用户名: 密码: 验证码:
谷蠹不同地理种群对磷化氢抗性及其遗传分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷蠹分布于世界各地,以热带和亚热带地区发生最重,幼虫和成虫均可在粮粒内为害,是我国主要的储粮害虫之一。目前,控制储粮害虫为害的主要熏蒸剂为磷化氢。由于仓库较差的密封性及多次重复无效熏蒸造成的选择性压力是造成储粮害虫对磷化氢产生抗性的重要原因。本研究主要针对中国储粮区内谷蠹不同地理种群对磷化氢的抗性进行了详细的调查,并对不同抗性的谷蠹种群瞬时增长率(ri)进行了探讨。利用AFLP及mtCOI基因进行了谷蠹种群的遗传变异研究,并讨论了谷蠹体内三种保护酶在磷化氢熏蒸前后的变化。具体研究结果如下:
     1.谷蠹不同地理种群对磷化氢的抗性
     采用FAO推荐的磷化氢抗性测定方法,测定了全国10个省及1个直辖市的16个谷蠹种群的抗性。试验种群的致死中浓度LC50范围为0.017mg/L-4.272mg/L,16个谷蠹种群均对磷化氢产生了不同程度的抗药性,其中,低抗性种群5个,中等抗性6个,高抗性种群5个。对谷蠹不同地理种群的磷化氢抗性水平研究表明,谷蠹对磷化氢的抗性在中国已经成为一个严重的问题。对谷蠹不同抗性种群的瞬时增长率研究表明,较高抗性的种群具有较低的瞬时增长率。把16个种群按照抗性系数大小进行排序,采集自粮食加工企业的种群聚在最顶端,接着是来自国家粮食储备库的种群,后面就是来自地方粮库的种群,采集自这三种粮库类型的谷蠹种群的平均RF值分别为5.465,61.490和277.643,这个结果说明,谷蠹种群的抗性跟仓库类型有关。
     2.谷蠹不同地理种群的遗传变异AFLP分析
     采用扩增片段长度多态性技术对这16个种群的110个个体进行种群遗传变异分析,结果表明:采用4对选择性扩增引物,在50-450bp范围内共得到129个多态性位点,在种群水平上和种的水平上的多态性位点的百分率分别为43.95%和84.87%。Nei's遗传多样性指数(h)和Shannon's指数(Ⅰ)与多态性比例具有一致性。这三个指数表明,谷蠹种群内存在高的遗传变异。
     分子变异分析(AMOVA)结果表明,16个谷蠹种群的遗传结构存在显著性差异(P<0.0005)。在整个变异中,17.62%的变异发生在谷蠹种群间,82.38%的变异发生在种群内部的个体之间。这个结果说明谷蠹的遗传变异主要发生在种群内部,而不是种群之间。整个谷蠹种群的ΦST值为0.176,基因流(Nm)为1.170。基因流大于1表明在谷蠹种群之间还是有一定的基因交流,这在一定程度上防止了由于遗传漂变引起的种群间的遗传分化。
     UPGMA聚类分析表明,谷蠹种群的遗传变异与种群的地理位置不相关。Mantel检测同样证明,谷蠹两两之间的Nei's遗传距离和地理距离(Lg值)之间没有显著的相关性(r=0.1054,P=0.8034>0.05),这也表明IBD (isolation by distance)并不能用于描述谷蠹种群的遗传变异与地理距离之间的关系。对谷蠹种群分布的仓库类型及储粮生态区对种群的遗传变异分析结果表明,仓库类型及储粮生态区并不是影响种群变异的显著因子。
     3.谷蠹mtDNA-COI基因序列及种群遗传变异分析
     对15个种群的100个个体进行mtCOI部分序列分析,得到691bp长度的片段,三个位点的密码子中,A+T的含量平均值为63.2%,在三个密码子中的含量分别是85.2%,53.3%和57.0%。这种A+T含量的偏向在第一位点较第二和第三位点强。序列中A, T, C, G的含量分别为33.2%,32%,18.7%,16.2%。691bp长度的碱基中,共发现26个多态位点,定义了25种单倍型,其中种群间共享单倍型有7个15个谷蠹种群之间存在一定的基因流(Nm=1.35),但是使用AMOVA分析种群的遗传结构表明,谷蠹种群的变异主要发生在种群内部的个体间。
     4.磷化氢对不同地理种群谷蠹成虫体内三种保护酶的影响
     对不同地理种群谷蠹成虫体内过氧化氢酶(CAT),超氧化物歧化酶(SOD),过氧化物酶(POD)的活性研究表明:熏蒸前,不同地理种群的谷蠹成虫体内三种保护酶的活性不同;使用磷化氢进行熏蒸处理后,不同地理种群谷蠹体内的三种保护酶活性的变化规律为:SOD活力升高,POD和CAT活性降低。采用SPSS16.0分别对熏蒸前试验种群的致死中浓度(LC50)及三种酶活性两两变量进行相关性分析,结果表明:试验种群的LC50与CAT之间存在显著简单相关性(P=0.031<0.05);LC50与SOD,POD两种酶活性不存在显著相关性(P=0.545;0.053>0.05);CAT及POD之间存在简单相关性(P=0.034<0.05)。
Rhyzopertha dominica (Fabricius) is one of the major coleopterous pests of stored products in China and around the world. Both larvae and adults are internal feeders, causing serious damages to grains, such as rice, maize, wheat and other stored commodities. It causes serious losses to stored grains in tropical and subtropical region. Currently, the main method for controlling stored-product insects in many countries, including China, is fumigation with phosphine. However, repeated ineffective fumigation in poorly sealed structures resulting in under-dosing could lead to the development of strong resistance in target pest. This research investigated the phosphine resistacne and the instantaneous growth rate (ri) among different geographical populations of R. dominica in China's grain region. AFLP and mtCOI gene also used to analyze the genetic differentiation among R. dominica population. The activities of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) were also observed (CAT, SOD, POD). And the detail results showed as followed:
