用户名: 密码: 验证码:
几个家蚕丝蛋白合成关键基因的表达调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕(silkworm, Bombyx mori)属于昆虫鳞翅目蚕蛾科蚕蛾属家蚕种,是由野蚕驯化而来,家蚕咬食桑叶,吐丝,且容易饲养成本低廉,在我国广大农村被广泛饲养。摘桑养蚕在我国拥有几千年的历史。家蚕作为一种重要的经济昆虫,为人类社会的文化发展作出了重要贡献;同时它义是一种模式研究昆虫。家蚕具有超强的丝蛋白合成能力,一头家蚕经过不到一个月的生长生育,食下约22g的桑叶,合成并分泌0.5~1g的丝蛋白。家蚕丝蛋白由丝素和丝胶组成,丝蛋白的表达受到严格的时间和空间限制,具有在五龄中后期,在中部丝腺高量合成丝胶蛋白,在后部丝腺合成丝素蛋白的特点。在丝蛋白基因表达调控方面,一直以来倍受人们的关注,丝蛋白基因反复“开启”和“关闭”的表达模式,也是真核生物转录和翻译调控研究的典型模型。上世纪七八十年代众多科学家对家蚕进行了大量的研究,但直到今天,对丝腺高效的蛋白合成能力和基因表达的精密调控机制,仍知之甚少。家蚕是首个全基因组测序的鳞翅口昆虫,本研究基于家蚕基因组精细图以及全基因组组织芯片数据,对几个家蚕丝蛋白合成表达调控相关基因进行分析和研究,获得主要结果如下:
     1.家蚕丝腺表达的bHLH基因的克隆及表达谱分析
     根据家蚕基因组精细图数据和全基因组组织表达芯片数据,刘春等分析了家蚕高量表达的转录调控因子。我们发现其中存在一类转录调控因子——bHLH转录调控因子。家蚕丝腺bHLH基因有2个,对应的探针号为Sw15083和sw01142,基因编号为BGIBMGA005127和BGIBMGA007303,根据与果蝇的sage基因和dimm基因同源,分别命名为Bmsage和Bmdimm。家蚕中已经发现的转录调控因子大多数为homedomain类转录调控因子,bHLH类转录因子的发现对丝腺基因的表达调控有着重大的意义。Bmsage基因定位在第25号染色体,为单拷贝基因,大小为2.9Kb,全长mRNA为1,196 bp,包含一个702 bp的完整编码框,推导编码234个氨基酸,该基因由4个外显子和3个内含子组成。Bmsage基因的转录起始位点上游(-699~650)存在一个核心启动子,核心启动子上游包括基本转录元件-10域和CAAT框。在基因的3’端下游存在2个PolyA的终止信号。Bmdimm位于第17号染色体,为单拷贝基因,至少由4个外显子和3个内含子组成,该基因大小为4.6Kb,mRNA长度为1,593 bp,包含-个636 bp的开放阅读框,推导编码211个氨基酸,其中精氨酸、谷氨酸和丝氨酸含量较高,等电点为5.2。在Bmdimm基因上游-1,865~-1,914处存在一个可能的核心启动子,5’端上游存在多处可能的-10域和CAAT框,基因下游不含PolyA的终止信号。
     bHLH类转录因子在家蚕中的报道还比较少见。果蝇的sage基因对唾液腺特异表达基因具有调控作用,唾液腺被认为是丝腺最有可能的同源器官,与丝腺存在某些相似的特征。分析发现在FibH基因的内含子中存在多个bHLH的潜在结合位点,该结合位点与果蝇bHLH转录因子的结合基序非常相似,这些位点与丝腺转录因子FMBP-1的结合位点较近。组织原位杂交实验证实Bmsage基因在5龄三天的中部丝腺和后部丝腺细胞中有表达。Bmsage基因主要在丝腺中表达,且在食桑期上调表达,在眠期和变态期表达量下调。Bmdimm基因是后部丝腺特异表达基因,4龄眠期开始表达,5龄食桑期表达量较高,发育至第6天表达量下调,熟蚕期不表达。在FibH基因的内含子中存在多个bHLH基因的潜在结合位点,因此推测丝腺bHLH基因可能对FibH基因的表达起着重要的调控作用。
     2. AcMNPV介导下FibH启动子驱动报告基因在家蚕各组织中的表达研究
     丝素基因是家蚕丝腺的重要结构基因,具有明显的时间和空间特异性表达特征。FibH基因mRNA表达于后部丝腺,在食桑期积累,眠期表达量降低;FibH基因在眠期被关闭,前期积累的mRNA在眠期被降解。为了找寻新的FibH基因的顺式调控元件,分别克隆5’端截短的大小不同的FibH启动子,基因转移载体使用重组杆状病毒(rAcMNPV)。结果发现,3个FibH基因启动子在病毒介导下能在丝腺、脂肪体和血淋巴中高效驱动外源基因的表达,且可以直接通过体表检测到荧光。表明,FibH启动子组织特异性表达特性发生了改变。在对比实验中,Ser1启动子仍特异地在中部丝腺中驱动下游基因的表达。丝素重链启动子在家蚕组织中的异位表达,我们猜测,可能由于丝素重链5’端上游序列中包含多个转录增强元件,这些增强元件被其他细胞因子识别后增强了下游基因的转录;FibH被整合到病毒基因组,病毒本身的某些元件可能影响FibH启动子的活性,从而引起这种异位的表达:基因的表达或某种特性的维持是需要特定的环境,病毒感染后影响家蚕正常的生理生化反应,影响细胞的微环境,从而改变FibH基因原本的特性。病毒感染后环境条件的改变,使丝素重链启动子异位表达于脂肪体和血细胞。比较不同大小的FibH启动子的表达,在丝腺中,0.2kb和0.9kb的启动子在中部丝腺和后部丝腺均有启动活性,而2.1kb的启动子仅在后部丝腺中起始报告基因的表达。分析2.1kb的FibH启动子序列,推测2.1kb的FibH启动子可能使用不同的转录起始位点,从而转录出不同的mRNA。由于翻译的提前中止而不表达EGFP蛋白。
     3.AcMNPV病毒感染对丝素重链启动子的影响研究
     早期的研究表明,FibH基因在后部丝腺细胞中特异表达。是在家蚕幼虫盛食期(眠间期)特异地在后部丝腺中合成,在眠期包括在后部丝腺中其表达也被抑制。
     以AcMNPV作为基因转移载体,FibH启动子在家蚕中存在异位表达现象。首先推测AcMNPV病毒对FibH启动子可能产生影响。我们使用dornor AcMNPV对FibH转基因家蚕感染,结果发现EGFP的表达位置并没有发生变化,仍特异地在丝腺中表达。排除了由于杆状病毒的感染,激活家蚕基因表达发生变化,如基因的上调或下调表达,这些基因进一步激活FibH在其他组织中表达的可能性;同时也不是病毒特异表达的基因对启动子活性产生影响的结果。近年相继报道丝素基因在家蚕其他组织中存在渗漏转录的现象;P25基因不仅在后部丝腺高效转录,而且在家蚕幼虫期其他组织如卵巢组织中也有转录,在丝腺和卵巢组织中存在不同的转录起始位点;3种丝素蛋白基因和Ser1基因的启动子转染BmN细胞,都存在一定程度的表达。
     我们的实验及近几年丝素重链启动子研究的报道,共同说明,FibH基因在转录水平,在家蚕体内没有严格的组织特异性。尽管有报道认为FibH基因在中部丝腺以及其他组织存在渗漏表达现象,但至今未发现丝蛋白在丝腺以外的组织表达,包括转染实验丝蛋白启动子也仅在丝腺中表达。这说明丝腺基因在蛋白表达方面存在较严格的组织特异性。
     4.异位表达原因推测
     结合我们的研究,杆状病毒介导下,丝素基因启动子存在异位表达现象,我们推测,由于FibH启动子被整合到病毒基因组中,病毒本身的某些顺式元件影响FibH启动子的活性,从而改变FibH启动子原本的特性。FibH基因启动子在转录上并不严格,其他组织中的存在一定的转录,携带启动子的病毒在家蚕组织中的大量复制,使FibH启动子在家蚕细胞中的含量远大于正常情况下,也远大于转基因蚕中,最终产生可以检测到的蛋白表达,从而表现异位表达的现象。此推测还有待于实验的进一步证实。由此可见丝素重链基因的转录和翻译调控,比人们的想象要复杂很多,它的调控机理的阐明还需要进一步的研究。
