景明.沙尘暴对微波通信线路的影响[J].通信学报.1991,12(5).91-96。
    [100]董庆生.沙尘烟雾对毫米波传播的影响[C].目标特性与传输特性“八五”技术成果论文集.1996.716-736。
    [101] Dassayanake, A.W,J. E. Allnut and F. Haidara. A prediction model that combined rain atenuation and other propagation impairments along Earth-satellite paths[J]. IEEE Trans. Antennas Propag.. 1997, 45(10). 1546-1553.
    [102] Altshuler, E. A. and R. A. Mart. Cloud atenuation at millimeter wavelength[J]. IEEE Trans. Antennas Propag.. 1989, 37(12). 1473-1479.
    [103] Dintelmann, F. and G. Ortgies. A semi-empirical model for cloud atenuation prediction[J]. Electron. Let.. 1989, 25. 1487-1488.
    [104]屈丹,谢德芳.K波段卫星通信系统的抗衰落对策[J].无线通信技术,2000,1.23-27。
    [105] R.M.Lhermitte. Cloud and precipitation remote sensing at 94GHz.[J]. IEEE Trans. on geoscience and remote sensing. 1988, 26(3). 207-216.
    [106] E.E.Altshuler and R.A.Marr. Cloud atenuation at millimeter wavelengths[J]. IEEE Trans. on antennas and propagation. 1989, 37(11). 1473-1479.
    [107] F.Dintelmann and GOrtgies. Semiempirical model for cloud atenuation prediction[J]. Electronics leters. 1989, 25(22). 1487-1488.
    [108] G.Ortgies, et al. Statistics of clear-air atenuation on satellite links at 20 and 30GHz[J] Electronics leters. 1990, 26(2). 358-360.
    [109] O. T. Davies, R.G.Howell and P.A.Watson. Measurement and modeling of cloud attenuation at millimeter wavelengths[J]. Electronics letters. 1998, 34(25), 2433-2434.
    [110] Asoka Dissanayake, et al. Cloud atenuation modeling for SHF and EHF applications[J]. Final Programme, COST 255 workshop. 1998. 1-7.
    [111]邹进上,刘长盛,刘报文.大气物理基础[M].北京:气象出版社,1982,1-50。
    [112] http://www.mdv.com.cn/res/seniorgeo/consult/book/012/hjhx_51.htm (对流层大气的组成)。
    [113] Hall, M.P.M., and Comer, C.M.. Statistics of tropospheric radio refractive-index soundings taken over a 3-year period in the UK[C]. Pro. IEE.. 1969, 116. 685-690.
    [114] Bean, B.R., and Thayer, G.D.. On models of the atmospheric radio refractive index[C]. Proc. IRE.. 1959, 47. 740-755.
    [115] Castel, F. and Misme, P.. Elememts de radioclimatologie[J]. L' onde Electrique. 1957,37. 1049-1052.
    [116] Lane, J. A.. The radion refractive index gradient over the British Isles[J]. J. Atmos, & Terr. Phys.. 1961, 21. 157-166.
    [117] Akayama, T.. Tropospheric radio-refractivity gradient over Japan and its vicinity[J]. J. Inst. Electron & Commun. Eng.. 1971,54-B.4. 94-100.
    [118] Blanchard L. Contribution to the study of long distance propagation in the uhf band : mechanisms, field measurements and interference[D]. Ph.D. thesis, Universitéde Rennes, 1999. 1-50.
    [119] Bean BR, Dutton EJ. Radio Meteorology[M]. US. Department of Commerce National Bureau of Standards Monograph. 1966. 1-150.
    [120] Segal B, Barrington RE. La Radioclimatologie au Canada: Atlas du Coindice de Réfraction Troposphérique pour le Canada[C]. Centre de Recherche sur les Communications, Rapport du CRC 1315-F, Ottawa. 1977. 1-10.
    [121] ITU-R. The radio refractive index: Its formula and refractivity data[S]. ITU-RGeneva, 2001. P. 453-8.
    [122] Craig KH, Tjelta T. Clear Air Climatic Parameters in Multipath and Interferences Models. Proceedings of URSI Commission F Workshop on Climatic Parameters in Radiowawe Propagation Prediction[J]. Oslo.. 1996. 8-9.
    [123] H. G. Booker et al.. A theory of radio scattering in the troposphere[J]. Proc. IRE, 1950, 38(4), 401-412.
