用户名: 密码: 验证码:
中国近海和西北太平洋温跃层时空变化分析、模拟及预报
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度跃层是反映海洋温度场的重要物理特性指标,对水下通讯、潜艇活动及渔业养殖、捕捞等有重要影响。本文利用中国科学院海洋研究所“中国海洋科学数据库”在中国近海及西北太平洋(110oE-140oE,10oN-40oN)的多年历史资料(1930-2002年,510143站次),基于一种改进的温跃层判定方法,分析了该海域温跃层特征量的时空分布状况。同时利用Princeton Ocean Model(POM),对中国近海,特别是东南沿海的水文结构进行了模拟,研究了海洋水文环境对逆温跃层的影响。最后根据历史海温观测资料,利用EOF分解统计技术,提出了一种适于我国近海及毗邻海域,基于现场有限层实测海温数据,快速重构海洋水温垂直结构的统计预报方法,以达到对现场温跃层的快速估计。
     历史资料分析结果表明,受太阳辐射和风应力的影响,20°N以北研究海域,温跃层季节变化明显,夏季温跃层最浅、最强,冬季相反,温跃层厚度的相位明显滞后于其他变量,其在春季最薄、秋季最厚。12月份到翌年3月份,渤、黄及东海西岸,呈无跃层结构,西北太平洋部分海域从1月到3月份,也基本无跃层结构。在黄海西和东岸以及台湾海峡附近的浅滩海域,由于风力搅拌和潮混合作用,温跃层出现概率常年较低。夏季,海水层化现象在近海陆架海域得到了加强,陆架海域温跃层强度季节性变化幅度(0.31°C/m)明显大于深水区(约0.05°C/m),而前者温跃层深度和厚度的季节性变化幅度小于后者。20°N以南研究海域,温跃层季节变化不明显。逆温跃层主要出现在冬、春季节(10月-翌年5月)。受长江冲淡水和台湾暖流的影响,东南沿海区域逆温跃层持续时间最长,出现概率最大,而在山东半岛北及东沿岸、朝鲜半岛西及北岸,逆温跃层消长过程似乎和黄海暖流有关。多温跃层结构常年出现于北赤道流及对马暖流区。在黑潮入侵黄、东、南海的区域,多温跃层呈现明显不同的季节变化。在黄海中部,春季多温跃层发生概率高于夏季和秋季,在东海西部,多跃层主要出现在夏季,在南海北部,冬季和春季多温跃层发生概率大于夏季和秋季。这些变化可能主要受海表面温度变化和风力驱动的表层流的影响。
     利用Princeton Ocean Model(POM),对中国东南沿海逆温跃层结构进行了模拟,模拟结果显示,长江冲淡水的季节性变化以及夏季转向与实际结果符合较好,基本再现了渤、黄、东海海域主要的环流、温盐场以及逆温跃层的分布特征和季节变化。通过数值实验发现,若无长江、黄河淡水输入,则在整个研究海域基本无逆温跃层出现,因此陆源淡水可能是河口附近逆温跃层出现的基本因素之一。长江以及暖流(黑潮和台湾暖流)流量的增加,均可在不同程度上使逆温跃层出现概率及强度、深度和厚度增加,且暖流的影响更加明显。长江对东南沿海逆温跃层的出现,特别是秋季到冬季初期,有明显的影响,使长江口海域逆温跃层位置偏向东南。暖流对于中国东南沿海的逆温跃层结构,特别是初春时期,有较大影响,使长江口海域的逆温跃层位置向东北偏移。
     通过对温跃层长期变化分析得出,黄海冷水团区域,夏季温跃层强度存在3.8年左右的年际变化及18.9年左右的年代际变化,此变化可能主要表现为对当年夏季和前冬东亚地区大气气温的热力响应。东海冷涡区域,夏季温跃层强度存在3.7年的年际变化,在El Nino年为正的强度异常,其可能主要受局地气旋式大气环流变异所影响。谱分析同时表明,该海域夏季温跃层强度还存在33.2年的年代际变化,上世纪70年代中期,温跃层强度由弱转强,而此变化可能与黑潮流量的年代际变化有关。
     海洋水温垂直结构的统计预报结果显示,EOF分解的前四个主分量即能够解释原空间点温度距平总方差的95%以上,以海洋表层附近观测资料求解的特征系数推断温度垂直结构分布的结果最稳定。利用东海陆架区、南海深水区和台湾周边海域三个不同区域的实测CTD样本廓线资料,对重构模型的检验结果表明,重构与实测廓线的相关程度超过95%的置信水平。三个区重构与实测温度廓线值的平均误差分别为0.69℃,0.52℃,1.18℃,平均重构廓线误差小于平均气候偏差,统计模式可以很好的估算温度廓线垂直结构。东海陆架海区温度垂直重构廓线与CTD观测廓线获得的温跃层结果对比表明,重构温跃层上界、下界深度和强度的平均绝对误差分别为1.51m、1.36m和0.17℃/m,它们的平均相对误差分别为24.7%、8.9%和22.6%,虽然温跃层深度和强度的平均相对误差较大,但其绝对误差量值较小。而在南海海区,模型重构温跃层上界、下界和强度的平均绝对预报误差分别为4.1m、27.7m和0.007℃/m,它们的平均相对误差分别为16.1%、16.8%和9.5%,重构温跃层各特征值的平均相对误差都在20%以内。虽然南海区温跃层下界深度平均绝对预报误差较大,但相对于温跃层下界深度的空间尺度变化而言(平均温跃层下界深度为168m),平均相对误差仅为16.8%。因此说模型重构的温度廓线可以达到对我国陆架海域、深水区温跃层的较好估算。
     基于对历史水文温度廓线观测资料的分析及自主温跃层统计预报模型,研制了实时可利用微机简单、快捷地进行温跃层估算及查询的可视化系统,这是迄今进行大范围海域温跃层统计与实时预报研究的较系统成果。
The thermocline reflects the ocean temperature field's important physics characteristics, and has important influence on underwater communication, submarine activity as well as fishery farming and fishing. In this study, dstributions and seasonal variations of the thermocline in the China Seas and Northwestern Pacific Ocean (NWP) (110oE-140o E, 10oN-40oN) were studied with an improved method for identifying the thermocline from the historical data from 1930 through 2002 (totally 510143 profiles).Meanwhile,based on the Princeton Ocean Model (POM), hydrologic- al