Silkworm (Bombyx mori) is an insect Lepidoptera Saturniidae moth silkworm, domesticated by the wild silkworm. Bombyx mori feeds on mulberry, spinning silk and breeding widely in China. Sericulture in China has been thousands of years of history. Silkworm is a key economic insect, which made important contributions to cultural development in human society. And silkworm is also a model insect in research. Silkworm has super ability to synthesize silk protein. After less than a month, a silkworm feeds on mulberries about 22g, synthesizes and secretes 0.5~1g of silk protein. Silk protein is made of fibroin and sericin. The expression of silk protein gene is strictly subject to time and space constraints, which sericin protein is largely synthesized in middle silk gland and fibroin protein is highly expressed during the middle and late fifth instar. In the expression and regulation of silk protein gene, it is concerned that the "open" and "close"expression pattern of silk protein gene is a typical research model in eukaryotic transcription and translation.70s and 80s last century, many scientists made a huge number of research on silkworm. Until now, it is seldom known about the ability to be effectively synthesized in silk gland and the precise regulation mechanism which a gene is expressed and synthesized. Silkworm (Bombyx mori) is the first Lepidoptera insect that is whole genome sequencing. This research analyzes and studies the specifically expressed genes on Ch.25 of silkworm, based on silkworm precise mapping and tissue chip data of whole genome. The main findings follow:
     1. The cloning and expression profile of bHLH gene in silkworm
     According to the data of precise mapping and the tissue chip data of whole genome, it is found that 2 bHLH genes expressed in silk gland by Liu C. The expressed bHLH genes in silk gland, the probe are sw15083 and sw01142, the gene ID are BGIBMGA005127 and BGIBMGA007303. According to the homologous to sage and dimm gene in fruit fly, named Bmsage and Bmdimm. Most of the known transcriptional and regulation factors belong to homedomain families. The discovery of bHLH gene in silk gland is great significant to regulation of silk gene expression. Bmsage gene is on CH.25th, the gene length is 2.9kb, the total length of mRNA is 1199bp which includes a completed 720bp of coding frame that predicts to code 234 amino acids. This gene is single copy gene, made of 4 exons and 3 introns; there is a core promoter in the upstream(-699-650) of transcription initiation site. The upstream of the promoter contains basic elements:-10 region and CAAT frame; there are two polyA termination signals in the downstream of 3' terminal.
     Bmdimm gene is on CH.17th single copy gene, made of 4 exons and 3 introns. the gene length is 4.6kb, the total length of mRNA is 1,593bp which includes a completed 636bp of coding frame that predicts to code 211 amino acids. There is a core promoter in the upstream(-1865~-1914) of transcription initiation site. The upstream of the promoter contains servral basic elements:-10 region and CAAT frame; there are not polyA termination signals in the downstream of 3'terminal.
