用户名: 密码: 验证码:
裂纹扩展与损伤演化理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在长寿命结构的设计过程中,结构或构件的耐久性与损伤容限设计是极为重要的设计环节。而构件或材料的抗断裂性能是耐久性与损伤容限设计所考察的重要力学指标之一。目前,对这方面的研究还缺乏坚实的理论基础。因此,对含裂纹构件尤其是含非穿透裂纹构件抗断裂性能的研究不仅具有学术研究价值,而且也具有工程应用价值。
     本文对含裂纹构件的抗断裂性能进行了较为全面的理论研究和必要的实验研究,并且取得了一定的成果,全文共涉及三个方面的内容:
     第一部分研究了二维含穿透裂纹构件在两种失效模式(裂纹扩展与韧带屈服)下的载荷与位移关系。
     本文基于能量差率原理、余能原理、计及厚度效应的断裂韧度与阻力曲线理论以及塑性本构关系,得到二维含穿透裂纹构件载荷-位移曲线的解析闭合解;为了验证该解析闭合解的有效性,进行了二维含穿透裂纹构件的准静态单调加载试验研究。
     第二部分从裂纹扩展动力与裂纹扩展阻力两个方面,研究了含非穿透裂纹三维有限大体的裂纹扩展问题。
     在裂纹扩展动力研究方面,改进了已有的基于能量差率原理求解含非穿透裂纹三维有限大体应力强度因子与能量释放率的方法,并得到与有限元法计算结果基本一致的显示闭合解。
     在裂纹扩展阻力研究方面,基于热力学原理,给出了重复加载下含非穿透裂纹三维构件的疲劳裂纹扩展速率的理论表达式;在此基础之上,给出了预测疲劳裂纹扩展寿命的数值方法。同时,建立了以热力学定律为基础的单调加载下含非穿透裂纹三维构件的裂纹扩展微分方程组,并给出由方程组绘制疲劳裂纹扩展阻力曲线的数值方法。
     第三部分应用基于损伤力学原理的疲劳裂纹形成寿命的封闭解预估某型号民机加压舱的疲劳裂纹形成寿命。
     在有限元细节应力分析结果的基础上,结合塑性理论与损伤力学原理得到疲劳裂纹形成寿命预估模型,给出机身加压舱结构的概率疲劳寿命,该方法的计算结果与全尺寸等压舱结构的疲劳试验结果基本一致。
In the design process of long term structures, the damage-tolerance and durability design are very important design links. The behaviors against fracture of materials and structural members are key indexes of above designs. However, there are no solid theoretical foundations in these aspects. Therefore, the topic of this dissertation have important significance in academic research and engineering application.
     In this dissertation, comprehensive theoretical studies and necessary experimental works are performed. The relevant achievements can be divided into following three parts.
     PartⅠ, the closed form analytical solutions of nonlinear load-deflection curves of two dimensional structural members with through thickness cracks under the conditions of crack growth and ligament yielding are provided and verified by experimental results.
     PartⅡ, an improved closed form solution of stress intensity factors and energy release rates of three dimensional structural members with non-through thickness cracks are carried out on the basis of energy method and checked by finite element computions..
     Furthermore, the theoretical expressions of fatigue crack growth rates of three dimensional structural members with non-through thickness cracks under repeated loading are established on the foundation of thermodynamics and fatigue crack growth lives are predicted by these expressions with numerical method. Similarly, the system of differential equations of crack growth of three dimensional structural members with non-through thickness cracks under monotonic loading is founded on the basis of themodynamics also and resistance curves can be drawn by this system of differential equations through numerical method.
     PartⅢ, a closed form solution of probabilistic fatigue crack initiation life prediction based upon the conservative integral principle of damage mechanics, finite element method and theory of plasticity is applied to the pressurized cabin of certain type civil aircraft. The computational result agree with the result given by the full scale fatigue test of the pressurized cabin.
引文
[1] Sih G C. Method of Analysis and Solution of Crack Problems[M]. Leyden, Netherlands: Noordhoff International Publishing, 1973.