    [124]杜功焕,朱哲民,龚秀芬.声学基础(上)[M].第一版.上海:上海科学技术出版社,1991.165-230。
    [125]吕善律.天线阵综合[M].第一版.北京:北京航空学院出版社,1988.137-179。
    [126] M. M. Z. KHARADLY AND ANGELA S.-V. CHOI. A Simplified Approach to the Evaluation of EMW Propagation Characteristics in Rain and Melting Snow[J]. Ieee Transactions on Antennas and Propagation. 1988, 36(2). 282-296.
    [127] P.劳兰,D.R.考森.电磁场与电磁波[M].第一版.北京:人民教育出版社,1980.62-87。
    [128]张培昌,杜秉玉,戴铁丕.雷达气象学[M].第二版.北京:气象出版社,2000.21-26。
    [129]郭硕鸿.电动力学[M].第二版.北京:高等教育出版社,1993.66-68。
    [130] Salonen E., Karhu S., Jokela P.et. al.. Study of Propagation Phenomena for Low Availability[C]. Final Report, ESA/ESTEC Contract 8025/88/NL/PR, 1990.
    [131] Salonen E., Karhu, S. and Hyvonen, R. Study of improved propagation predictions[C]. ESA/ESTEC Contract 9455/91/NL/LC(SC), Final Report, 1994.
    [132] Martin L. La réutilisation des fréquences en polarisation croisée avec diversitéd'espace sur 50 kmà7 GHz[J]. Ann. des Télécomm. 1977, 32(11-12). 552-559.
    [133] Rooryck M, Martin L. Disponibilitédes liaisons hertziennes numériques utilisant des polarisations croiséesàla même fréquence[J]. Ann. Des Télécomm. 1977, l32. 560-564.
    [134] Motti TO. Dual-polarized channel outages during multipath fading[J]. BSTJ. 1977, 56. 675-701.
    [135] Olsen. RCross-polarization during clair-air conditions on terrestrial links: a review[J]. Radio Sci.. 1981, 16(5). 631-647.
    [136] Morita K, Sakagami S, Murata S et. al..A method for estimating cross-polarisation discrimination ratio during multipath fading[J]. Trans Inst. Electron. Comm. Engrs. Japan. 1979, 62-B. 998-1005.
    [137] Eugene A. Sharkov. Passive Microwave Remote Sensing of the Earth Physical Foundations[M]. Springer-Praxis Books In Geophysical Sciences, 2003. 1-554.
    [138] Akira Ishimaru. Wave propagation and scattering in random medium[M]. NewYork:Academic press. 1978. 1-160.
    [139] Oguchi,T. Eletromagnetic wave propagation and scatering in rain and other hydrometerors[C]. Proc. IEEE. 1983, 71(9). 1029-1078.
    [140]谢益溪等.电波传播一超短波·微波·毫米波[M].第一版.北京:电子工业出版社,1990.1-385。
    [141] AYMAN.A.A. ALWARFALLI. The Effect Of Rainrate Modeling For The Prediction Of Satellite Propagation In Malaysia[D]. Degree of Master, University Teknologi Malaysia. 2005. 1-105.
    [142] Olsen, R. L.. Cross polarization during precipitation on terrestrial links: A review[J]. Radio Sci.. 1981, 16(5). 691-730.
    [143] Nowland,W L., R. L. Olsen, and 1. P, shkarofsky. Theoretical relationship between rain depolarization and attenuation[J]. Electron. Lett.. 1977, 13(22). 676-678.
    [144] Moupfouma. F. More about rainfall rate and their prediction for Radio system engineering[C]. IEE Procedings. 1994, 134(Pt.H,No.6). 527-537.
    [145] Ponte. M. S. et al.. An improved Method for Slant Path Rain Attenuation Prediction[C]. SBMO 93, International Microwave Conference, Sao Paulo ,Brazil. 1993. 533-538.
    [146] Garcia, N.A.P. Improved method for prediction of rain attenuation in terrestrial links[J]. Electron Lett (UK). 2004, 40(11). doi: 10.1049/el:20040464. 683-684.
    [147] ITU-R Doc.3J/96-E. An improved prediction method of rain attenuation for terrestrial light-of-sight path[S]. Setember, 2005.
    [148] Proposed Modification to Recommendation ITU-R P.530-11 Propagation data and prediction methods required for the design of terrestrial line-of-sight system.[S] 2006.
    [149] Dr. Louis J. Ippolito. Propagation Effects Handbook for Satellite Systems Design (Fifth Edition)-Section 2: Prediction[M], Fifth Edition. Springfield, Va: NTIS, 1998. 26-224.