     It is seldom reported about the bHLH-class transcriptional factors. Sage gene of fruit fly regulates salivary gland-specific expression. Salivary is recognized as the most possible homologous tissue, which is similar characteristic of silk gland. In the in situ hybridization experiment, it is demonstrated that Bmsage gene is expressed in silk gland nuclei during the day 5 of fifth in star. Bmsage gene is up-regulated in the intermolt period, and down-regulated in the molt period and metamorphosis. Bmdimm gene is expressed specifically in silk gland, Bmsage gene is up-regulated in the 4th instar molt period and previous period of 5th instar, and down-rcgulated in the later period and metamorphosis. It is found that there are many bIILH binding sites in the FibH gene introns, which are adjacent to the binding site of FMBP-1, a transcriptional factor. It is speculated that Bmsage gene is important to regulate the expression of FibH gene.
     2. Study of the FibH promoter expression mediated by AcMNPV in the silkworm tissues
     Fibroin gene is a important structural gene in the silk gland of silkworm. The mRNA of FibH gene is expressed in posterior silk gland. The expression of FibH gene is accumulated in the inter-molt period, decreased in the molt period. FibH gene is closed in the molt period, in which the early accumulated mRNAs are degraded. In order to analysis the new cis-regulatory domain of FibH gene in silkworm, three 5' terminal-truncated FibH promoters that are different from sizes has been cloned. The recombinant Autographa california multiple nuclear polyhedrosis virus (rAcMNPV) are used as gene transfer vectors. It is found that three FibH gene promoters effectively expressed, mediated by virus, the exogenous genes in silk gland, fat body and hemolymph, which the fluorescence is detected on the surface. It is suggested that the tissue-specifically expressed feature of FibH promoter changed. In contrast experiment, Serl promoter still specifically promotes to downstream gene expression in the posterior silk gland. Compared the expression of different FibH promoters in size,0.2K and 0.9K of promoters express genes in the middle and posterior silk glands, but 2. 1K of promoter is express genes only in the posterior silk gland. The ectopic expression of FibH promoter in the silkworm tissues, we speculate, is probably because that there are many transcriptional enhancement elements in 5'upstream of FibH, which are enhanced the downstream gene transcription after recognized by other cell factors. FibH is integrated into the virus genome. Some of the elements in virus itself probably affect the activity of FibH promoter. Hence, it leads to ectopic expression. The gene expression or maintenance of some specificity needs specific circumstances. The normal physiological and biochemical reactions of silkworm are influenced by virus infection. The micro-environment of cells is also affected. Thus, it changed the original feature of FibH gene. After virus infection, the change of environmental condition makes FibH promoter ectopically express genes in fat body and hemolymph.
     3. The influence of FibH promoter by AcMNPV infection
     The early research suggests that FibH gene is specifically expressed in the posterior silk gland. It is specifically synthesized in the posterior silk gland during the inter-molt period, but the expression is inhibited during the molt period.
