用户名: 密码: 验证码:
风电场风电功率短期预报技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风电产业的大规模发展使风电对电网的冲击问题越来越凸显,许多地方出现了拉闸限电的情形,随着百万千瓦级风电基地、千万千瓦级风电基地的规划及建设,急需一套行之有效的风电场风电功率预报系统来满足风电上网调度的实际需求,为国家大力发展清洁能源的政策提供技术保障。国外在此方面已有十余年的发展历史,而国内目前的风电功率预报方法主要集中于一些统计方法,并不能满足风电上网调度的精度和时效要求。采用数值预报模式和风电功率统计预报模型相结合的集成系统进行预报,是解决风电场风电功率短期预报的有效方法,基于此本论文以RAMS区域大气模式为工具对高分辨的风电场风速预报以及风电功率预报问题进行了初步探讨。
     风电场风电功率预报的前提就是风机叶片扫风范围内准确的风速预报,而对于利用数值模式进行风速预报而言,由于模式稳定性及网格结构以及风机机型的差异,数值模式很难在涡轮及叶片扫风高度范围内做出详细的计算。通过统计方法找出各高度间风速的分布规律是解决这一问题的最直接的方法。
     通过分析我国内陆河北省张北县地区和吉林地区风电场内的风速变化及风速廓线变化特性发现,虽然两地的风速分布形态不一样,但各高度间风速的差异分布大体相同:即由夜间到白天逐渐缩小,在中午达到最小,由白天到夜间再逐渐增大,并且在各个阶段又相对稳定。即在日出后由地面向上的热量输送逐渐增强,湍流加强,各层间的风速差异减少,并迅速趋于稳定;日落湍流减弱,各层间的风速差异迅速增大,并趋于夜间时段的相对稳定。这一规律的发现对解释涡轮高度不同时间相同风速条件下风机出力不同及风电功率建模有重要意义。
     通过对海陵岛的60米高测风塔不同高度的NRG测风资料分析发现:当沿海地区有海陆风发生时,海风和陆风阶段风速廓线存在较大差异,海风阶段风速的垂直切变明显小于陆风阶段。并发现即使没有海陆风发生,当风向为海洋吹向陆地时,风速随高度的垂直切变同样小于陆地吹向海洋的时段。这对模式预报风速的订正及沿海地区风电功率预报建模有很高的实用价值。
     将SRTM3 90米分辨率地形资料引入到模式当中,有效分辨率可达500米,实现了模式的高分辨率预报。通过对张北地区空间分辨率为1km,时间分辨率为1小时的风速预报结果分析,发现RAMS模式风速预报结果基本可以满足风电场风速预报的要求,与国际上的风速预报水平相当,1-84小时的平均均方根误差为2-3m/s。为了对数值模式预报结果进行改进,利用人工神经网络方法进行了订正试验,通过预报因子的选择试验,本文初步确定了利用预报风速、风向、气压场的主成分作为预报因子进行订正的方案。
     通过神经网络方法,将风速廓线随时间的变化引入神经网络方法中,确定了选择不同高度的风速作为风电功率预报因子的预报方案,对1-72个预报时刻分别进行风电功率预报建模。并比较了“单机法”与“整体法”两种预报方式下风电场风电功率预报的误差,发现“单机法”效果好于“整体法”。通过风电功率预报实验分析发现,2008年3月份风电场风电功率预报前42小时的平均均方根误差占装机容量的百分比为17.5%,72小时总的平均均方根误差占装机容量的百分比为21%,2008年4月份72小时总的平均均方根误差占风电场装机容量的百分比为24%,与国际上的平均功率预报误差基本持平,但还有待改进。
As the wind power industries are developing cosmically,The impulse of windenergy to the grid network is protruding. In many places, the situation of wind farm isout of the grid network exits. As the million kilowatt and multimillion kilowatt windpark base being layout and constructed, a system of wind power forecasting is neededimminently to solve the problem of the compatible between grid network and windenergy, which can provide technique for the policy of develop clean energy large-scaleForeign countries have been developing short-term wind power forecasting techniquesfor more than 10 years, but in China the method of wind power forecasting focus onthe statistical method, which can't satisfy the request of precision and time in gridnetwork operation. An integrated system, which is a combination of both numericalprediction models and statistical power capacity models, is used to make forecasting.This is an effective approach for wind power forecasting for wind farms. In this article,we use the regional climate model RAMS to give the forecasting of wind speed inwind farm with a high resolution, and we establish a system of wind power forecasting.