structure in the China Seas, particularly along the southeast Chinese coast, is simulated to find the affection of the ocean hydrological environment to the inversion thermocline. Empirical Orthogonal Function (EOF) analyse was used to get the main eigenvector fields of historical temperature for the China Seas and NWP, then the nice temperature profile is reconstructed based on the in situ temperature data and the thermocline is rapidly estimated.
     The main results of analyseing the historical data can be summarized as follows: The thermocline has obvious seasonal variations in the study area north of 20°N influenced by the strong annual cycles of SST and wind. The thermocline is basically shallower and stronger in summer while deeper and weaker in winter. However, it is thinner in spring and thicker in autumn. There is not the thermocline along the western coasts of the Bohai Sea (BS), Yellow Sea (YS) and northern East China Sea (ECS) from December to March, and in some areas of NWP from January to March. The thermocline is infrequent along the shoal areas of the western and eastern YS and in the vicinity of the Taiwan Strait affected by the wind and tidal mixing. Seasonal variation of the thermocline strength is generally enhanced in the shelf area with averaged seasonal amplitude of about 0.31°C/m that is much larger than that in the deep area (about 0.05°C/m). While the amplitudes of seasonal variations of the thermocline depth and thickness are larger in the deeper area than those in the shelf area. It reveals little seasonal variations in the study area south of 20°N. The inversion thermocline is found in winter and spring (Oct.-May). It appears in the southeast Chinese coast with the longest lasting period and the highest occurrence probability resulting from the Yangtze River diluted water and the Taiwan Warm Current (TWC). In the areas west and south of Korean Peninsula and the northern coast of the Shandong Peninsula, the emergence and disappearance of the inversion thermocline there are all accorded with the onset and decay of the YS Warm Current (YSWC). The multi-thermocline exists in the North Equatorial Current (NEC) and the Tsushima Current (TC) areas all the year round. The multi-thermocline reveals obvious seasonal variations in the branches of the Kuroshio in the YS, ECS and the South China Sea (SCS). In the central YS, the occurrence probability is higher in spring than in summer and autumn. In the western ECS, the multi-thermocline mainly appears in summer. The occurrence probability of the multi-thermocline is larger in winter and spring than in summer and autumn in the northern SCS. These different seasonal variations are mainly influenced by the variations of the SST and the horizontal advection of the surface warm water carried by the wind-driven currents.