    [2]张行,崔德渝,刘森.断裂力学[M].北京:宇航出版社, 1990.
    [3]张行主编.断裂与损伤力学[M].北京:北京航空航天大学出版社, 2006.
    [4] Smith F W, Emery A F, Kobayashi A S. Stress Intensity Factors for Semi-Circular Cracks, Part 2- Semi-Infinite Solids[J]. J. Appl. Mechs. 1967, 34(4): 953-959.
    [5] Kobayashi A S. Crack-Opening Displacement in a Surface Flawed Plate Subjected to Tension or Plate Bending: Proc. Second Int. Conf. on Mechanical Behavior of Materials[Z]. ASM: 19761073-1077.
    [6] Raju I S, Newman J C. Stress-Intensity Factors for a Wide Range of Semi-Elliptical Surface Cracks in Finite-Thickness Plates[J]. Engineering Facture Mechanics. 1979, 11(4): 817-829.
    [7] Newman J C, Raju I S. Analyses of Surface Cracks in Finite Plates Under Tension or Bending Loads[R]. Washington DC: NASA TP-1578, 1979.
    [8] Heliot J, Labbens R, Pellissier-Tanon A. Benchmark Problem No.1 Semi-Elliptical Surface Crack[J]. Int. J. of Fracture. 1979, 15(6): 197-202.
    [9] Nishioka T, Atluri S N. Analytical Solution for Embedded Ellitpical Cracks, and Finite Element-Alternating Method for Ellitpical Surface Cracks, Subjected to Arbitrary Loadings[J]. Engineering Facture Mechanics. 1983, 17: 247-268.
    [10] Tracey D M. 3D Elastic Singularity Element for Evaluation of K along an Arbitrary Crack Front[J]. Int. J. of Fracture. 1973, 9: 340-343.
    [11] Kobayashi A S, Enetanya A N. Stress Intensity Factor of a Corner Crack[C]. American Society for Testing and Materials, 1976. 477-495.
    [12] Raju I S, Newman J C. Stress Intensity Factors for Two Symmetic Corner Cracks[C]. American Society for Testing and Materials, 1979. 411-430.
    [13] Smith F W, Kullgren T E. Theoretical and Experimental Analysis of Surface cracks Emanating from Fastener Holes[R]. AFFDL-TR-76-104: Air Force Flight DynamicsLaboratory, 1977.
    [14] Loo T T. On Stress intensity factors for circumferential cracked circular cylinders[J]. J. Appl. Mech. 1980, 47: 441-443.
    [15]李英治,李敏华,柳春图, et al.含表面裂纹三维体裂纹尖端应力应变场及应力强度因子计算[J].中国科学A辑. 1988(08): 828-842.
    [16]张永元,周裕锋.半圆形表面裂纹前沿应力奇异性的边界元模拟[J].上海交通大学学报. 1988(06): 20-25.
    [17]樊学军,余寿文.圆筒形容器轴向表面裂纹热冲击问题的开裂分析[J].计算力学学报. 1990(02): 1-7.
    [18] Lu Y, Jiang Z. The nonlinear Spring model for elastic-plastic analysis of surface cracks: Proc. ICF. Int. Symp. on Fracture Mechanics[Z]. Beijing: 1983: 1, 113-120.
    [19]陆寅初,唐国金.弹塑性梁动态断裂的线弹簧模型[J].国防科技大学学报. 1993(03): 25-30.
    [20]姚玲,王铎.圆盘状Ⅰ型裂纹的非局部理论解[J].工程力学. 1994(02): 20-29.
    [21] Wu X R. Welding residual stress intensity factors for half-elliptical surface cracks in thin and thick plates[J]. Engineering Fracture Mechanics. 1984, 19(3): 387-405.
    [22] Wu X R, Carlsson A J. Weight Functions and Stress Intensity Factor Solutions[M]. Oxford: Pergamon Press, 1991.
    [23]赵伟,吴学仁,颜鸣皋.受远方拉伸的孔边角裂纹的应力强度因子[J].力学学报. 1991, 23(03): 315-322.