     The precondition of wind power forecasting is the precision of wind speedforecasting between the distance of turbine blade. But for wind speed forecasting usingnumerical model, Because the different type of wind turbine and the model'scharacteristic the numerical model hardly can compute the wind speed at hub heightand wind speed at different height in the distance of wind turbine blade in detail. Theimmediate method to solve this problem is to find the statistical relation between windspeed at different height.
     By analyzing the wind speed variety and wind difference between different heightof wind farm at Zhangbei and Jilin district, we found that although the wind speed isdifferent for these two places, but the wind difference is very similar between differentheight: wind difference of different height is becoming smaller from night to day andreach the smallest value at noon, wind difference of different height is becoming largerfrom day to night, and show a stabilization condition at each stage. After the sunrise,the heat transmission increases, the air turbulence increases, the wind difference between different height is becoming smaller and keep steady. After sunset the airturbulence decrease the wind difference between different height also goes down, andkeep steady. This rule is a good explanation for the different output of turbine with thesame wind speed at different time during a day, and it's very important for wind powerprediction.
     By analyzing the observation wind speed at different height from a wind tower of60m, we find that The wind profile have great difference when land-sea breezehappens. Wind shear is smaller when blowing form sea than blowing from land. eventhere is no land-see breeze when wind blowing from sea the wind profile shear is alsosmaller than blowing from land. This rule is very important for the improvement ofwind speed prediction.And it has great value for the wind power forecasting along thecoast.
     By using the SRTM3 topographty data which with a resolution of 90m, we cancarry out the forecasing of 500m resolution in operation. By analyzing the wind speedforecasting result with a resolution of 1 km and with time interval 1 hour, we found thatRAMS model can give the proper wind speed forecasting which can reach the demandof wind speed forecasting in wind farm, and the forecasting error of wind speed isclose to the error of wind speed abroad, the average root-mean-square error is 2-3m/sfrom1 to 84 hours. To improve the forecasting result of numerical model, we use theartificial neural network method to make the test. By choosing different forecastingfactors we confirm the method using wind speed, wind direction and the principalcomponent of air pressure to improve the result.
     Finally, we introduce the rule of wind profile changing as time past by intoArtificial Neural Network. we use the wind speed at different height to forecasting thewind power of wind farm, and set up 72 wind power forecasting model fore every hour.By compare the average root-mean-square error between "single turbine method" and"the whole wind farm method", we find "single turbine method" is better than"thewhole wind farm method". Through the test of wind power forecasting in March, 2008,we find the average root-mean-square wind power forecasting error of the first 42hours is 17.5% of the nameplate capacity of the wind farm, The averageroot-mean-square wind power forecasting error of the 72 hours is 21% of the nameplate capacity of the wind farm. For the test of April,2008 The averageroot-mean-square wind power forecasting error of the 72 hours is 24% of thenameplate capacity of the wind farm. The average root-mean-square wind powerforecasting error is close to the results abroad, but it's needed improved further.
引文
[1]Erik L.Petersen,Niels G.Mortensen,Lars Landberg,etal 。 Wind Power Meteorology Part Ⅰ:Climate and Turbulence.Wind Energy,1998,12-22。
    [2]申洪,梁军,戴慧珠.基于电力系统站台稳定分析的风电场穿透功率计先计算.电网技术,2002,26(8):8-11.
    [3]John Zack.Overview of Wind Energy Generation Forcasting.True Wind Solutions,2003.
    [4]吴国畅,肖洋,翁莎莎.风电厂短期风速预测探讨.吉林电力,2005 (6)
    [5]杨秀媛,肖洋,陈树勇.风电厂风速和发电功率预测研究.电机工程学报,2005,25(11):1-5.
    [6]申洪,梁军,戴慧珠.基于电力系统站台稳定分析的风电场穿透功率计先计算.电网技术,2002,26(8):8-11.
    [7]陈树勇,戴慧珠,白晓民.风电场的发电可靠性模型及其应用.中国电机工程学报,2000,20(3):26-29.
    [8]雷亚洲,王伟胜,任永华.含风电场电力系统的有功优化潮流.电网技术,2002,26 (6):18-21,
    [9]EA.Bossanyi.Short-term wind prediction using Kalman filters.Wind Engineering,1985,9(1):1-8.