     FibH promoter has the phenomenon of ectopic expression, if AcMNPV is as the gene transfer vector. In order to detect that whether AcMNPV affects FibH promoter or not, we infected FibH-transgenic silkworm, using donor AcMNPV. It is found that the expressed position of EGFP did not change, is still expressed in the silk gland. After eliminating virus infection, the up-regulation of some of unexpressed genes activated, and these genes further activated the expressed probability of FibH in other tissues. Meantime, it is not the results that virus-specific expressed genes influence the activity of promoter. In recent years, it is reported that fibroin gene has the phenomenon of leakage transcription in other silkworm tissues. p25 gene not only transcribes effectively in the posterior silk gland, but also transcribes in other tissues, such as ovarian tissue, during the larva period. There are different transcriptional initiation sites in silk gland and ovary. Three types of fibroin protein genes infected BmN cells, which is expressed, to certain extent.
     4. Speculation the reason of protein ectopic expression
     Combining our research, it is speculated that the FibH promoter is integrated into the virus genome, some cis-elements of virus itself affect the activity of FibH promoter, which change the original features. The transcription of FibH gene promoter is not strict, the transcription in other tissues also exists. Due to the virus large reproduction, the contents of FibH promoter in silkworm tissues is much more than that in the normal condition. The accumulation of a little transcription ultimately produces the phenomenon of protein ectopic expression, which is able to be detected. The speculation needs to be the experimental support of FibH gene expression and regulation research. Although, it is reported that FibH gene exists leakage phenomenon in the middle silk gland and other tissues, it is not found that the silk protein is expressed in tissues except from silk gland. The genes in the silk gland have strict tissue specificity. This shows the transcriptional and translational regulation of FibH gene is more complicated than that humans think. It is necessary to do further research in order to illustrate the regulation mechanism.
引文
[I]Marshall A, The insects are coming. Nat Biotechnol[J],1998.16(6):530-3.
    [2]Julien E, Bordeaux M C, Garel A, et al., Fork head alternative binding drives stage-specific gene expression in the silk gland of Bombyx mori. Insect Biochem Mol Biol[J],2002.32(4):377-87.
    [3]Nony P, Prudhomme J C, and Couble P, Regulation of the P25 gene transcription in the silk gland of Bombyx. Biol.Cell[J],1995.84(1-2):43-52.
    [4]Sprague K U, The Bombyx mori silk proteins:characterization of large polypeptides. Biochemistry[J],1975.14(5):925-31.
    [5]Goldsmith M R and Kafatos F C, Developmentally regulated genes in silkmoths. Annu Rev Genet[J],1984.18:443-87.
    [6]Gamo T, Inokuchi T, and Laufer H, Polypeptides of fibroin and sericin secreted from the different sections of the silk gland in Bombyx mori nsect Biochemistry[J],1977.7(3):285-295.
    [7]Inoue S, Tanaka K, Tanaka H, et al., Assembly of the silk fibroin elementary unit in endoplasmic reticulum and a role of L-chain for protection of alpha1,2-mannose residues in N-linked oligosaccharide chains of fibrohexamerin/P25. Eur J Biochem[J],2004.271(2):356-66.
    [8]Inoue S, Tanaka K, Arisaka F, et al., Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem[J],2000.275(51):40517-28.
    [9]Mori H, Yamao M, Nakazawa H, et al., Transovarian transmission of a foreign gene in the silkworm, Bombyx mori, by Autographa californica nuclear polyhedrosis virus. Biotechnology (N Y)[J],1995. 13(9):1005-7.
    [10]Suzuki Y, Differentiation of the silk gland. A model system for the study of differential gene action. Results Probl Cell Differ[J],1977.8:1-44.
    [11]Lizardi P M and Brown D D, The length of fibroin structural gene sequences in Bombyx mori DNA. Cold Spring Harb Symp Quant Biol[J],1974.38:701-6.
    [12]Lizardi P M and Brown D D, The length of the fibroin gene in the Bombyx mori genome. Cell[J], 1975.4(3):207-15.
    [13]Tsujimoto Y and Suzuki Y, The DNA sequence of Bombyx mori fibroin gene including the 5' flanking, mRNA coding, entire intervening and fibroin protein coding regions. Cell[J],1979.18(2): 591-600.
    [14]Ueda H, Mizuno S, and Shimura K, Sequence polymorphisms around the 5'-end of the silkworm fibroin H-chain gene suggesting the occurrence of crossing-over between heteromorphic alleles. Gene[J],1985.34(2-3):351-5.
    [15]Mita K, Ichimura S, Zama M, et al., Specific codon usage pattern and its implications on the secondary structure of silk fibroin mRNA. J Mol Biol[J],1988.203(4):917-25.