     1. Phosphine resistance in R. dominica in China from different geographical populations in China
     The present investigation was carried out to determine the level of phosphine resistance in16R. dominica (Fabricius) populations that were collected from ten provinces and one municipality in China following the Food and Agriculture Organization's (FAO) standard method. Results showed that the50%lethal concentration (LC5o) of phosphine to these R. dominica populations ranged from0.017mg/L to4.272mg/L. Of the16populations,5were of low resistance,6were moderately resistant, and5were high resistant. The present results have revealed the seriousness of the problems of phosphine resistance in China. R. dominica populations with high ri showed low resistance factor (RF for LC50), while low ri presented high RF value. The populations were ranked in order of RF values, the populations from processing facilities cluster near the top, then the national storage populations, then the populations from local storage. The average RF for processing facilities, national storages and local storage are5.465,61.490and277.643, respectively. This result indicated that resistance is connected with the type of grain storage.
     2. Genetic diversity among different geographical populations of R. dominica in China as revealed by AFLP
     In this study, the genetic diversity and structure of16populations (110individuals) of R. dominica were examined using Amplified Fragment Length Polymorphism (AFLP) analysis. Four primer combinations were selected to identify a total of128polymorphic loci ranging from50to450bp. The percentage of polymorphic loci (Pp) was43.95%at the population level and84.87%at the species level, respectively. Nei's gene diversity (h) and Shannon's Information index (I) had similar trend with the percentage of polymorphism. Thus, the estimated genetic diversity using these three indicators revealed a high level of genetic variation within each R. dominica population. At the species level, Analysis of Molecular Variance (AMOVA) revealed a significantly greater genetic variation within populations (82.38%) than among populations (17.62%)(P<0.0005). This result showed that the genetic diversity mainly occurred within the population, not among populations. The ΦST value of the specied was0.176and the gene flow (Nm) value was1.170at the species level. This indicated that, a certain level of gene flow was among the populations and prevented the genetic differentiation among populations caused by genetic drift.