    [10]Gregor Giebel.The State-Of-The-Art in Short-Term Prediction of Wind Power.Deliverable report D 1.1,2003.08.12.
    [11]Gilman,B.,M.Cheng,J.Isaac,J.Zack,B.Bailey,M.Brower.The Value of Wind Forecasting to Southern California Edison.021 on the Conferrence Proceedings CD_ROM of the AWEA Windpower 2001 conference in Washington,USA,2001,3-7 June.
    [12]J.Usaola,O.Ravelo,G.Gonzalez,F.Soto,C.Davila,and B.Diaz-Guerra.benefits for wind energy in electricity markets from using short term wind power prediction tools;a simulation study.Wind Engineering,2004,vol.28,no.1,pp.119-128.
    [13]H..Holttinen.Optimal electricity market for wind power,Energy Policy,2004.avaiable online at sciencedirect.com
    [14]M.S.Roulston,D.T.Kaplan,J.Hardenberg,and L.A.Smith.Using medium-range weather forecasts to improve the value of wind energy production.Renewable Energy,2003,vol.28,pp.585-602.
    [15]G.Bathurst,J.Weatherhill,and G.Strbac.Tarding wind generation in short-term energy markets,IEEE Trans.Power Syst.2002,Vol.17,pp.782-789,Aug.
    [16]R.Madlener and M,Kaufmann,Power exchange spot market trading in Europe:theoretical considerations and empirical evidence.OSCOGEN-Project Deliverable 5.1b,2002,March.
    [17]Y.-M.Saint Drenant,Wind power predictions analysis -Part 1:TenneT imbalance price system.Development of a model for TenneT imbalance price system.ECN report-ECN-I-02-010,2002,Aug.
    [18]B.B.Kristoffersen,B.Donslun,and P B.Eriksen,Impacts of large-scale wind power on the power market,in Proc.Of the Fourth International Workshaop on Large-Scale integration of Wind Power and Transmission Networks for Offshaore Wind Farms,Billund,Denmark,2003,Oct.
    [19]Nielsen,L.H.,P.E.Morthorst,K.Skytte,P.H.Jense,et .al.Wind Power and a Liberalised orth European Electricity Exchange.Proceedings of the European Wind Energy Conference,Nice,France,1999,1-5 March,pp.379-382,ISBN1 902916 00X.
    [20]P.Flores,A.Tapia,G.Tapia.Application of a control algorithm for wind speed prediction and active power generation.Renewable Energy,2005,30:523-536.
    [21]董安正,赵国藩.人工神经网络在短期资料风速估计方面的应用.工程力学2003,.120(5):10-13.
    [22]吴国畅,肖洋,翁莎莎.风电厂短期风速预测探讨.吉林电力,2005 (6).
    [23]Giebel,G.,L.Landberg,J.Badger,K.Sattler,H.Feddersen,T.S.Nielsen,H.Aa.Nielsen,H.Madsen:Using Ensemble Forecasting for Wind Power.Paper presented on the European Wind Energy Conference and Exhibition,Madrid (ES),2003.16-20 June.
    [24]Landberg,L.,G.Giebel,H.Aa.Nielsen,T.S.Nielsen,H.Madsen:Short-term Prediction-An oerview.Wind Energy,2003,6(3),pp.273-280.DOI 10.1002/we.96.
    [25]Nielsen,T.S.,H.Madsen,G.Giebel,L.Landberg.Regional Prediction of Wind Power.Proceedings of the American Wind Energy Association Conference in Austin,Texas (US),2003,31.March-2 April.
    [26]Landberg,L.,and S.J.Watson.Short-term Prediction of Local Wind Conditions. Boundary-Layer Meteorology 1994.70, p. 171 .
    [27] Landberg, L.Short-term prediction of local wind conditions. Wind Engineering into the 21~(st) Century, Proceedings of the Tenth International Conference on Wind Engineering, Copenhagen/Denmark, 21-24 June 1999, Larsen, Larose & Livesey (eds), Balkema, Rotterdam, 1997-2003 , .ISBN 90 5809 059 0, pp.