    [24]赵伟,吴学仁,颜鸣皋.小角裂纹应力强度因子的权函数解[J].力学学报. 1992, 24(03): 376-380.
    [25] Heocaris P S, Wu D L. A closed form solution to the equivalent through-crack model for surface cracks[J]. Acta Mechanica. 1986, 58: 153-173.
    [26] Wu S, Zhang X, He Q. Analysis of stress intensity factors for three-dimensional finite cracked bodies by a variational alternating method[J]. Computational Mechanics. 1989, 5(1): 23-32.
    [27] Chen Z G, Zhang X. A close form solution of stress intensity factors for cracks in three dimensional finite bodies by energy release rate method[J]. Engineering Fracture Mechanics. 1989, 32(3): 419-441.
    [28] Wang Q Z, Zhang X, Ren B Y. A closed form solution of stress intensity factors for three dimensional finite bodies with unsymmetric cracks by energy release rate method[J]. International Journal of Fracture. 1991, 17: 257-290.
    [29]刘黎明,王奇志,张行.三维有限大体中小尺寸孔边角裂纹应力强度因子显式闭合解[J].机械强度. 2004, 26(01): 80-86.
    [30] Heo S P, Yang W H. Stress intensity factor analysis of elliptical corner cracks in mechanical joints by weight function method[J]. INTERNATIONAL JOURNAL OF FRACTURE. 2002, 115(4): 377-399.
    [31] Fawaz S A, Andersson B. Accurate stress intensity factor solutions for corner cracks at a hole[J]. ENGINEERING FRACTURE MECHANICS. 2004, 71(9-10): 1235-1254.
    [32] Chang E, Dover W D. Weight function and stress intensity factor for a semi-elliptical surface saddle crack in a tubular welded joint[J]. JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN. 2005, 40(4): 301-326.
    [33] Hachi B K, Rechak S, Haboussi M, et al. Computation of stress intensity factor in cracked plates under bending in static and fatigue by a hybrid method[J]. INTERNATIONAL JOURNAL OF FATIGUE. 2007, 29(9-11): 1904-1912.
    [34] Lee Y D, Mcclung R C, Chell G G. An efficient stress intensity factor solution scheme for corner cracks at holes under bivariant stressing[J]. FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES. 2008, 31(11): 1004-1016.
    [35]刘曦.关于表面裂纹线弹簧模型的改进[J].机械强度. 2007, 29(03): 449-453.
    [36]谢伟,黄其青, Kikuchi M.应用改进的虚拟裂纹闭合方法求解三维裂纹应力强度因子[J].机械科学与技术. 2008, 21(01): 41-44.
    [37] Noda N A, Kihara T, Beppu D. Variations of stress intensity factor of a semi-elliptical surface crack subjected to mixed mode loading[J]. INTERNATIONAL JOURNAL OF FRACTURE. 2004, 127(2): 167-191.
    [38] Noda N A, Kihara T A. Variation of the stress intensity factor along the front of a 3-D rectangular crack subjected to mixed-mode load[J]. ARCHIVE OF APPLIED MECHANICS. 2002, 72(8): 599-614.
    [39]顾乡,吴志学.新的估算表面裂纹应力强度因子经验公式[J].工程力学. 2008, 25(07): 35-39.
    [40]吴志学.估算裂纹应力强度因子的新方法[J].力学学报. 2006, 38(03): 414-420.
    [41] Peng D, Wallbrink C, Jones R. Stress intensity factor solutions for finite body with quarter-elliptical flaws emanating from a notch[J]. ENGINEERING FRACTURE MECHANICS. 2005, 72(9): 1329-1343.
    [42] Torres Y, Casellas D, Anglada M, et al. Fracture toughness evaluation of hardmetals: influence of testing procedure[J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS. 2001, 19(1): 27-34.
    [43] Krishnamurthy S, Reimanis I E, Berger J, et al. Fracture toughness measurement of chromium nitride films on brass[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY. 2004, 87(7): 1306-1313.