    [16]Zhou C Z, Confalonieri F, Medina N, et al., Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res[J],2000.28(12):2413-9.
    [17]Ohshima Y and Suzuki Y, Cloning of the silk fibroin gene and its flanking sequences. Proc Natl Acad Sci U S A[J],1977.74(12):5363-7.
    [18]Tsujimoto Y and Suzuki Y, Structural analysis of the fibroin gene at the 5'end and its surrounding regions. Cell[J],1979.16(2):425-36.
    [19]Tsuda M, Ohshima Y, and Suzuki Y, Assumed initiation site of fibroin gene transcription. Proc Natl Acad Sci U S A[J],1979.76(10):4872-6.
    [20]Zhou C Z, Confalonieri F, Esnault C, et al., The 62-kb upstream region of Bombyx mori fibroi: heavy chain gene is clustered of repetitive elements and candidate matrix association regions. Gene[J],2003.312:189-195.
    [21]Kikuchi Y, Mori K, Suzuki S, et al., Structure of the Bombyx mori fibroin light-chain-encoding gene:upstream sequence elements common to the light and heavy chain. Gene[J],1992.110(2): 151-8.
    [22]Yamaguchi K, Kikuchi Y, Takagi T, et al., Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J Mol Biol[J],1989.210(1):127-39.
    [23]Chevillard M, Couble P, and Prudhomme J C, Complete nucleotide sequence of the gene encoding the Bombyx mori silk protein P25 and predicted amino acid sequence of the protein. Nucleic Acids Res[J],1986.14(15):6341-2.
    [24]Couble P, Chevillard M, Moine A, et al., Structural organization of the P25 gene of Bombyx mori and comparative analysis of its 5'flanking DNA with that of the fibroin gene. Nucleic Acids Res[J], 1985.13(5):1801-14.
    [25]Kaplan D, Adams W, Farmer B, et al., Silk Polymers:Materials Science and Biotechnology. American Chemical Society[J],1994:10-11.
    [26]Gamo T, Inokuchi T, and Laufer H, Polypeptides of fibroin and sericin secreted from the different sections of the silk gland in Bombyx mori nsect Biochemistry[J],1977.7(3):285-295.
    [27]Okamoto H, Ishikawa E, and Suzuki Y, Structural analysis of sericin genes. Homologies with fibroin gene in the 5'flanking nucleotide sequences. J Biol Chem[J],1982.257(24):15192-9.
    [28]Michaille J J, Couble P, Prudhomme J C, et al., A single gene produces multiple sericin messenger RNAs in the silk gland of Bombyx mori. Biochimie[J],1986.68(10-11):1165-73.
    [29]Michaille J J, Garel A, and Prudhomme J C, Cloning and characterization of the highly polymorphic Ser2 gene of Bombyx mori. Gene[J],1990.86(2):177-84.
    [30]Garel A, Deleage G, and Prudhomme J C, Structure and organization of the Bombyx mori sericin 1 gene and of the sericins 1 deduced from the sequence of the Ser IB cDNA. Insect Biochem Mol Biol[J],1997.27(5):469-77.
    [31]Zurovec M, Yang C, Kodrik D, et al., Identification of a novel type of silk protein and regulation of its expression. J Biol Chem[J],1998.273(25):15423-8.
    [32]Couble P, Michaille J J, Garel A, et al., Developmental switches of sericin mRNA splicing in individual cells of Bombyx mori silkgland. Dev Biol[J],1987.124(2):431-40.
    [33]Takiya S, Kokubo H, and Suzuki Y, Transcriptional regulatory elements in the upstream and intron of the fibroin gene bind three specific factors POU-M1, Bm Fkh and FMBP-1. Biochem J[J],1997. 321 (Pt 3):645-53.
    [34]Nony P, Prudhomme J C, and Couble P, Regulation of the P25 gene transcription in the silk gland of Bombyx. Biol Cell[J],1995.84(1-2):43-52.
    [35]Horard B, Julien E, Nony P, et al., Differential binding of the Bombyx silk gland-specific factor SGFB to its target DNA sequence drives posterior-cell-restricted expression. Mol Cell Biol[J],1997. 17(3):1572-9.
    [36]Manning R F and Gage L P, Internal structure of the silk fibroin gene of Bombyx mori.11. Remarkable polymorphism of the organization of crystalline and amorphous coding sequences. J Biol Chem[J],1980.255(19):9451-7.
    [37]Gage L P and Manning R F, Internal structure of the silk fibroin gene of Bombyx mori. 1 The fibroin gene consists of a homogeneous alternating array of repetitious crystalline and amorphous coding sequences. J Biol Chem[J],1980.255(19):9444-50.