    [28] Berge, E., F. Nyhammer, L. Tallhaug, F. Villanger, J.b. Bremnes, M.(?). K(?)ltzow, J. Smits, A. Knauer. Forecasting wind and wind energy production in Norwegian wind farms. Final report of the NFR project: 138848/212 "Korttidsprognoser for energiprokuksjon fra vindkraft". Kjeller Vindteknikk Report number KVT/EB/2003/005, Kjeller (NO), 2003.
    [29] Kariniotakis G., M. Matos, V. Miranda. Assessment of the benefits from advanced load & wind power forecasting in autonomous power systems. Proceedings of the European Wind Energy Conference, Nice, France, 1-5 March 1999, pp. 391-394, ISBN 1 902916 00 X.
    [30] Troen, I, L. Landberg. Short-Term Prediction of Local Wind Conditions. Proceedings of the European Community Wind Energy Conference, Madrid (ES), September10-14, 1990, pp. 76-78, ISBN 0-9510271-8-2.
    [31] Joensen, A., G. Giebel, L. Landberg, H. Madsen, and H. Aa. Nielsen. Model Output Statistics Applied to Wind Power Prediction. Proceedings of the European Wind Energy Conference, Nice, France, 1-5 March 1999, pp. 1177-1180, ISBN 1 902916 00 X.
    [32] Ernst, B., K. Rohrig: Online-Monitoring and Prediction of Wind Power in German Transmission System Operation Centres. Proceedings of the First IEA Joint Action Symposium on Wind Forecasting Techniques, Norrkoping, Sweden, December 2002, pp.125-145. Published by FOI - Swedish Defence Research Agency.
    [33] Ernst, B., K. Rohrig. Online-Monitoring and Prediction of Wind Power in German Transmission System Operation Centres. Proceedings of the First IEA Joint Action Symposium on Wind Forecasting Techniques, Norrkoping, Sweden, December 2002, pp. 125-145. Published by FOI - Swedish Defence Research Agency.
    [34] Sanchez, I., J. Usaola, O. Ravelo, C. Velasco, J. Dom(?)nguez, M.G. Lobo, G. Gonz(?)lez, F. Soto. SIPRE(?)LICO - A Wind Power Prediction System Based on Flexible Combination of Dynamic Models. Application to the Spanish Power System. Poster on the World Wind Energy Conference in Berlin, Germany, June 2002 .
    [35] Fellows, A., and D. Hill. Wind and Load Forecasting for Integration of Wind Power into a Meso-Scale Electrical Grid. Proceedings of the European Community Wind Energy Conference, 10-14 September 1990, Madrid, Spain, pp. 636-640 .
    [36] S. P(?)rez, P. A. Jimenezl, J. Navarrol, J. P. Montavez, C.G. Barquero3, A. Cuerva2, J.F.Gonzalez-Rouco, F. Valero. Using the MM5 model for wind prediction in a complex terrain site.uropean Wind Energy conference &Exhibition EWEC 2003,Madrid Spain..
    [37] Jens Tambke, Matthias Lange, Ulrich Focken, Detlev Heinemann. PREVIENTO meets HORNS REV short-Term Wind-Power Prediction-adaptation to offshore Sites. reprint submitted to the Proceedings of the European Wind Energy Conferrnce EWEC in Madria,Spain.
    [38] Focken U, Lange M, Waldl H-P. Previento - Regional Wind Power Predictions with Risk Control, Proc. Global Windpower Conference, 2002, Paris.
    [39] Focken U, Lange M, M(?)nnich K, Waldl H-P, Beyer HG, Luig A. Short-term predicton of the aggregated power output of wind farms - a statistical analysis of the reduction of the prediction error by spatial smoothing effects. J. Wind Eng. Ind. Aerodyn. 03/2002; 90: pp.231-246.
    [40] Lange M, Heinemann D. Accuracy of Short Term Wind Power Predictions Depending on Meteorological Conditions. Proc. Global Windpower Conference, 2002, Paris.
    [41] Lange M, Heinemann D. Relating the uncertainty of short term wind power predictions to meteorological situations with methods from synoptic climatology. Proc. European Wind Energy Conference EWEC, 2003, Madrid.
    [42] Focken U, Heinemann D. Influence of Thermal Stratification on Wind Profiles for Heights up to 140m. .Proc. European Wind Energy Conference EWEC, 2003, Madrid.
    [43] G. Giebel*, L. Landberg, G. Kariniotakis, R. Brownsword. State-of-the-Art on Methods and Software Tools for Short-Term Prediction of Wind Energy Production. European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain.