    [44] Emrich A, Muhlich U M, Kuna M, et al. Indirect measuring of crack growth by means of a key-curve-method in pre-cracked Charpy specimens made of nodular cast iron[J]. INTERNATIONAL JOURNAL OF FRACTURE. 2007, 145(1): 47-61.
    [45] Kaur S, Cutler R A, Shetty D K. Short-Crack Fracture Toughness of Silicon Carbide[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY. 2009, 92(1): 179-185.
    [46] Mínguez J M. Study of the fracture toughness by finite element methods[J]. International Journal of Solids and Structures. 2000, 37(7): 991-1001.
    [47] Folch L C A, Burdekin F M. Application of coupled brittle-ductile model to study correlation between Charpy energy and fracture toughness values[J]. 1999, 63(1): 57-80.
    [48] Seibi A, Al-Alawi S M. Prediction of fracture toughness using artificial neural networks (ANNs)[J]. 1997, 56(3): 311-319.
    [49] Bluhm J I. A model for the effect of thickness on fracture toughness[C]. ASTM Proc. 61: 1961. 1324-1331.
    [50] Anderson W E. Some designer-oriented views on brittle fracture[R]. Battelle Northwest Rept: SA-2290, 1969.
    [51]杨继运,张行.材料断裂韧度与试样厚度关系研究[J].机械强度. 2003, 25(01): 76-80.
    [52]杨继运,张行,张珉.含裂纹板断裂韧度厚度效应的理论与应用[J].机械工程学报. 2005, 41(11): 32-42.
    [53]杨继运,张行.含裂纹板断裂韧度厚度效应的理论研究[J].机械强度. 2005, 27(05):672-680.
    [54] Neimitz A, Galkiewicz J. Fracture toughness of structural components: influence of constraint[J]. INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING. 2006, 83(1): 42-54.
    [55] Barinov S M. On crack-growth resistance curve fitting for ceramics[J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY. 2000, 20(4): 383-388.
    [56] Wallin K, Laukkanen A. Improved crack growth corrections for J-R-curve testing[J]. ENGINEERING FRACTURE MECHANICS. 2004, 71(11): 1601-1614.
    [57] Casciati F, Colombi P, Faravelli L. Inherent variability of an experimental crack growth curve[J]. STRUCTURAL SAFETY. 2007, 29(1): 66-76.
    [58] Yang W, Grace W R, Shah S P. A geometry and size dependent fracture resistance curve[J]. INTERNATIONAL JOURNAL OF FRACTURE. 2001, 109(3): L23-L28.
    [59] Fett T, Munz D, Geraghty R D, et al. Influence of specimen geometry and relative crack size on the R-curve[J]. ENGINEERING FRACTURE MECHANICS. 2000, 66(4): 375-386.
    [60] Neimitz A. The jump-like crack growth model, the estimation of fracture energy and J(R) curve[J]. ENGINEERING FRACTURE MECHANICS. 2008, 75(2): 236-252.
    [61]杨继运,张行,张珉.裂纹扩展阻力曲线与试样厚度关系[J].北京航空航天大学学报. 2003, 29(07): 575-578.
    [62]杨继运,张行.裂纹扩展阻力曲线与剩余强度关系的理论研究[J].机械强度. 2003, 25(03): 334-339.
    [63]杨继运,张行.裂纹扩展阻力K_R曲线与试样厚度关系研究[J].机械工程学报. 2003, 39(06): 49-52.
    [64]刘春立,吴运学,刘海宽. LD10铝合金表面裂纹断裂韧度测试研究[J].宇航材料工艺. 1990(02): 59-62.
    [65]汪德根,申辉旺.高强度钢表面裂纹(K_IE)的测定[J].钢铁. 1995, 30(09): 50-53.
    [66]宋先邨,雷勇军. 1420cs铝锂合金型材力学特性测试[J].国防科技大学学报. 2002, 24(02): 14-16.
    [67] Zou J Q, Jing H Y, Xu L Y. Surface crack fracture toughness and HRR fields of ultra-high strength steel[J]. MATERIALS SCIENCE AND ENGINEERINGA-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING. 2007, 454: 467-471.