    [150] Manning, R.M.. A unified statistical rain-attenuation model for communication link fade predictions and optimal stochastic fade control design using a location-dependent rain-statistics database[J]. International Journal of Satellite Communications. 2007, 8(1). 1-30.
    [151] Proposed modification to Recommendation ITU-R P.618-8: Propagation data and prediction methods requied for the design of Earth-space telecommunicationsystems.[S]. 2003.
    [152] CCIR. Proposal of a rain attenuation method[S]. Japan, PG3 Document 93/6, rev. 2, 1993.
    [153] Ond?ej FI?ER, Site Diversity Gain Estimated from Rain Rate Records[J]. Radioengineering. 2003,12(1). 8-11.
    [154] Crane R.K. Prediction of attenuation by rain[C]. IEEE Transaction on ommunications, COM-28. 1980. 1717-1733.
    [155] Matricciani E.. Rain attenuation predicted with two-layer rain model[J]. European Transactions on Telecommunication. 1991, 2(6). 715-727.
    [156] Matricciani E.. Prediction of Rain Attenuation in Slant Paths in Equatorial Areas: Application of the Two Layer Rain Model[J]. Electronics Letters. 1993, 29. 72-73.
    [157] Misme P. and Waldteufel P.. A model for attenuation by precipitation on a microwave earth-spacelink[J]. Ra. Sci.. 1980, 15. 655-666.
    [158] Fiser O.. An algorithm for computing the distribution of rain attenuation, Slaboproudy obzor[J]. 1984, 45(2). 84-88.
    [159] Fiser O.. Prediction of Rain and Water Vapour Attenuation at Frequencies 10-30 GHz[J]. Radioengineering. 1996, 5(3). 18-22.
    [160] Paraboni, Aldo. Martellucci. Antonio, Riva, Carlo. Research on Tropospheric Propagation Modeling in Satellite Radio-Links[C]. The Second European Conference on Antennas and Propagation. 11-16 Nov, 2007. 1-19.
    [161] Dong You Choi. Rain attenuation prediction model by using the 1-hour rain rate without 1-minute rain rate conversion[J]. IJCSNS International Journal of Computer Science and Network Security. 2006, 6(3A). 130-133.
    [162]同步卫星电视接收天线的调整,http://www.cedm.com.cn/site68/index.htm。
    [163]雷达电波传播折射与衰减手册,中华人民共和国国家军用标准[S].1997,5,23发布,国防科学技术工业委员会批准.60。
    [164]易丹辉.数据分析与Eviews应用[M].第一版.北京:中国统计出版社,2002.1-132。
    [165] Box, G. E. P., Q. G. Hunter, and J. S. Hunter. Statistics for experimenters[M]. Second Edition. Wiley, New York, 2005. 1-400.
    [166](美)George E.P.Box (英)Gwilym M.Jenkins等,现代外国统计学优秀著译丛时间序列分析预测与控制[2],第三版:北京,中国统计出版社,1997,1-186。
    [167] E. Matricciani, M. Mauri, C. Riva. Relationship between scintillation and rain attenuation at 19.77 GHz[J]. Radio Sci..1996, 31(2). 273-279.
    [168] Chu, T. S.. A semi-empirical formula for microwave depolarisation versus rain attenuation on earth-space paths[J]. IEEE Trans. Commun.. COM-30(12). 1982. 2550-2554.
    [169] Ioan Chisalita et. al.. Chapter 2.6: Testing of Prediction Models[M]. COST Action 255 Final Report , Published by: ESA Publications Division. 2002. 2.6-1-39.
    [170] CCIR Report 722-1. Cross-polarization due to the atomosphere[S]. Geneva: Propagation in Non-ionized Media. 1982, V. 1982, 188-193.
    [171] M.O.Ajewole,L.B.Kolawole and G.O.Ajayi. Theoretical study of the effect of different types of tropical rainfall on microwave and millimeter-wave propagation[J]. Radio Science. 1999, .34(5). 1103-1124.
    [172] Huang Jiying, Gong Shuhong,Wang Fang. Optimal Scattering Polarization Characteristic for Cylinder Target in Rain at Illimeter Wave Band[J]. PIER. 2005, 55, 241-248.
    [173] Michael l. Mishchenko. Calculation of the amplitude matrix for a nonshpherical particle in a fixed orientaiton[J]. Applied optics. 2000, 39(6). 1026-1031.
    [174] P. C. Waterman. Symmetry, unitarity, and geometry in electromagnetic scattering[J]. Phys. Rev.. 1971, D3. 825-839.