    [44] Landberg, L., G. Giebel, H.Aa. Nielsen, T.S. Nielsen, H. Madsen. Short-term Prediction - An Overview. Wind Energy 6(3),, 2003 , pp. 273-280. DOI 10.1002/we.96.
    [45] Landberg, L. A Mathematical Look at a Physical Power Prediction Model. Wind Energy 1,1998, pp. 23-28.
    [46] Beyer, H.G., D. Heinemann, H. Mellinghoff, K. Monnich, and H.-P. Waldl. Forecast of Regional Power Output of Wind Turbines. Proceedings of the European Wind Energy Conference, Nice, France, 1-5 March 1999, pp. 1070-1073, ISBN 1 902916 00 X.
    [47] Focken, U., M. Lange, H.-P. Waldl. Previento - A Wind Power Prediction System With an Innovative Upscaling Algorithm. Proceedings of the European Wind Energy Conference, Copenhagen, Denmark, 2-6 June 2001, pp. 826-829, ISBN 3-936338-09-4.
    [48] Marti Perez, I. Wind Forecasting Activities. Proceedings of the First IEA Joint Action Symposium on Wind Forecasting Techniques. Norrk(?)ping, Sweden, December 2002, pp. 11-20. Published by FOI -Swedish Defence Research Agency.
    [49] J0rgensen, J., C. Moehrlen, E. McKeogh. A New Generation Operational On- and Offshore Numerical Prediction System. Talk (?) on the World Wind Energy Conference in Berlin, Germany, June 2002 14 .
    [50] Landberg, L. Short-term Prediction of the Power Production from Wind Farms. J. Wind Eng. Ind. Aerodyn. 1999, 80, pp. 207-220.
    [51] Watson, R., L. Landberg, R. Costello, D. McCoy, P. O'Donnell. Evaluation of the Prediktor Wind Power Forecasting System in Ireland. Proceedings of the European Wind Energy Conference, Copenhagen, Denmark, 2-6 June 2001, pp. 703-706.
    [52] Nielsen, T.S., L. Landberg, G. Giebel. Prediction of Regional Wind Power. Poster P_GWP148 on the Global Windpower Conference, Paris, France, 2-5 April, 2002.
    [53] Giebel, G., L. Landberg, T.S. Nielsen, H. Madsen: The Zephyr Project - The Next Generation Prediction System. Poster P_GWP145 on the Global Windpower Conference and Exhibition, Paris, France, 2-5 April,2002.
    [54] Kariniotakis G., G.S. Stavrakakis, E.F. Nogaret. Wind power forecasting using advanced neural network models. IEEE Transactions on Energy Conversion, Vol. 11, No. 4, December 1996, pp. 762-767. (96 SM 552-0 EC), Presented at the 1996 IEEE/PES Summer Meeting, July 28-Aug. 1,1996, Denver, Colorado.
    [55] Kariniotakis, G., P. Pinson. Evaluation of the More-Care Wind Power Prediction Platform. Performance of the Fuzzy Logic Based Models. Paper presented at the European Wind Energy Conference and Exhibition, Madrid, Spain, 16-19 June 2003.
    [56] Costello, R., D. McCoy, P. O'Donnell, A.G. Dutton, G.N. Kariniotakis. Potential Benefits of Wind Forecasting and the Application of More-Care in Ireland. Paper presented on the 3rd MED POWER conference 2002, Athens (GR), November 4-6, 2002.
    [57] Luig A, Bofinger S, Beyer HG. Analysis of Confidence Intervals for the Prediction of the Regional Power Output. Proc. European Wind Energy Conference EWEC , Copenhagen, 2001,725-728.
    [58] Matthias Lange, Detlev Heinemann. Relating the uncertainty of short-term wind speed predictions to meteorological situations with methods from synoptic climatology. European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain..
    [59] P. Pinson, N. Siebert, G. Kariniotakis. Forecasting of Regional Wind Generation by a Dynamic Fuzzy-Neural Networks Based Upscaling Approach. European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain..
    [60] Focken U., Lange M., Heinemann D.. "Previento - Regional wind power prediction with risk control", in Proc. of the 2002 Global Windpower Conference, Paris, France, 2-5 April 2002.