    [68]邹吉权,荆洪阳,霍立兴, et al. 31Si2MnCrMoVE钢薄板试样表面裂纹断裂韧度测试[J].机械工程学报. 2007, 43(08): 212-217.
    [69] Cockeram B V. Fracture toughness and flexural strength of chemically vapor-deposited silicon carbide as determined using chevron-notched and surface crack in flexure specimens[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY. 2004, 87(6): 1093-1101.
    [70] Moon R, Bowman K, Trumble K, et al. Comparison of R-curves from single-edge V-notched-beam (SEVNB) and surface-crack-in-flexure (SCF) fracture-toughness test methods on multilayered alumina-zirconia composites[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY. 2000, 83(2): 445-447.
    [71] Park J K, Yasuda K, Matsuo Y. Effect of crosshead speed on the fracture toughness of Soda-lime glass, Al2O3 and Si3N4 ceramics determined by the surface crack in flexure (SCF) method[J]. JOURNAL OF MATERIALS SCIENCE. 2001, 36(9): 2335-2342.
    [72] Quinn G D. Refinements to the surface crack in flexure method for fracture toughness of ceramics[J]. EURO CERAMICS VII, PT 1-3. 2002, 206-2: 633-636.
    [73] Quinn G D, Salem J A. Effect of lateral cracks on fracture toughness determined by the surface-crack-in-flexure method[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY. 2002, 85(4): 873-880.
    [74]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社, 2002.
    [75]张安哥,朱成九,陈梦成.疲劳、断裂与损伤[M].成都:西南交通大学出版社, 2006.
    [76]董月香,高增梁.疲劳寿命预测方法综述[J].大型铸锻件. 2006(03): 39-41, 52.
    [77]伍颖.断裂与疲劳[M].武汉:中国地质大学出版社, 2008.
    [78]郑立春,姚卫星.疲劳裂纹形成寿命预测方法综述[J].力学与实践. 1996, 18(04): 9-14.
    [79]吴鸿遥.损伤力学[M].北京:国防工业出版社, 1990.
    [80]楼志文.损伤力学基础[M].西安:西安交通大学出版社, 1991.
    [81]李灏.损伤力学[M].济南:山东科学技术出版社, 1992.
    [82]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社, 1993.
    [83]沈为.损伤力学[M].武汉:华中理工大学出版社, 1995.
    [84]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社, 1997.
    [85]王军.损伤力学的理论与应用[M].北京:科学出版社, 1997.
    [86]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社, 1999.
    [87]李兆霞.损伤力学及其应用[M].北京:科学出版社, 2002.
    [88] Zhao J, Zhang X. On the process zone of a quasi-static growing tensile crack with power-law elastic-plastic damage[J]. INTERNATIONAL JOURNAL OF FRACTURE. 2001, 108(4): 383-395.
    [89] Zhao J, Zhang X. The asymptotic study of fatigue crack growth based on damage mechanics[J]. Engineering Fracture Mechanics. 1995, 50(1): 131-141.
    [90]张行,赵军.金属构件应用疲劳损伤力学[M].北京:国防工业出版社, 1998.
    [91]黄克智,赵军,张行.含缺口构件高周疲劳寿命的损伤力学封闭解法[J].力学学报. 1993, 25(04): 452-459.
    [92]唐雪松,杨继运,蒋持平, et al.轴对称构件疲劳寿命预测的损伤力学—附加载荷—有限元法[J].航空学报. 2002, 23(02): 97-101.
    [93]吴建国,王奇志,张行.裂纹形成寿命预估的守恒积分方法:北京力学会第11届学术年会[Z].北京: 200564-65.
    [94]熊邵辉,唐雪松.含缺口金属构件的中高周疲劳寿命预测[J].长沙理工大学学报(自然科学版). 2006, 3(04): 54-58.
    [95]吴建国,王奇志,张行, et al.铆钉连接件细节应力分析及疲劳裂纹形成寿命预估[J].航空学报. 2007, 28(02): 336-339.