     An Unweighted Pair Group Method with Arithmetic Mean (UPGMA) dendrogram based on Nei's unbiased genetic distance revealed four distinct groups that did not correspond to the geographical regions. The Mantel test of isolation by distance revealed that there was no significant correlation between Nei's genetic distance and geographical distance (Lg) among all populations (r=0.1054, P=0.8034>0.05). This result suggests that isolation by distance does not describe the pattern of gene flow among R. dominica populations. The ecology of grain storage area and the depot/storage facility type were not the main factors determining the genetic diversity of R. dominica.
     3. The analysis of mtCOI gene and genetic variation of R. dominica population
     The mtCOI gene partial sequences (691bp) of100individual from15R. dominica populations were amplified and sequenced. Nucleotides compositi on, transiti on and transversi on, genetic distance of this segment had been analyzed. The molecular volution characteristic of COI gene in different individuals was discussed. The results indicate that average A+T content of COI gene in R. dominica is63.2%, which shows strong A+T bias. The A+T content was85.2%,53.3%and57.0%respectively in the three points. A+T content of this bias showed stronger in the first than that of the second and third points. A, T, C, G content of33.2%,32%,18.7%,16.2%. Twenty-six nucleoide site were substituted and twenty-five haplotypes were identified in all sequences with seven shared. The Nm value was1.35showed that there was certain gene flow among R. dominica population. AMOVA analysis of genetic structure indicated that the gentic variation of R. dominica mainly occurred among individuals.
     4. Effect of phosphine on three protective enzymes in R. dominica (Fabricius) adult in different geographical populations
     The activities of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) were observed in the R. dominica adult in seven different geographical population. The activities of CAT, POD and SOD showed difference among populations in R. dominica adults before fumigation. The results showed that the activities of CAT and POD in seven different population of adults decreased after fumigation treatment, While the activities of SOD enhanced. The activity of CAT in seven populations had expressed significant simple correlation with the50%lethal concentration (LC50) of R. dominica populations (P=0.031<0.05); Meanwhile, there were no significant correlation between the SOD, POD and the LC50three enzyme activities before fumigation (P=0.545;0.053>0.05), while the CAT activity showed simple correlation with the POD activity (P=0.034<0.05).
引文
1.曹阳,刘梅,郑彦昌.五种储粮害虫11个品系的磷化氢抗性测定.粮食储藏,2003,32(2): 9-12
    2.曹阳.我国储粮害虫玉米象和米象磷化氢抗药性调查.河南工业大学学报(自然科学版),2005,26(5):1-5
    3.曹阳.我国谷蠹赤拟谷盗锈赤扁谷盗和土耳其扁谷盗磷化氢抗药性调查.河南工业大学学报(自然科学版),2006,27(1):1-6
    4.陈耀溪.仓库害虫(增订本).北京:农业出版社,1985,260
    5.程东美,胡美英.黄杜鹃对3种仓储害虫的毒杀试验.粮食储藏,2000,29(6):3-6
    6.褚栋,毕玉平,张友军,娄蕴萍.烟粉虱生物型研究进展.生态学报,2005b,25(12):3398-3405
    7.褚栋,张友军,丛斌,徐宝云,吴青君.云南Q型烟粉虱种群的鉴定.昆虫知识,2005a,42(1):54-56
    8.邓望喜,张宏宇,华红霞.中国储藏物害虫生物防治的研究进展.粮食储藏,2001,30(2):3-7
    9.邓望喜.储藏物害虫的生物防治技术.粮食储藏,1994,(2-3):80-91
    10.姜元启,沈又年,徐硕.木香薷挥发油对仓虫成虫作用的研究.黄冈职业技术学院学报,2006,8(1):101-103
    11.蒋庆慈,黄辅元,姜武峰,马文斌,潘中华,付群.几种主要储粮害虫对磷化氢和马拉硫磷抗药性及对策技术研究.郑州粮食学院学报,1995,16(3):79-87
    12.蒋志胜,尚稚珍,万树青,等.光活化杀虫剂对几种昆虫超氧化物歧化酶的影响,走向21世纪的中国昆虫学-中国昆虫学会2000年学术年会论文集.