     Based on the Princeton Ocean Model (POM), hydrological structure in the China Seas, particularly along the southeast Chinese coast, is simulated. The results show that the seasonal changes and expansion of the Yangtze River diluted water in summer better meet the actual results. The main distributions and seasonal variations of the circulation, temperature, salt and the inversion thermocline in the BS, YS and ECS are well simulated. There are no inversion themocine in the entire study area without Yangtze River and Yellow River; therefor the diluted water plays a leading role to the formulation of the inversion thermocline. Meanwhile the increasing discharges of the Yangtze River, TWC and Kuroshio make the occurrence probability, gradient and depth of the inversion themocline in the southeast China Seas increase too. The Yangtze River plays the major role to the formulation of the inversion themocline in autumn and winter, and make the inversion thermocline transfer southeastward, however the TWC and Kuroshio make it transfer northwestward in early spring.
     By analyzing the long period cycle of the strong thermocline in the YSCWM and ECSCE, we can find that there are 3.8yrs and 18.9yrs period oscillations of the thermocline gradient in the YSCWM area in summer. These changes were mainly the responses to the variations of the atmospheric temperature in the summer and former winter in the East Asian. In the ECSCE area, the interannual oscillation of the thermocline gradient with about 3.7-yr period in summer (stronger in El Nino yrs) is well correlated with that of local wind stress. The transition from weak to strong thermocline gradient in the ECSCE during the mid-1970s is consistent with the change of the Kuroshio volume transport in summer.
     The results of the prediction of vertical temperature structure show that the accumulative variance of the first four eigenvector fields reaches 95%, and the vertical distribution of the reconstructed temperature is most stable using the in situ temperature near the surface to get the coefficient. The model test is operated using the CTD data from the ECS, SCS and the areas around Taiwan Island. The reconstructed profiles have a high correlation with the observed ones and reaching the 95% confidence level. The average error between the reconstructed profiles in these three area and the observed ones were 0.69℃, 0.52℃, 1.18℃. This shows this statistical model can estimate the temperature profile vertical structure well. Comparing the thermocline characteristics from the reconstructed profiles and historical data respectively, the results in the ECS show that the upper thermocline boundary, lower thermocline boundary and the gradient average absolute errors are 1.51m, 1.36m and 0.17℃/m respectively, and the average relative errors of them are 24.7%, 8.9% and 22.6% respectively. Although the relative errors of thermocline depth and gradient there are large, the average error is small. In the SCS, average absolute errors of the upper thermocline boundary, lower thermocline boundary and the gradient are 4.1m, 27.7m and 0.007℃/m respectively, while the average relative errors of them are 16.1%, 16.8 and 9.5% respectively that are all <20%. Although the average absolute error of the thermocline lower bound is larger, but contrast to the spatial scale of average depth of the thermocline lower bound (168 m), the average relative error is only 16.8%. Therefor the model can estimate the thermocline well.
     Based on the analyses and prediction of the thermocline, a system that can estimate the thermocline quickly is developed, which is one of the most systematic research results about the thermocline analyses and prediction so far.