    [96]谭文锋,张文志.冷轧机支撑辊的疲劳裂纹形成寿命预估[J].重型机械. 2008(03): 43-47.
    [97]郑健龙,吕松涛,田小革.基于损伤力学的沥青混合料疲劳寿命预估[J].中外公路. 2005, 25(03): 94-98.
    [98]郜峰,王奇志,张行.各向异性损伤力学在螺纹疲劳寿命预估中的应用[J].应用力学学报. 2007, 24(01): 128-132.
    [99]张淼,孟庆春,张行.无扩口管路连接件疲劳寿命预估的损伤力学-有限元法[J].航空学报. 2009, 30(03): 435-443.
    [100]阮小平,张行.损伤力学在研究金属高周疲劳问题中的应用[J].航空学报. 1989, 10(08): 397-402.
    [101]郑旭东,张行.预估金属构件疲劳全寿命的损伤力学-有限元法[J].航空学报. 1991, 12(02): 68-74.
    [102]丁传富,吴学仁.疲劳小裂纹的断裂力学参数及试验方法的研究进展[J].航空学报. 1996, 17(06): 640-647.
    [103]吴欢,赵永庆,曾卫东.疲劳裂纹扩展行为的研究现状及钛合金的疲劳裂纹扩展特征[J].稀有金属快报. 2007, 26(07): 1-6.
    [104] Bhattacharya B, Ellingwood B. Continuum damage mechanics analysis of fatigue crack initiation[J]. 1998, 20(9): 631-639.
    [105] Abu Al-Rub R K, Voyiadjis G Z. On the coupling of anisotropic damage and plasticity models for ductile materials[J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES. 2003, 40(11): 2611-2643.
    [106]丁传富,刘建中,吴学仁. TC4钛合金和7475铝合金的长裂纹和小裂纹扩展特性的研究[J].航空材料学报. 2005, 25(06): 11-17.
    [107] Jones K, Shinde S R, Clark P N, et al. Effect of prior corrosion on short crack behavior in 2024-T3 aluminum alloy[J]. CORROSION SCIENCE. 2008, 50(9): 2588-2595.
    [108] Narasaiah N, Ray K K. Initiation and growth of micro-cracks under cyclic loading[J]. Materials Science and Engineering A- Structural Materials Properties Microstructure and Processing. 2008, 474(1-2): 48-59.
    [109]张卫国,田洪,宓为建, et al.应力比r对构件疲劳裂纹扩展的影响分析[J].中国工程机械学报. 2008, 6(04): 403-408.
    [110]常莉莉,刘春雷. A633D钢焊缝金属疲劳裂纹扩展速率试验研究[J].太原科技大学学报. 2008, 29(01): 56-59.
    [111]季明国,周昌玉.大型储罐用12MnNiVR钢板焊接接头的腐蚀疲劳裂纹扩展试验研究[J].压力容器. 2008, 25(04): 1-4.
    [112] White P, Barter S A, Wright C. Small crack growth rates from simple sequences containing underloads in AA7050-T7451[J]. International Journal of Fatigue. 2009, In Press, Corrected Proof.
    [113] Chang H, Han E H, Wang J Q, et al. Acoustic emission study of fatigue crack closure of physical short and long cracks for aluminum alloy LY12CZ[J]. INTERNATIONAL JOURNAL OF FATIGUE. 2009, 31(3): 403-407.
    [114] Paris P C, Erdogan F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering. 1963, 85(4): 528-534.
    [115] Mcclintock F A. On the plasticity of the fatigue cracks[J]. Fracture of Solids. 1963, 20(01): 65-102.
    [116] Paris P C, Bucci R, Wessel E, et al. Extensive study of low fatigue crack growth rates in A533 and A508 steels: Proceedings of the 1971 National Symposium on Fracture Mechanics[Z]. University of Illinois, Urbana-Champaign: ASTM-Special Technical Publication 513, 1972141-176.