    [38]Hui C C and Suzuki Y, Enhancement of transcription from the Ad2 major late promoter by upstream elements of the fibroin-and sericin-1-encoding genes in silk gland extracts. Gene[J],1989. 85(2):403-11.
    [39]Mach V, Takiya S, Ohno K, et al., Silk gland factor-1 involved in the regulation of Bombyx sericin-1 gene contains fork head motif. J Biol Chem[J],1995.270(16):9340-6.
    [40]Matsuno K, Takiya S, Hui C C, et al., Transcriptional stimulation via SC site of Bombyx sericin-1 gene through an interaction with a DNA binding protein SGF-3. Nucleic Acids Res[J],1990.18(7): 1853-8.
    [41]Hui C C, Matsuno K, and Suzuki Y, Fibroin gene promoter contains a cluster of homeodomain binding sites that interact with three silk gland factors. J Mol Biol[J],1990.213(4):651-70.
    [42]Hui C C, Suzuki Y, Kikuchi Y, et al., Homeodomain binding sites in the 5'flanking region of the Bombyx mori silk fibroin light-chain gene. J Mol Biol[J],1990.213(3):395-8.
    [43]The International Silkworm Genome C, The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology[J],2008.38(12):1036-1045.
    [44]Xia Q, Guo Y, Zhang Z, et al., Complete Resequencing of 40 Genomes Reveals Domestication Events and Genes in Silkworm (Bombyx) Science[J],2009. August 27.
    [45]Takei F, Kikuchi Y, Kikuchi A, et al., Further evidence for importance of the subunit combination of silk fibroin in its efficient secretion from the posterior silk gland cells. J Cell Biol[J],1987.105(1): 175-80.
    [46]Gamo T, Genetic variants of the Bombyx mori silkworn encoding sericin proteins of different lengths. Biochem Genet[J],1982.20(1-2):165-77.
    [47]向仲怀主编,黄君霆,夏建国,等.蚕丝生物学.第一版.北京:中国林业出版社,2005.
    [48]Mori K, Tanaka K, Kikuchi Y, et al., Production of a chimeric fibroin light-chain polypeptide in a fibroin secretion-deficient naked pupa mutant of the silkworm Bombyx mori. J Mol Biol[J],1995. 251(2):217-28.
    [1]Hui C C and Suzuki Y, Enhancement of transcription from the Ad2 major late promoter by upstream elements of the fibroin-and sericin-1-encoding genes in silk gland extracts. Gene[J], 1989.85(2):403-11.
    [2]Mach V, Takiya S, Ohno K, et al., Silk gland factor-1 involved in the regulation of Bombyx sericin-1 gene contains fork head motif. J Biol Chem[J],1995.270(16):9340-6.
    [3]Matsuno K, Takiya S, Hui C C, et al., Transcriptional stimulation via SC site of Bombyx sericin-1 gene through an interaction with a DNA binding protein SGF-3. Nucleic Acids Res.[J],1990.18(7): 1853-1858.
    [4]Takiya S, Kokubo H, and Suzuki Y, Transcriptional regulatory elements in the upstream and intron of the fibroin gene bind three specific factors POU-M1, Bm Fkh and FMBP-1. Biochem.J.[J],1997. 321 (Pt 3):645-653.
    [5]Suzuki T, Matsuno K, Takiya S, et al., Purification and characterization of an enhancer-binding protein of the fibroin gene.1. Complete purification of fibroin factor 1. J.Biol.Chem.[J],1991. 266(25):16935-16941.
    [6]Suzuki T, Takiya S, Matsuno K, et al., Purification and characterization of an enhancer-binding protein of the fibroin gene. Ⅱ. Functional analyses of fibroin factor 1. J.Biol.Chem.[J],1991. 266(25):16942-16947.
    [7]Fukuta M, Matsuno K, Hui C C, et al., Molecular cloning of a POU domain-containing factor involved in the regulation of the Bombyx sericin-1 gene. J.Biol.Chem.[J],1993.268(26): 19471-19475.
    [8]Xu P X, Fukuta M, Takiya S, et al., Promoter of the POU-M1/SGF-3 gene involved in the expression of Bombyx silk genes. J Biol Chem[J],1994.269(4):2733-42.
    [9]Takiya S, Ishikawa T, Ohtsuka K, et al., Fibroin-modulator-binding protein-1 (FMBP-1) contains a novel DNA-binding domain, repeats of the score and three amino acid peptide (STP), conserved from Caenorhabditis elegans to humans. Nucleic Acids Res.[J],2005.33(2):786-795.
    [10]Xia Q, Zhou Z, Lu C, et al., A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science[J],2004.306(5703):1937-40.
    [11]The International Silkworm Genome C, The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology[J],2008.38(12):1036-1045.