引文
Bai, X. Z., and D. X. Hu. A numerical study on the seasonal variations of the Taiwan Warm Current. Chin. J. Oceanol. Limnol., 2004, 22(3): 278-285
    Baringer, M. O., and J. F. Price. Mixing and spreading of the Mediterranean outflow. J. Phys. Oceanogr., 1997, 27:1,654-1,677
    Blumberg, A. F., and G. L. Mellor. A coastal ocean numerical model, In Mathematical Modelling of Estuarine Physics, Proc. Int. Symp., Hamburg, Aug. 1978, edited by J. Sunderman and K. P. Holtz, Springer-Verlag, Berlin, 1980: 203-214
    Blumberg, A. F., and G. L. Mellor. A description of a three-dimensional coastal ocean circulation model. in Three-Dimensional Coastal Ocean Models, Vol.4, edited by N.Heaps, American Geophysical Union, Washington, D. C., 1987, pp. 208
    Blumberg, A. F., and G. L. Mellor. Diagnostic and prognostic numerical circulation studies of the South Atlantic Bight. J. Geophys. Res., 1983, 88: 4,579-4,592
    Carnes, M. R., J. L. Mitchel, and P. W. deWitt. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermogr- aph profiles. J. Geophys. Res., 1990, 95 (C3): 17,979-17,992
    Carnes, M. R., W. J. league, and J. L. Mitchell. Inference of subsurface thermohaline structure from fields measurable by satellite. J. Atmos. Oceanic Tech., 1994, 11: 551-566
    Chen, Y. L., D. X. Hu, and F. Wang. Long-term variabilities of thermodynamic structure of the East China Sea Cold Eddy in summer. Chin. J. Oceanol. Limnol., 2004, 22(3): 224-230
    Chu, P. C. Determination of Vertical Thermal Structure from Sea Surface Temperature. J.Atmos.Oceanic Technol., 2000, 17: 971-979
    Chu, P. C., C. R. Fralick Jr., S. D. Haeger, and M. J. Carron. A parametric model for the Yellow Sea thermal variability. J. Geophys.Res., 1997a, 102: 10,499-10,507
    Chu, P. C., H. C. Tseng, C. P. Chang, and J. M. Chen. South China Sea warm pool detected from the Navy’s Master Oceanographic Observational Data Set (MOODS). J. Geophys. Res., 1997b, 102: 15,761–15,771
    Elsberry, R. L., and Larry L. Warrenfelt. Data Assimilation Tests with an Oceanic Mixed-Layer Model. J. Phys. Oceanogr., 1982, 12: 839-850
    Galperin, B., and G. L. Mellor. A time-dependent, three-dimensional model of theDelaware Bay and River. Part I: Description of the model and tidal analysis. Estuarine Coastal Shelf Sci., 1990a, 31: 231-253
    Galperin, B., and G. L. Mellor. A time-dependent, three-dimensional model of the Delaware Bay and River. Part II: Three dimensional flow fields and residual circulation. Estuarine Coastal Shelf Sci., 1990b, 31: 255-281
    Gill, A. E., and P. P. Niller. The theory of the seasonal variability in the ocean. Deep-Sea Res., 1973, 20:141-177
    Guan, B. X., and H. L. Mao. A note on circulation on the East China Sea. Chin. J. Oceanol. Limnol., 1982., 1: 5-16
    Hsueh, Y., and D. L. Yuan. A numerical study of the currents, heat advection and sea level fluctuations in the Yellow Sea in winter1986. J. Phys. Oceanogr., 1997, 27: 2,313-2,326
    Hu, D. X., Z. X. Ding, and Q. C. Xiong. A preliminary investigation of a cyclonic eddy in the northern East China Sea in summer, Chinese Science Bulletin, 1980, 25(1-2): 57-60
    Hurlburt, H. E, D. N. Fox, and J. Metzger. Statistical inference of weakly correlated subthermocline fields from satellite altimeter data. J. Geophys. Res., 1990, 95: 11,375-11,409
    Hurlburt, H. E. The potential for ocean prediction and the role of altimeter data. Mar. Geod., 1984, 8: 17-66
    Ichikawa, H. and R. C. Beardsley. The Current System in the Yellow and East China Seas. J. Oceanogr., 2002, 58: 77-92
    Jing, Z. H., J. P. Zhao and G. J. Shen. Lamer., 1984, 22:131-136
    Jungclaus, H., and G. L. Mellor. A three-dimensional model study of the Mediterranean outflow. J. Mar. Systems. 2000, 24:41-66
    Kraus, E. B., and J. S. Turner. A one-dimension model of the seasonal thermocline II.The general theory and its consequences. Tellus, 1967, 11 (19): 98-106
    Lee, T. N., E. J. William, and Cho-Teng Liu et al. Mean transport and seasonal cycle of the Kuroshio east of Taiwan with comparison to the Florida current. J. Geophys. Res., 2001,106 (C10): 22,143-22,158
    Li, F. Q. On the determination of upper and lower bounds of the high gradient layers in the ocean. Collected Oceanic Works, 1983, 6(1): 1-7
    Liu, Q. Y, H. J. Yang, and Q. Wang. Dynamic characteristics of seasonal thermoclinein the deep sea region of the south china sea. Chinese J. Oceanol., 2000, 118 (2):104-109
    Liu, Q. Y, Y. L. Jia, P. H. Liu, and Q. Wang. Seasonal and Intraseasonal Thermocline Variability in the Central South China Sea. Geophys. Res. Lett., 2001, 28(23): 4,467-4,470
    Liu, Z. L. Current observations in summers in the southern Yellow Sea. Postal- doctoral research report. Institute of Oceanology, Chinese Academy of Sciences, 2006, pp. 40–43
    Lorenz, E. N. Empirical orthogonal functions and statistical weather prediction. Staiistical Forecasting Project Science Rep. 1, Massachusetts Institute of Technology, Cambridge, 1956, MA, 48 pp.