    [61] Ernst B., Rohrig K., Schorn P., Regber H.. "Managing 3000 MW power in a transmission system operation centre", Proc. of the 2001 European Wind Energy Association Conference, EWEC'01, Copenhagen, Denmark, 2001, pp.890-893, 2-6.
    [62] Nielsen T. S., Madsen H., Nielsen H. Aa., Landberg L, Giebel G.Prediction of regional wind power. in Proc. of the 2002 Global Windpower Conference, Paris, France, 2-5 April 2002.
    [63] Mart(?), I., Usaola, J. et al. Wind power prediction in complex terrain. LocalPred and Sipreolico. Proceedings of the European Wind Energy conference, June 2003.
    [64] Marti, I., Nielsen, T. S., Madsen, H., et al. Prediction models in complex terrain. Proceedings of the European Wind Energy Conference. Copenhagen, July 2001.
    [65] M. Lange. On the uncertainty of wind power predictions - Analysis of the forecast accuracy and statistical distribution of errors. Trans. of the ASME, J. Solar Energy Eng., 2005,127(2): 177-194.
    [66] A. H. Murphy. What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather Forecasting, 1993, 8(2):281-293.
    [67] H. Madsen, P. Pinson, T.S. Nielsen, H.Aa. Nielsen, G. Kariniotakis. Standardizing the performance evaluation of short-term wind power prediction models. Wind Engineering, 2006. In Press.
    [68] Sanchez I. Short-term prediction of wind energy production. Int. J. Forecasting, 2006,22:43-56.
    [69] Lars Landberg, S.J. Watson. Short-term Prediction of Local Wind Conditions. Boundary-layer Meteorology, 1994,70, p. 171.
    [70] Lars Landberg.,Short-term Prediction of the Power Production from Wind Farms. Wind Eng.Ind. Aerodyn., 1999 ,90, pp.207-220.
    [71] Bailey, B., M.C. Brower, and J. Zack. Short-Term Wind Forecasting. Proceedings of the European. Wind Energy Conference, Nice, Frace, 1-5 March 1999, pp.1062-1065, ISBN1 902916 X.
    [72] EPRI Final Report. California Wind Energy Forecasting System Development and Testing, Phase 1: Initial Testing. EPRI Final report 1007338,2003,Jan.
    [73] Focken, U., M. Lange, H.-P. Waldl. Previento - A Wind Power Prediction System With an Innovative Upscaling Alogrithm. Proceedings of the European Wind Energy Conference,Copenhagen, Denmark, 2001,2-6 June, pp.826-829, ISBN 3-936338-09-4.
    [74] Marti Perez, I. Wind Forecasting Activities. Proceedings of the First IEA Joint Action Symposium on Wind Forecasting Techniques, Norrkoping, Sweden, 2002,December, pp.11-20. Published by FOI - Swedish Defence Research Agency.
    [75] Jorgensen, J., C. Moehrlen, B. O Gallaghoir, K. Sattler and E. McKeogh. HIRPOM: Description of an operational numerical wind power prediction model for large scale integration of on - and offshore wind power in Denmard. Poster on the Global Windpower Conference and Exhibition, Paris, France, 2002,2-5 April ,5p. on the Proceedings CDROM.
    [76] Erik L. Petersen, Niels G. Mortensen, Lars Landberg,etal. Wind Power Meteorology. Part Ⅱ: Siting and Models. Wind Energy. 1998,1:55-72.
    [77] Frank, H.P.. Lars Landberg, Modelling the Wind Climate of Ireland. Boundary-Layer Meteorology, 1997,85:359-378.
    [78] Bailey, B., M.C. Brower, and J. Zack. Short-Term Wind Forecasting. Proceedings of the European Wind Energy Conference, Nice, Frace, 1-5 March 1999, pp.1062-1065, ISBN1 902916 X.
    [79] Atsushi YAMAGUCHI , Takeshi ISHIHARA . A Dynamical Statistical Downscaling Procedure for Local wind Climate Assesment.
    [80] Bereket Lebassi ,EL Camino. Real Numerical Simulation of Wind Distributions for Resource Assessment in Southeastern Eritrea, East Africa.
    [81] S.Trini.Castelli, .Hara,R.Ohba,C.J.Tremback. Validation studies of tuebulence closure schemes for high resolution in mesoscale meteorological models. ATMOSPHERIC ENVIRONMENT,2006, 40: 2510-2523.