    [12]刘春,家蚕丝腺表达谱及丝素结构基因转录调控研究.博士毕业论文.2007,西南大
    [13]向仲怀主编,黄君霆,夏建国,等.蚕丝生物学.第一版.北京:中国林业出版社,2005.
    [14]Fischer A, Leimeister C, Winkler C, et al., Hey bHLH factors in cardiovascular development. Cold Spring, Harb Symp Quant Biol[J],2002.67:63-70.
    [15]Varshney G K and Palmer R H, The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut. Biochem Biophys Res Commun[J],2006.351(4):839-46.
    [16]Abrams E W, Mihoulides W K, and Andrew D J, Fork head and Sage maintain a uniform and patent salivary gland lumen through regulation of two downstream target genes, PH4alphaSGl and PH4alphaSG2. Development[J],2006.133(18):3517-27.
    [17]Wilson A A and Kotton D N, Another notch in stem cell biology:Drosophila intestinal stem cells and the specification of cell fates. Bioessays[J],2008.30(2):107-9.
    [18]LI T R and White K P,Tissue-specific gene expression and ecdysone-regulaled genomic networks in Drosophila.Dev Cell[J].2003.5(1):59-72.
    [1]Suzuki Y and Suzuki E, Qaantitative measurements of fibroin messenger RNA synthesis in the posterior silk gland of normal and mutant Bombyx mori. J Mol Biol[J],1974.88(2):393-407.
    [2]Maekawa H and Suzuki Y, Repeated turn-off and turn-on of fibroin gene transcription during silk gland development of Bombyx mori. Dev Biol[J],1980.78(2):394-406.
    [3]Couble P, Moine A, Garel A, et al., Developmental variations of a nonfibroin mRNA of Bombyx mori silkgland, encoding for a low-molecular-weight silk protein. Dev Biol[J],1983.97(2): 398-407.
    [4]Kimura K, Oyama F, Ueda H, et al., Molecular cloning of the fibroin light chain complementary DNA and its use in the study of the expression of the light chain gene in the posterior silk gland of Bombyx mori. Experientia[J],1985.41(9):1167-71.
    [5]向仲怀主编,黄君霆,夏建国,等.蚕丝生物学.第一版.北京:中国林业出版社,2005.
    [6]Tsuda M and Suzuki Y, Transcription modulation in vitro of the fibroin gene exerted by a 200-base-pair region upstream from the "TATA" box. Proc.Natl.Acad.Sci.U.S.A[J],1983.80(24): 7442-7446.
    [7]Tsuda M, Hirose S, and Suzuki Y, Participation of the upstream region of the fibroin gene in the formation of trans(?)ription complex in vitro. MoI.Cell Biol.[J],1986.6(11):3928-3933.
    [8]Hui C C, Matsuno K, and Suzuki Y, Fibroin gene promoter contains a cluster of homeodomain binding sites that interact with three silk gland factors. J Mol Biol[J],1990.213(4):651-70.
    [9]Hui C C and Suzuki Y, Enhancement of transcription from the Ad2 major late promoter by upstream elements of the fibroin-and sericin-1-encoding genes in silk gland extracts. Gene[J],1989. 85(2):403-11.
    [10]Matsuno K, Takiya S, Hui C C, et al., Transcriptional stimulation via SC site of Bombyx sericin-1 gene through an interaction with a DNA binding protein SGF-3. Nucleic Acids Res.[J],1990.18(7): 1853-1858.
    [11]Zhou C Z. Confalonieri F, Esnault C, et al., The 62-kb upstream region of Bombyx mori fibroin heavy chain gene is clustered of repetitive elements and candidate matrix association regions. Gene[J],2003.312:189-195.
    [12]汪生鹏和陆长德.家蚕丝素重链启动子克隆片段在家蚕体内和昆虫培养细胞内的渗漏表达.蚕业科学[J],2006.32(4):491-4.
    [13]孙霞,朱晨,汪生鹏,等.家蚕丝素基因表达水平的定量分析.蚕业科学[J],2009.35(1):30-35
    [14]Xia Q, Zhou Z, Lu C, et al., A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science[J],2004.306(5703):1937-40.
    [15]Liu Y, Yu L, Guo X, et al., Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori. Biochem.Biophys.Res.Commun.[J],2006.342(1):273-279.
    [16]Guo T Q, Wang J Y, Wang S P, et al., Loss of posterior silk gland transcription specificity of fibroin light chain promoter due to absence of 41 bp sequence containing possible inhibitor binding sites. Acta Biochim.Biophys.Sin.(Shanghai)[J],2005.37(12):819-825.
    [17]Kojima K, Kuwana Y, Sezutsu H, et al., A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem[J],2007.71(12):2943-51.