    McWilliams, J. C., and A. Robinson. A wave analysis of the polygon array in the tropical Atlantic. Deep Sea Res., 1974, 21: 259-368
    Mcwilliams, J. C., and R. P. Sullivan. Vertical mixing by Langmuir circulations. Spill Science& Technology Bullerin, 2000, 6: 225-237
    Mellor, G. L. User’s guide for a three-dimensional, primitive equation, numerical ocean model. AOS Program Rep., Princeton University, Princeton, NJ. 2004,1-56
    Mellor, G. L., and A. F. Blumberg. Modeling vertical and horizontal diffusivities with the sigma coordinate systerm. Mon. Wea.Rev., 1985, 113:1,380-1,383
    Mellor, G. L., and T. Ezer. A Gulf Stream model and an altimetry assimilation scheme. J. Geophys. Res., 1991, 96: 8,779-8,795
    Mellor, G. L., and T. Yamada. A hierachy of turbulence closure models for planetary boundary layers.J. Atmos. Sci., 1974, 31:1,791-1,806
    Mellor, G. L., and T. Yamada. Development of a turbulence closure model for geophysical fluid problem. Rev. Geophysics. Space Phys., 1982, 20: 85-875
    Mellor, G. L., and X. H. Wang. Pressure compensation and the bottom boundary layer. J. Phys. Oceanogr., 1996, 26: 2,214-2,222
    Munk, W. H., and E. R. Anderson. Notes on a theory of the thermocline. J. Mar. Res., 1948, 7(3):276-295
    Oey, L.-Y., G. L. Mellor, and R. I. Hires. A three-dimensional simulation of the Hudson-Raritan estuary. Part I: Description of the model and model simulations. J. Phys. Oceanogr., 1985a, 15:1,676-1,692
    Oey, L.-Y., G. L.Mellor, and R .I. Hires. A three-dimensional simulation of the Hudson-Raritan estuary. Part III: Salt flux analyses. J. Phys. Oceanogr., 1985c, 15:1,711-1,720
    Oey, L.-Y., G. L.Mellor, and R. I. Hires. A three-dimensional simulation of the Hudson-Raritan estuary. Part II: Comparison with observation. J. Phys. Oceanogr., 1985b, 15:1,693-1,709
    Pascual, A., and D. Gomis. Use of surface data to estimate geostrophic transport. J. Atmos. Oceanic Technol., 2003, 20: 912-926
    Phillips, N. A. A coordinate system having some special advantages for numerical forecasting. J. Meteorol., 1957, 14(2):184-185
    Qiao, F. L., C. S. Xia, J. W. Shi, J. Ma, R. F. Ge, and Y. L. Yuan. Seasonal variability of thermocline in the Yellow Sea. Chinese J. Oceanol. Limnol., 2004, 22(3):299-305
    Robinson, A. R., and H. Stommel. The ocean thermocline and associated thermocline circulation. Tellus, 1959, 11: 295-308
    Sprintall, J., and M. Tomczak Evidence of the barrier layer in the surface layer of the tropice. J. Geophys. Res., 1992, 97(C5):7,305-7,316
    Stigebrandt, A. Cross thermocline flow on continental shelves and locations of shelf fronts. Ecohydrodynamics, 1981, 32: 51-64