    [175] M. I. Mishchenko, L. D. Travis, and D. W. Mackowski. T-matrix computations of light scattering by nonspherical particles: a review[J]. J. Quant, Spectrosc. Radiat. Transfer. 1996, 55. 535-575.
    [176] M.A.Karam, A.K.Fung, Y.M.M.Antar. Electromagnetic Wave Scattering from Some Vegetation Sample[J]. IEEE Trans. on Geoscience and Remote Sensing. 1988, 26(6). 799-808.
    [177]王芳.雨杂波中目标的极化滤波增强[D].西安电子科技大学硕士学位论文,2004.1-44。
    [178]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用[M].第一版.北京:国防工业出版社,1-471。
    [179] T-Matrix Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particles,http://www.giss.nasa.gov/~crmim/t_matrix.html。
    [180] William H. Tranter, K. Sam Shanmugan, Theodore S. Rappaport. et. al.. Principles of communication systems simulaiton with wireless application, Chapt 14[M]. Published by Prentice Hall. Dec 30, 2003. 529-581.
    [181] P. A. Bello. Characterization of Randomly Time-Variant Linear Channels[J]. IEEE Transactions on Communication Systems. 1963, 11( 4). 360–393.
    [182]格雷戈里.D.德金(美)著朱世华,任品毅,王磊,杜清河译.空-时无线信道[M].第一版.西安:西安交通大学出版社,2004.1-102。
    [183] Douglas O. Reudink. Properties of Mobile Radio Propagation Above 400 MHz[J]. IEEE Transactions on Vehicular Technology. 1974, VT-23(4). 143-159.
    [184] Chun Loo. Statistical Models for Land Mobile and Fixed Satellite Communications at Ka Band[C]. IEEE 46th Veh Technol Conf. 1996, 2. 1023-1027.
    [185]黄和,王东进,刘发林.Ka波段移动卫星信道的综合模型及误码率分析[J],中国科学技术大学学报.2005,35(3).347-353。
    [186] Mohamed-Slim Alouini, Scott A. Borgsmiller, Paul G. Steffes. Channel Characterization and Modeling for Ka-Band Very Small Aperture Terminals[J]. Proceedings of The IEEE. 1997, 85(6). 981-997.
    [187] C.N. Kassianides and I.E. Otung. Dynamic model of tropospheric scintillation on earth space paths[J]. IEE Proc.-Microw. Antennas Propg. 2003, 150(2). 97-104.
    [188]Pedro Garcia, Jose M. Riera and Ana Benarroch, Statistics of dry and wet scintillation in Madrid using Italsat 50GHz beacon, 1st International Workshop of COST-280, 2002, 1-9.
    [189] Jihad S. Daba and Mark R. Bell, Statistics of the Scattering Cross-Section of a Small Number of Random Scatterers[J], IEEE Transactions on Antennas and Propagation. 1995, 43(8). 773-783.
    [190] D. Chakraborty. Technical Considerations of T-1 Carrier Transmission Via Ku-Band Domestic Satellites[J]. IEEE Communications Magazine. 1988, 26(3). 46-55.
    [191] Takeshi Hatsuda, Yoshinao Aoki, Hiroshi Echigo et al. Ku-Band Long Distance Site-Diversity (SD) Characteristics Using New Measuring System[J]. IEEE Transactions On Antennas And Propagation. 2004, 52(6). 1481-1491.
    [192] M.K.Raina. Atmospheric emission measurements of attenuation by microwave radiometer at 19.4GHz[J]. IEEE Transactions on Antenas and Propagation. 1996, 44(2). 188-191.
    [193] LEANG P. YEH. Multiple-acess tradeoff study for intra-south American satellite communication system[J]. IEEE Transactions on Communication Technology. 1968, 16(5). 721-730.
    [194] MIODRAG FILIP, ENRIC VILAR. Optimum utilization of the channel capacity of a satellite link in the presence of amplitude scintillation and rain attenuation[J]. IEEE Transactions on Communications. 1990, 38(11). 1958-1965.
    [195] Darren D. Chang1 and Olivier L. de Weck. Basic capacity calculation methods and benchmarking for MF-TDMA and MF-CDMA communication satellites[J].International Journal of satellite communications and networking. 2005, 23. 153-171.
    [196] Salz J, Winters J H. Effect of fading correlation on adaptive arrays in digital mobile radio[J]. IEEE Trans. on VT. 1994, 43(4).1049-1057.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700