    [18]Zhao A, Zhao T, Zhang Y, et al., New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Res[J],2010.19(1): 29-44.
    [19]Bello B and Couble P, Specific expression of a silk-encoding gene of Bombyx in the anterior salivary gland of Drosophila. Naturc[J],1990.346(6283):480-2.
    [20]Chun L, Ping Z, Ting-Cai C, et al., Analysis of a Novel Transcription Mode of Fhx/P25 Gene in Bombyx mori. Prog. Biochem. Biophys.[J],2005.32(08):740-746.
    [21]周文林,曹锦如,叶爱红,等.家蚕丝素蛋白H链基因启功子区域的克隆及活性分析.蚕业科学[J],2008.34(1):72-7.
    [22]潘兴亮,曹广力,薛仁宇,等.家蚕丝素重链启动子驱动DsRed的瞬时分泌表达.生物工程学报[J],2009.25(5):761-6.
    [23]诸(?)娴,曹广力,薛仁宇,等.家蚕丝胶蛋白基因1(ser-1)启动子的克隆及其活性分析.科技通报[J],2007.23(6):828-34.
    [24]周文林,曹广力,和薛仁宇.家蚕丝素蛋白轻链基因(fib-L)启动子序列的克隆及其活性分析.昆虫学报[J],2007.50(6):547-54.
    [25]刘炜彬,贡成良,和薛仁宇.家蚕丝蛋白Fhx/P25基因启动子区域的克隆及序列分析.动物学研究[J],2007.28(1):17-23.
    [26]刘春,韩宇,荣海博,等.家蚕丝素轻链蛋白多克隆抗体的制备及应用.蚕学通讯[J],2009.29(1):9-14.
    [I]Maekawa H and Suzuki Y, Repeated turn-off and turn-on of fibroin gene transcription during silk gland development of Bombyx mori. Dev Biol[J],1980.78(2):394-406.
    [2]Couble P, Moine A, Garel A, et al., Developmental variations of a nonfibroin mRNA of Bombyx mori silkgland, encoding for a low-molecular-weight silk protein. Developmental Biology[J],1983. 97(2):398-407.
    [3]Kimura K, Oyama F, Ueda H, et al., Molecular cloning of the fibroin light chain complementary DNA and its use in the study of the expression of the light chain gene in the posterior silk gland of Bombyx mori. Experientia[J],1985.41(9):1167-71.
    [4]向仲怀主编,黄君霆,夏建国,等.蚕丝生物学.第一版.北京:中国林业出版社,2005.
    [5]孙霞,朱晨,汪生鹏,等.家蚕丝素基因表达水平的定量分析.蚕业科学[J],2009.35(1):30-35.
    [6]周文林,曹锦如,叶爱红.等.家蚕丝素蛋白H链基因启动子区域的克隆及活性分析.蚕业科学[J],2008.34(1):72-7.
    [7]Xia Q, Zhou Z, Lu C, et al., A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science[J],2004.306(5703):1937-40.
    [8]The International Silkworm Genome C, The genome of a lepidopleran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology[J],2008.38(12):1036-1045.
    [9]Zhao A, Zhao T, Zhang Y, et al., New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Res[J],2010.19(1): 29-44.
    [10]Tsujimoto Y, Hirose S, Tsuda M, et al., Promoter sequence of fibroin gene assigned by in vitro transcription system. Proc Natl Acad Sci U S A[J],1981.78(8):4838-42.
    [11]Tsuda M and Suzuki Y, Faithful transcription initiation of fibroin gene in a homologous cell-free system reveals an enhancing effect of 5'flanking sequence far upstream. Cell[J],1981.27(1 Pt 2): 175-82.
    [12]刘炜彬,贡成良,和薛仁宇.家蚕丝蛋白Fhx/P25基因启动子区域的克隆及序列分析.动物学研究[J].2007.28(1):17-23.
    [13]周文林,曹广力,和薛仁宇,家蚕丝素蛋白轻链基因(fib-L)启动子序列的克隆及其活性分析.昆虫学报[J],2007.50(6):547-54.
    [14]潘兴亮,曹广力,薛仁宇,等.家蚕丝素重链启动子驱动DsRed的瞬时分泌表达.生物工程学报[J],2009.25(5):761-6.
    [15]Chun L, Ping Z, Ting-Cai C, et al., Analysis of a Novel Transcription Mode of Fhx/P25 Gene in Bombyx mori. Prog. Biochem. Biophys.[J],2005.32(08):740-746.
    [16]Kojima K, Kuwana Y, Sezutsu H, et al., A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem[J],2007.71(12):2943-51.
    [17]刘春,韩宇,荣海博,等.家蚕丝素轻链蛋白多克隆抗体的制备及应用.蚕学通讯[J],2009.29(1):9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700