    Su, J. L. Circulation dynamics of the China Seas north of 18N, In: The Sea, Robinson A.R. and K. H. Brink, Vol. 11, Wliey, New York, 1998. 483-505
    Teague, W. J., G. A. Jacobs, and H. T. Perkins et al. Low-Frequency current observations in the Korea/ Tsu-shima Strait. J. Phys.Ocean.,2002, 32: 1621-1641
    Thacker, W. C., and R. B. Long. Fitting dynamics to data. J. Geophys. Res., 1988, 93 (C2): 1227-1240
    Weatherly, G. L., and P. J. Martin. On the structure and dynamics of the oceanic bottom boundary layer. J. Phys. Oceanogr., 1978, 8:557-570
    Welander, P. An advective model of the ocean thermoline. Tellus. 1959, 11: 309-318
    Weller, R. A., and J. F. Price. Langmuir circulation within the oceanic mixed layer. Deep-Sea Research, 1988, 35:71-747
    Wilkin, J., S. Chiswell, and J. Zeldis. Assimilation of altimetry in a mesoscale model of northeast New Zealand waters: Upwelling, uplift and fertilization of the coastal ocean in a western boundary current
    Yuan, D. L., J. R. Zhu, C. Y. Li, and D. X. Hu. Cross-shelf circulation in the Yellowand East China Seas indicated by MODIS satellite observations. J. Mar. Systems. 2008, 70:134-149
    Zang, J. Y., Y. X. Tang, E M. Zou, and Lie Heung-Jae. Analysis of the Yellow Sea circulation. Chinese Science Bulletin, 2003, 48:12-20
    Zavatarelli, M., and G. L. Mellor. A numerical study of the Mediterranean Sea Circulation. J. Phys. Oceanogr., 1995, 25:1,384-1,414
    白学志,王凡,胡敦欣.东中国海环流及其季节变化的数值模拟.海洋科学集刊,2003 ,45(5):77-85
    白学志,王凡.夏季长江冲淡水转向机制的数值试验.海洋与湖沼,2003,34(6):593-603
    曹欣中,潘玉球,许建平.浙江近海温逆增现象的初步分析.海洋通报,1982, 3:1-5
    陈达熙等.渤海、黄海、东海海洋图集-水文分册.北京:海洋出版社. 1992
    陈希,沙文钰,李妍.南海北部海区温跃层分布特征及成因的初步分析,海洋预报.2001,8(4):9-17
    丁宗信,蓝淑芳.南黄海和东海春、冬季温度逆转类型的分布及其成因分析,海洋科学.1995,1:35-39
    丁宗信.风对浙江沿岸海域夏季温盐度垂直结构和上升流的影响.海洋与湖沼,1983,14(1):14-21
    丁宗信.黄、东海秋季温、盐度垂直分布类型及其逆转现象成因的初步分析.海洋科学,1994,2:47-51
    丁宗信.黄海、东海夏季温、盐度逆转结构分布及其成因的初步分析.海洋科学集刊,1994,35:11-22
    丁宗信.东海北部气旋涡区夏半年水文结构.海洋湖沼,1985,16(2):138-146
    丁宗信等.南黄海秋末温盐度垂直结构及其与流系关系的分析.海洋科学集刊,1986,27:87-95
    冯士莋,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999.434-486
    葛人峰,乔方利,于非,蒋志晓,郭景松.陆架海区温跃层特征量的一种计算方法-拟阶梯函数逼近法.海洋科学进展,2003,21(4):394-400
    管秉贤.东海西部沿岸海域冬季的逆温跃层现象及其与环流的关系.黄渤海海洋,1999,7(2):1-7
    管秉贤.黄海冷水团的水文变化及其环流特征的初步分析.海洋与湖沼,1963,5(4):255-284
    管秉贤.南海北部冬季水温垂直结构的重要特征.海洋与湖沼,1981,12(4):311-320
    管秉贤.山东半岛北及东沿岸海域冬季的逆温跃层及其与深底层逆流的关系.黄渤海海洋,2000,18(3):1-6
    管秉贤.有关我国近海海流研究的若干问题.海洋与湖沼,1962,4:121-140
    郭炳火.黄海温跃层概况.黄渤海海洋,1979,11(3):63-89
    郭炳火.中国近海及邻近海域海洋环境.北京:海洋出版社,2004.32-101
    国家海洋局.渤海、黄海、东海海洋图集-水文.北京:海洋出版社,1992
    国家技术监督局.海洋调查规范--海洋调查资料处理(中华人民共和国国家标准GB12763.7—91).北京:中国标准出版社,1992.68-70.