    [82] JPPinard. Computer Models for Wind Flow over Mesosclae Mountainous Terrain Applied to the Yukon .1999, EAS 521 -Final Report.
    [83] Bryan Andrew McEwen. The Application of High-Resolution Mesosclae Model Fields with the CALPUFF Dispersion Modelling System in Prince George B.C.2002,sep.
    [1] Cotton, W. R., R. A. Pielke, Sr, R. L. Walko et al. Rams 2001:current status and future directions. Meteor. Atmos. Phys., 2003, 82: 5-29 ,51- 53.
    [2] Cotton W. R., Pielke R. A., Walko R. L., Liston G. E., Tremback C. J., Jiang H.,McAnelly R. L., Harrington J. Y., Nicholls M. E., Carrio G.G., and McFadden J. P. RAMS: Current status and future directions. Meteorology and Atmospheric Physics. 2003,82: 5-29.
    [3] Walko, R. L. and C. J. Tremback. RAMS, The Regional Atmospheric Modeling System.Technical Description (draft), 2000,55 .
    [4] Walko, R. L., L. E. Band, J. Baron et al. Coupled tmosphere-biophysics-hydrology models for environmental modeling. J. Appl. Meteor., 2000, 39: 931-944,53.
    [1]中华人民共和国国家标准风电场风能资源测量方法.。中华人民共和国国家质量监督检验检疫总局发布,2002-04-08.
    [1]朱瑞兆。我国最大风速的分布特点。风能、太阳能资源研究论文集,2008,2-4.
    [2]丁国安,朱瑞兆。关于低层大气风速廓线的讨论。风能、太阳能资源研究论文集,2008,24-28.
    [3]丁国安,薛桁,朱瑞兆。武汉地区低空风的特性。风能、太阳能资源研究论文集,2008,19-41.
    [4]Lyons,T.J.Bell,M.J.Mesoscale variations in available wind power potential.Journal of Solar Energy Science and Engineering, 1990,Vol/Issue:45:3,149-166.
    [1] Davies, H. C. A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor.Soc, 1976, 102: 405-418
    [2] Tremback, C. J. and R. Kessler. A surface temperature and moisture parameterization for use in mesoscale numerical models. In Seventh Conference on Numerical Weather Prediction. Montreal, Quebec, Amer. Meteor. Soc, 1985, pp. 355-358
    [3] Kuo, H. L. The thermal interaction between the atmosphere and the earth and propagation of diurnal temperature waves. J. Atmos. Sci., 1968, 25:682-702
    [4] Jacobson, M. Z. Effects of soil moisture on temperatures, winds, and pollutant concentrationsin Los Angeles. J. Appl. Meteor., 1998,38: 607-616
    [5] Grasso, L. D. A numerical simulation of dryline sensitivity to soil moisture. Mon. Wea. Rev.,2000,128:2816-2834
    [6] G. Giebel, J. Badger. Short-term Forecasting Using Advanced Physical Modelling - The Results of the Anemos Project Results from mesoscale. microscale and CFD modeling.Anemous_physical modeling_EWWC_Wthens_2006.doc,2006-02-08
    [7] G. Giebel (ed.), et al. Model Results. Anemos project Deliverable D4.1b, 2006. See Anemos.cma.fr.
    [8] Louka, P., G. Kallos, C. Lac, I. Marti, A.M. Palomares, P. Katsafados. Evaluation of purely meteorological forecasts with emphasis to high-resolution systems. Deliverable report D2.2 for the anemos project. See anemos.cma.fr.
    [9] Louka, P., P. Katsafados, G. Kallos. Long term wind resource predictability. Deliverable report D4.3 for the Anemos project. See anemos. cma. fr
    [10] Adrian, G. and F. Fiedler. Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations. Beitr. Phys. Atmosph. 1991,64, 27-48.
    [11] Shi P J, Ha S. Comparison betweenHolocene environmental changesin north China agro_pastoral zone and Africa Sahelian belt.EarthScience Frontiers, 2002,9(1):121-128.
    [1]Hall T,Brooks H E,Doswell C A.Precipitation forecasting using a neural network.Weather and Forecasting,1999,14:338-345.
    [2]JINL,JU W M,MIAO Q L.Study on Ann-based multi-step prediction model of short-term climatic variation.Advances in Atmospheric Sciences,2000,17:157-164.