    13.冷海楠,迟德富,肖放.松毛虫属部分地理种群COI基因序列分析.东北林业大学学报,2010,38(11):105-107
    14.李雁声.储粮害虫对磷化氢的抗性及其防治对策.粮食储藏,1994,23(5):3-8
    15.李周直,沈惠娟,蒋巧很,嵇保中.几种昆虫体内保护酶系统活力的研究.昆虫学报,1994,37(4):399-403
    16.梁权.储粮害虫化学防治所面临的问题和对策.粮食经济与科技,1994,4:34-37
    17.梁权.广东省储粮害虫对磷化氢抗性考察与对策.中国粮油学会储藏专业分会第三次学 术交流会论文集.北京:蓝天出版社,1993,220-225
    18.林忠莲,张立力.磷化氢对谷蠹、玉米象成虫体内过氧化氢酶的抑制作用.郑州工程学院学报,2002,23(1):1-7
    19.鲁成,万春玲.中国野桑蚕和家蚕的AFLP分析.蚕业科学,2001,27(4):243-252
    20.鲁成,赵爱春,向仲怀,万春玲.中国野桑蚕遗传多样性的AFLP分析.动物学研究,2002,23(2):166-172
    21.罗晨,姚远,王戎疆,阎凤鸣,胡敦孝,张芝利.利用mtDNA COI基因序列鉴定我国烟粉虱的生物型.昆虫学报,2002,45(6):759-763
    22.吕姝媛,段立柱,马恩波,任竹梅.资源昆虫角倍蚜遗传多样性及遗传分化的AFLP分析.昆虫学报,2010,53(2):202-208
    23.权跃,吕石龙,邓永学.防治谷蠹的含有植物精油的植物种类及植物精油对谷蠹作用方式的研究现状.粮食储藏,2009,38:17-21
    24.沈兆鹏.用信息素和食物引诱剂监控储粮害虫.粮食科技与经济,2005,2:7-10
    25.施伟,叶辉.云南桔小食蝇(Bactrocera dorsalis)季节性分布区4个地理种群遗传结构.生态学报,2007,27(6):2477-2482
    26.宋伟,靳祖训,汪海鹏.中国储粮生态系统研究进展.粮食储藏,2009,38:16-21
    27.唐川江,侯太平,陈放.瑞香狼毒防治仓储害虫的初步研究.粮食储藏,2001,30(4)11-13
    28.王殿轩,王利丹,高希武.赤拟谷盗磷化氢抗性和敏感品系的过氧化氢酶活性比较.河南工业大学学报,2009,30(4):4-7
    29.魏朝明,张琳琳,廉振民.磷化氢对赤拟谷盗成虫体内CAT和SOD活性的影响.昆虫知识,2007,44(5):685-688
    30.严晓平,黎万武,刘作伟,覃章贵,吴秀琼,宋永成,沈兆鹏.我国主要储粮害虫抗性调查研究.粮食储藏,2004,4(32):17-25
    31.姚康.仓库害虫及益虫.北京:中国财政经济出版社,1986
    32.姚康.华中农学院学报,1981,1:95-100
    33.姚英娟,薛东,杨长举,林开春,韩波,谢令德,舒在习.蛇床子提取物对几种储粮害虫的驱避及触杀效应.昆虫知识,2006,43(5):653-656
    34.张金卫,钟伯雄,丁农,吴卫成,赵丽华.应用AFLP分子标记对6个家蚕品种的鉴定.蚕业科学,2004,30(2):137-142
    35.张丽萍,张友军,张文吉,徐宝云,吴青军,肖利峰,朱国仁.B型烟粉虱抗噻虫嗪品系的遗传分化.昆虫学报,2004,47(6):754-759
    36.张兴,王兴林,胡兆农.抑制赤拟谷盗种群形成的植物样品筛选研究.粮食储藏,1992,21 (3):3-9
    37.曾伶.储粮害虫对磷化氢抗性的研究进展.昆虫天敌(增刊),1996,18:37-41
    38.郑福山,杜予州,王志杰,王莉萍.基于线粒体COI基因序列的小萤叶甲属部分种类分子系统学研究(鞘翅目:叶甲科:萤叶甲亚科).昆虫学报,2007,50(5):501-507
    39.Ahern RG, Hawthorne DJ, Raupp MJ. Founder effects and phenotypic variation in Adelges cooleyi, an insect pest introduced to the eastern United States. Biol. Invasions,2009,11: 959-971
    40. Ahmad S, Khan MA, Ahmad N. Determination of susceptibility level of phosphine in various strains of Dhora(Callosobruchus maculates F.). Int. J. Agri. Boil.,2002,4(3):329-331
    41.Ahmedani MS, Khaliq A, Aslam M, Naz S, Ahmedani MY. Fumigation technique used in house type godowns for the management of resistant Trogoderma granarium larvae. Pak. J. Arid Agric.,2006,9:5-11
    42. Ahmedani MS, Shaheen N, Ahmedani MY, Aslam M. Status of phosphine resistance in Khapra beetle, Trogoderma granarium (Everts) strains collected from remote villages of Rawalpindi district. Pak. Entomol.,2007,29:95-102
    43.Alam MS, Shaukat SS, Ahmed M, Iqbal S, Ahmad A. A survey of resistance to phosphine in some coleopterous pests of stored wheat and rice grain in Pakistan. Pak. J. Biol. Sci.,1999,2: 623-626