    [117] Schmidt R A, Paris P C. Threshold for fatigue crack propagation and the effects of load ratio and frequency[C]. Philadelphia: ASTM-Special Technical Publication 536, 1973. 79-94.
    [118] Forman R G, Kearney V E, Engle R M. Numerical analysis of crack propagation in a cyclic-loaded structure[J]. Journal of Basic Engineering. 1967, 89(03): 459-464.
    [119]陈篪.论裂纹扩展的判据[J].金属学报. 1977, 13(1): 57-72.
    [120] Suresh S, Ritchie R O. Propagation of short fatigue cracks[J]. International Metal Reviews. 1984, 29(06): 445-476.
    [121] Newman J C, Edwards P R. Short-crack growth behaviour in a aluminum alloyalloy——an AGARD cooperative test programme[R]. Paris: AGARD Report 732, 1988.
    [122] Edwards P R, Newman J C. Short-crack growth behaviour in various aircraft materials[R]. Paris: AGARD Report 767, 1990.
    [123] Newman J C, Wu X R. Small-crack effects in high-strength aluminum alloys——a NASA/CAE cooperative program[R]. NASA Reference Publication 1309, 1994.
    [124] Hertzberg R W, Newton C H, Jaccard R. Crack closure: correlation and confusion[C]. Philadelphia: ASTM STP, 1988. 139-148.
    [125] Chen D L, Weiss B, Stickler R. Contribution of the cyclic loading portion below the opening load to fatigue crack growth[J]. Materials Science and Engineering A. 1996,208(2): 181-187.
    [126] Donald K, Paris P C. An evaluation of effective stress intensity range estimation procedures on two aluminum alloys[J]. International Journal of Fatigue. 1999, 21: S47-S57.
    [127] Paris P C, Tada H, Donald J K. Service load fatigue damage -- a historical perspective[J]. International Journal of Fatigue. 1999, 21(Supplement 1): 35-46.
    [128] Newman J C. Fracture mechanics parameters for small fatigue cracks[C]. Philadelphia: ASTM STP-1149, 1992. 6-33.
    [129] Newman J C, Philips E P, Everett R A. Fatigue Life and Crack Growth Prediction Methodology[R]. Hampton: NASA Langley Research Center, 1993.
    [130]吴学仁,刘建中.基于小裂纹理论的航空材料疲劳全寿命预测[J].航空学报. 2006, 27(02): 219-226.
    [131] Smith R A, Cooper J F. A finite element model for the shape development of irregular planar cracks[J]. Int J Pres Ves and Piping. 1989, 36(04): 315-326.
    [132]张行,吴宝鑫,韦惠珠.预估构件裂纹扩展寿命的封闭解法及其在起落架中之应用[J].航空学报. 1987, 8(04): B140-B146.
    [133]邓建刚,蒋和洋,黎在良, et al.三维裂纹扩展轨迹的边界元数值模拟[J].应用力学学报. 2003, 20(02): 49-53.
    [134]易当祥,刘春和,封艳文, et al.扭力轴三维裂纹扩展寿命仿真研究[J].应用力学学报. 2008, 25(03): 411-414.
    [135]冯西桥,何树延.表面裂纹疲劳扩展的一种损伤力学方法[J].清华大学学报(自然科学版). 1997, 37(05): 78-82.
    [136]陈勃,鲍蕊,张建宇, et al.飞机结构耐久性/损伤容限综合设计与分析[J].北京航空航天大学学报. 2004, 30(02): 139-142.
    [137]李戈岚,吴斌,戚岩.某机平尾大轴断裂损伤容限评定分析[J].飞机设计. 2007, 27(03): 28-32.
    [138]翟新康,黄其青,殷之平, et al.飞机整体翼梁结构裂纹扩展试验与分析[J].机械强度. 2007(06).
    [139] Thomas A, Pathiraj B, Veron P. Feature tests on welded components at higher temperatures - Material performance and residual stress evaluation[J]. ENGINEERINGFRACTURE MECHANICS. 2007, 74(6): 969-979.