    韩国仁荷大学海洋科学技术研究所,中科院海洋研究所.黄海海洋图集.1998
    何发祥.闽南-台湾浅滩渔场冬季温、盐度铅直向结构的初步探讨.海洋湖沼通报,1993,2:17-22
    赫崇本.全国海洋综合调查报告,第二册,第三章:中国近海温、盐、密度的分布.北京:科学出版社,1964
    胡敦欣、丁宗信、熊庆成.东海北部一个气旋型涡旋的初步分析.海洋科学集刊,1984,21:87-99
    黄大吉,苏纪兰,陈宗镛.三维陆架海模式在渤海中的应用Ⅱ.温度的季节性变化.海洋学报,l996,18(6):8-17
    黄荣祥.台湾海峡中、北部海域温、盐度特征.海洋科学,1989,6:33-38
    贾瑞丽,孙璐.渤海、黄海冬夏季主要月份的海温分布特征.海洋通报,2002,21(4):1-8
    贾旭晶,刘秦玉,孙即霖. 1998年5-6月南海上混合层、温跃层不同定义的比较.海洋湖沼通报,2001:1-7
    金梅兵,王宗山,徐伯昌.黄、渤海温度垂直结构三维数值预报.海洋学报,1994,16(2):13-20
    蓝淑芳,顾传宬,傅秉照.渤海、黄海、东海水温垂直结构统计特征分析.海洋科学集刊,1985,25:11-25
    蓝淑芳,顾传宬,傅秉照.东海陆架区的温盐度逆转现象.海洋湖沼通报,1993,3:28-34
    蓝淑芳.东海北部陆架区温、盐度逆转现象的分析.海洋科学集刊,1997, 38:17-30
    乐肯堂等.南黄海冬季温盐结构及其流系.海洋与湖沼,1990,21(6):505-515
    李培良,戚建华,方欣华. 1997年11月南沙群岛调查海域的跃层特征.海洋湖沼通报,2000:1-7
    廖启煜,王宗山等.东海西北部中层冷水垂直热结构数值预报方法研究-I.一维数值预报模式.海洋学报,2002,24(2):1-8
    林鹏飞.南海和西北太平洋中尺度涡的统计特征分析.青岛:中国科学院海洋研究所,2005
    刘桂芳. 1987年7月粤东陆架区温、盐、密度跃层的分布特征.热带海洋,1989,8(2):39-47
    刘克修,赵保仁,朱兰部.黄海温度锋及断面水温分布数值预报试验研究.海洋科学集刊,1998,40:1-10
    刘丽萍,黄大吉,章本照.渤黄东海混合层化演变规律的研究进展.海洋科学进展,2002,20(3):84-89
    刘兴泉,侯一筠,尹宝树.东海沿岸海区垂直环流及其温盐结构动力过程研究I.环流的基本特征.海洋与湖沼,2004,34(5):393-405
    刘兴泉,侯一筠,尹宝树.东海沿岸海区垂直环流及其温盐结构动力过程研究II.温盐结构.海洋与湖沼,2004,35(6):497-506
    毛汉礼,邱道立.全国海洋综合调查报告,第三册,第四章:中国近海温、盐、密度的跃层现象.北京:科学出版社,1964
    潘爱军,郭小钢,许金电,万小芳,吴日升.南海东北部陆架坡折海海域跃层判定讨论.热带海洋学报,2006,25(5):8-12
    邱道立等.黄海南部盐度预报及分析.青岛海洋大学学报,1989,19(1):301-310
    邱章,徐锡祯,龙小敏.1994年9月南沙群岛调查海区的跃层特征,热带海洋. 1996,15(2):61-67
    邱章等.与南海深水区温跃层有关的海水平均温度的分布特征.热带海洋,2000,19(4):10-14
    沈雪龙.东海南部黑潮区春季温盐度垂直分布类型及其逆现象成因的初步分析.东海海洋,1999,17(1):8-12
    施平等.南海混合层年循环特征.热带海洋学报,2001,20(1):10-17
    苏纪兰.中国近海的环流动力机制研究.海洋学报,2001,23(3):1-16
    苏育嵩,李凤歧等.东海北部底层冷水及双跃层初析.海洋与湖沼,1989,20(1):75-86
    屠金钊.渤、黄海温度跃层的分布与变化.海洋通报,1992,11(4):27-32
    王东晓,杜岩,施平.冬季南海温跃层通风的证据,科学通报,2001, 46(9):758-762.