    44.Ali N, Turner B. Allozyme polymorphism and variability in permethrin tolerance in British populations of the parthenogenetic stored product pest Liposcelis bostrychophila (Liposcelididae, Psocoptera). J. Stored Prod. Res.,2001,37:111-125
    45.Alstad DN, Corbin KW. Scale insect allozyme differentiation within and between host trees. Evo.Ecol.1990,4:43-56
    46. Al-Taher KF, Abo-Zuheira RA. Insects infesting stored wheat in the Kingdom of Saudi Arabia and their method of control (in Arabic). Saudi Arabian Ministry of Agriculture and Water and FAO.1987,2:215
    47.Ansell MR, Dyte CE, Smith RH. The inheritance of phosphine resistance in Rhyzopertha dominica and Tribolium castaneum. In:Fleurat-Lessard F and Ducom P (Eds.) Proceedings of the 5th International Working Conference on Stored-product Protection. Bordeaux, France, September.9-14,1990, Paris, France, pp:961-970
    48.Arnaud L, Haubruge E. Insecticide resistance enhances male reproductive success in a beetle. Evolution.2002,56:2435-2444
    49. Arthur FH, Bautista RC, Siebenmorgen TJ. Influence of growing location and cultivar on Rhyzopertha dominica (Coleoptera:Bostrichidae) and Sitophilus oryzae (Coleoptera: Curculionidae) infestation of rough rice. Insect Sci.,2007,14:231-239
    50. Arthur FH, Throne JE. Efficacy of diatomaceous earth to control internal infestations of rice weevil and maize weevil (Coleoptera:Curculionidae). J. Econ. Entomol.,2003,96:510-518
    51. Arthur FH. Grain protectants:Current status and prospects for the future. J. Stored Prod. Res., 1996,32:293-302
    52.Athanassiou CG, Kavallieratos NG, Economou LP, Dimizas CB, Vayias BJ, Tomanovic S, Milutinovic M. Persistence and efficacy of three diatomaceous earth formulations against Sitophilus oryzae (Coleoptera:Curculionidae) on wheat and barley. J. Econ. Entomol.,2005b, 98(4):1404-1412
    53.Athanassiou CG, Kavallieratos NG, Tsakiri JB, Xyrafidis SN, Vayias BJ. Effect of temperature and humidity on insecticidal effect of silicosec against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae. J. Econ. Entomol.,2006,99(4):1520-1524
    54. Athanassiou CG, Kavallieratos NG., Andris NS. Insecticidal effect of three diatomaceous earth formulations against adults of Sitophilus oryzae (Coleoptera:Curculionidae) and Tribolium confusum (Coleoptera:Tenebrionidae) on oat, rye, and triticale. J. Econ. Entomol.,2004,97(6): 2160-2167
    55.Athanassiou CG, Vayias BJ, Dimizas CB, Kavalieratos NG, Papagregoriou AS, Buchelos C. Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum Du Val (Coleoptera:Tenebrionidae) on stored wheat: influence of dose rate, temperature and exposure interval. J. Stored Prod. Res.,2005a,41: 47-55