    [140]周迅,俞小莉,李迎.稳态疲劳载荷下曲轴剩余强度模型的试验研究[J].机械工程学报. 2006, 42(04): 213-217.
    [141] Yan X Q. A boundary element modeling of fatigue crack growth in a plane elastic plate[J]. MECHANICS RESEARCH COMMUNICATIONS. 2006, 33(4): 470-481.
    [142] Wang J T, Poe C C, Ambur D R, et al. Residual strength prediction of damaged composite fuselage panel with R-curve method[J]. COMPOSITES SCIENCE AND TECHNOLOGY. 2006, 66(14): 2557-2565.
    [143]中国航空研究院.应力强度因子手册[S].北京, 1993.
    [144] Griffith A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London. 1921, 221(A): 163-198.
    [145] Irwin G R. Analysis of Stresses and Strains near the End of a Crack Traversing a Plate[J]. Journal of Applied Mechanics. 1957, 24(3): 351-369.
    [146] Irwin G R. Plastic zone near a crack and fracture toughness: Proceedings of Seventh Sagamore Ordnance Materials Research Conference[Z]. New York : Syracuse University Press, 1960: 4, 63-78.
    [147] Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids. 1960, 8: 100-104.
    [148] Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied mechanics. 1968, 35: 379-386.
    [149] Bian L, Taheri F, Lu Y. Analytical and experimental evaluations of the influence of fracture surface roughness, its sliding actions and the associated plasticity on fatigue crack propagation[J]. International Journal of Plasticity. 2008, 24(2): 302-326.
    [150] Simha N K, Fischer F D, Shan G X, et al. J-integral and crack driving force in elastic-plastic materials[J]. Journal of the Mechanics and Physics of Solids. 2008, 56(9): 2876-2895.
    [151] Khan I A, Ghosh A K. A modified upper bound approach to limit analysis for plane strain deeply cracked specimens[J]. International Journal of Solids and Structures. 2007, 44(10): 3114-3135.
    [152] Lados D A, Apelian D. Limitations of elastic definitions in Al-Si-Mg cast alloys with enhanced plasticity: linear elastic fracture mechanics versus elastic-plastic fracture mechanics[J]. Engineering Fracture Mechanics. 2006, 73(4): 435-455.
    [153]张莉,姜越.三点弯曲试件塑性转动因子的试验研究[J].哈尔滨理工大学学报. 1999(04): 105-107.
    [154]王炎炎.延性材料制表面裂纹受拉平板与圆筒的韧带屈服载荷分析与研究[J].压力容器. 1990(06): 37-40.
    [155] Mcclintock F A, Irwin G R. Plasticity aspects of fracture mechanics: Symposium on fracture toughness testing and its applications[Z]. Chicago: American Society for Testing and Materials, 1964: ASTM STP No.381, 84-113.
    [156]蒋玉川,胡兴福.复合型裂纹扩展的最大塑性区尺度准则[J].四川大学学报(工程科学版). 2005(04): 11-14.
    [157]中国航空研究院.应力强度因子手册[M].北京:科学出版社, 1993.
    [158]曲圣年,殷有泉.塑性力学的Drucker公设和Ильюшин公设[J].力学学报. 1981, 13(05): 465-472.
    [159]吴学仁.飞机结构金属材料力学性能手册(第2卷)[M].北京:航空工业出版社, 1996.
    [160] Bannantine J A, Comer J J, Handrock J L. Fundamentals of Metal Fatigue Analysis[M]. New Jersey: Prentice Hall Englewood Cliffs, 1990.
    [161]程育仁.疲劳强度[M].北京:中国铁道出版社, 1990.
    [162]曾春华,邹十践.疲劳分析方法与应用[M].北京:国防工业出版社, 1991.
    [163]邓增杰,周敬恩.工程材料的断裂与疲劳[M].北京:机械工业出版社, 1995.
    [164]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社, 2003.
    [165]吴学仁.飞机结构金属材料力学性能手册(第1卷)[M].北京:航空工业出版社, 1998.
    [166]张行,吴国勋.工程塑性理论[M].北京:北京航空航天大学出版社, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700