    王凡,赵永平,冯志纲,白学志,吴爱明. 1998年春夏南海温盐结构及其变化特征.海洋学报,2001,23(5):1-13
    王宗山,李繁华,龚滨,徐伯昌,邹娥梅.黄渤海水温垂直结构数值预报方法的研究II.二维数值预报模式.海洋学报,1991,13(3):458-474
    王宗山,徐伯昌,邹娥梅,杨克奇,李繁华.黄渤海水温垂直结构数值预报方法的研究I.一维数值预报模式.海洋学报,1991,13(93):315-324
    王宗山,徐伯昌,邹娥梅等.东海西北部中层冷水的成因.海洋科学进展,2002,20(3):68-72
    王宗山,徐伯昌.渤、黄海强温跃层数值预报模式.海洋学报,1997,19(4):1-9
    王宗山,邹娥梅.海洋上层温度结构特征的参数模式.黄渤海海洋,1996,14(3):8-1
    王宗山等.东海西北部中层冷水垂直热结构数值预报方法研究-三维数值预报模式.海洋学报,2002,24(6):1-10
    翁学传.东海西北部海域中层冷水的初步分析.海洋科学集刊,1984,21:63-73
    吴魏,方新华,吴德星.关于跃层深度确定方法的探讨.海洋湖沼通报,2001:1-7
    徐伯昌,王一支,田素珍.浅海水温垂直分布的模拟.海洋通报,1984,3(1):1-6
    徐伯昌,王宗山,邹娥梅等.东海西北部中层冷水特征的时空变化.黄渤海海洋,2000,18(2):1-7
    徐锡祯,邱章,龙小敏.南海温跃层基本特征及一维预报模式.海洋与湖沼,1993,24(5):494-502
    颜文彬,陈玉英.渤海和北黄海的逆温跃层.海洋通报,1991,10(4):94-98
    杨殿荣,匡国瑞,张玉琳,周德坚.黄、东海夏季温跃层的诊断研究.海洋学报,1990,12(1):14-23
    杨殿荣,周德坚,张玉琳.浅海潮致贯跃层混合效应.海洋学报,1991,13(3):295-304
    于洪华.东海温跃层特征分析.东海海洋,1988,6(1):1-11
    曾刚,肖晖.台湾海峡西部海域温盐度跃层.台湾海峡,1988,7(2):143-150
    张晨,戚建华,左军成,张法高.黄渤海温跃层三维数值模拟.海洋学报,1997,19(6):12-20
    张秀芝,李江龙,王东晓.热带海洋温跃层深度与南海夏季风强度的关系探讨.海洋学报,2001,23(3):26-34
    张延廷,王以娇.北黄海跃层起伏与波动的数值模拟.中国海洋学文集I.北京:海洋出版社,1991.66-87
    张延廷,王以娇.渤海潮汐(流)作用下跃层起伏与波动的数值模拟.中国海洋学文集I.北京:海洋出版社,1991.48-55
    张延廷,王以娇.风扰动下渤海跃层深度变化与波动的数值模拟.中国海洋学文集I.北京:海洋出版社,1991.40-47
    张元奎,贺先明.春季北黄海西部冷水团强度的年际差异及其预报.青岛海洋大学学报,1989,19(1):275-283
    张媛,吴德星,林霄沛.东海夏季跃层深度计算方法的比较.中国海洋大学学报,2006,36(增刊):1-7
    赵保仁.渤、黄海及东海北部强温跃层的基本特征及形成机制的研究.海洋学报,1989,11(4):401-410
    赵保仁.黄海南部温跃层数值模拟Aken模式的应用.黄渤海海洋,1993,11(2):62-71
    周发绣,丁洁.南海表层水温的季节内变化.青岛海洋大学学报,1995,25:1-6
    周发诱,高荣珍.南海次表层水温的季节内变化.科学通报,2001,46(21):1831-1837
    周小兵,张延廷等.潮汐作用下北黄海跃层波动的数值研究.地学前缘,2000,7增:209-217
    周小兵,张延廷等.潮汐作用下渤海温跃层波动与起伏的数值研究.海洋学报,2002,24(2):20-29
    周燕遐,范振华,颜文彬,张书东.南海海域BT资料、南森站资料计算温跃层-三项示性特征的比较.海洋通报,2004,23(1):22-26
    周燕遐,李炳兰,张义钧,巴兰春.世界大洋冬夏季温度跃层特征.海洋通报,2002,21(1):16-22
    祝建国,王骥鹏,陈希.台湾岛南部海域温跃层个例特征分析.解放军理工大学学报(自然科学版),2005,6(5):497-501
    邹娥梅,王宗山,马成璞.西太平洋温盐分析.黄渤海海洋,1983,1(2):29-45
    邹娥梅,熊学军,郭炳火,林葵.黄、东海温盐跃层的分布特征及其季节变化.黄渤海海洋,2001,19(3):8-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700