    [3]MARZBAN C,WITT A.A Bayesian neural network for severe-hail size prediction.Weather and Forecasting,2001,16:600-610.
    [4]刘德,李晶,刘永华.BP神经网络在长期天气过程预报中的应用实验.气象科技,2006,34(3):250-253
    [5]施丹平.人工神经网络方法在降水量级中期预报中的应用.气象,2001,27(6):40-42.
    [6]钟珞,饶文碧,邹承明.人工神经网络及其融合应用技术.北京:科学出版社,2007.
    [7]周开利,康耀红.神经网络模型机器MATlab仿真程序设计.北京:清华大学出版社,2005.
    [8]陈祥光,裴旭东.人工神经网络技术及应用.北京:中国电力出版社,2003.
    [9]朱武亭,刘以建.BP网络应用中的问题及其解决.上海海事大学学报,2005,vol.26,No.2.
    [10]曹均阔,舒远仲,叶水生.一种结构自组织的改进BP网络.计算机工程,2005,31 (17):165-167.
    [11]王正武,张瑞平,刘松.BP网络的一种改进学习方法.数学理论与应用,2005,25 (1):31-34.
    [12]李宏刚,吕辉,李刚.一种BP神经网络的改进方法及其应用.中国工程科学,2005,7(5):63-65.
    [13]雷景生,康耀红.一种改进的BP算法.海南大学学报自然科学.2003,21(4):326-329.
    [14]闵晶晶,曹晓钟,刘还珠等一种改进的BP算法及在降水预报中的应用,应用气象学报,再审.
    [15]Lippmann R P.An introduction to computing with neural nets,IEEE ASSP Magazine,1987 .4:4-22.
    [16]Hecht Nielsen R.Theory of the backpropagation neural network.International joint conference on neural networks,1989,1:593-605.
    [17]孙鸿娉,闫世明,李培仁,王雁.基于主分量的神经网络气温预报模型.中国农业气象2007,28(1):97-99.
    [18]张邦林,丑纪范,孙照渤.用前期大气环流预报对中国夏季降水的EOF迭代方案.科学通报,1991,36 (23):1797-1798.
    [19]丁裕国.经验正交函数展开气象场收敛性的研究.热带气象学报,1998,4 (4):316-325
    [20]那家凤.基于均生函数水稻扬花低温冷害程度的EOF预测模型.中国农业气象,1998,19(4):51-53.
    [21]宋正山,杨辉.夏季东亚季分区500hPa月环流异常及其与我国降水关系的向量EOF分析.大气科学2001 ,25 (3):401-404.
    [22]金龙,陈宁,林振山.基于人工神经网络的集成预报方法研究和比较.气象学报,1999 ,57(2):198-207.
    [23]丁裕国.经验正交函数展开气象场收敛性的研究.热带气象,1998,4(4):316-325.
    [24]王业宏,金龙.基于自然正交展开的神经网络长期预报模型.自然灾害学报2003,12(2):127-132.
    [1]EPRI Final Repor.California Wind Energy Forecasting System Development and Testing,Phase 1:Initial Testing.EPRI Final report 1007338,2003,Jan.
    [2]Gregor Giebel.The State-Of-The-Art in Short-Tenn Prediction of Wind Power,Deliverable report D1.1,2003.08.12.
    [3]朱瑞兆.近地层风速特性与风能利用.风能、太阳能资源研究论文集,2008,106-114.
    [4]陆裕萍.英国、美国、加拿大、的风力发电现状.新能源,1982,5.
    [1]Cotton W.R.,Pielke R.A.,Walko R.L.,Liston G.E.,Tremback C.J.,Jiang H.,McAnelly R.L.,Harrington J.Y.,Nicholls M.E.,Carrio G.G.,and McFadden J.P.(2003).RAMS:Current status and future directions.Meteorology andAtmospheric Physics.82:5-29.
    [2]中国地图集。中国地图出版社,2004,160-161.
    [3]梁红,王元,钱昊等。欧洲ECWMF模式与我国T213模式夏季预报能力的对比分析检验。气象科学,2007,Vol.27,No.3,253-258.
    [4]王超。2008年3 -5月T213与ECMWF及日本模式中期预报性能检验。气象,2008,Vol.34,No.8,112-118.
    [5]马德贞,毛恒青,鲍媛媛等。盛夏数值预报模式对副高预报性能检验及其释用。气象,1999,Vo125,No.3,49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700