    56.Athie I, Gomes RAR, Bolonhezi S, Valentini SRT, De Castro MFPM. Effects of carbon dioxide and phosphine mixtures on resistant populations of stored-grain insects. J. Stored Prod. Res.,1998,34:27-32
    57. Athie I, Mills KA. Resistance to phosphine in stored-grain insect pests in Brazil. Braz. J. Food Technol.,2005,8:143-147
    58.Bashir T. Reproduction of Rhyzopertha dominica (F.) (Coleoptera:Bostrichidae) on different host-grains. Pak. J. Bio. Sci.,2002,5:91-93
    59.Becker J, Vos P, Kuiper M, Salamini F, Heun M. Combined mapping of AFLP and RFLP in barley. Mol. Gen. Genet.,1995,249:65-73
    60. Beckett SJ, Evans DE, Morton R. A comparison of the demographies of pesticide susceptible and resistant strains of Oryzaephilus surinamensis (L.) (Coleoptera:Silvanidae) on kibbled wheat. J. Stored Prod. Res.,1996,32:141-151
    61.Beeman RW, Speirs WE. Toxicity persistence and antagonism of avermetic B1 against stored-product insect. Porceeding of the 3th International Working Conference of Stored-Product Entomology.1984,246-255
    62.Bengston M, Acda MA, Daglish GJ, Collins PJ. Phosphine resistance in the Asia/Australia region. In:Jin Z, Liang Q, Tan X and Guan L, ed., Stored product protection. Proceedings of the Seventh International Working Conference on Stored-product Protection, Beijing, China, 14-19 October 1998. Chengdu, Sichuan Publishing House of Science and Technology,1999, 631-634
    63.Benhalima H, Chaudhry MQ, Mills KA, Price NR. Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. J. Stored Prod. Res.,2004, 40:241-249
    64.Benhalima H. The detection and measurement of resistance to phosphine in three species of insect pests of stored cereals:S. oryzae, R. dominica and T. castaneum. (M.Sc. dissertation). University of Edinburgh, Scotland, UK.1988.
    65. Birch LC. The influence of temperature humidity and density on the oviposition of the small stain of Calandra oryzae L (Coleoptera:Curculionidae) (small stain) and Rhyzopertha dominica (F) (Coleoptera:Bostrychidae). Aust. J. Exp. Biolo. Med. Sci.,1945b,23:197-203
    66. Birch LC. The mortality of the immature stages of Calandra oryzae L (Coleoptera: Curculionidae) (small stain) and Rhyzopertha dominica (F) (Coleoptera:Bostrychidae) in wheat of different moisture content. Aust. J. Exp. Biolo. Med. Sci.,1945a,23:141-145
    67. Bolter CJ, Chefurka W. The effect of phosphine treatment on superoxide dismutase, catalase and peroxidase in the granary weevil, Sitophilus granarium. Pestic. Biochem. Phys.,1990, (36):52-60
    68. Bond EJ, Buckland CT. Development of resistance to carbon dioxide in the granary weevil. J. Econ. Entomol.,1979,7:770-771
    69. Bond EJ, Robinson JR, Buckland CT. The toxic of phosphine absorption and symptoms of poisoning in insects. J. Stored Prod. Res.,1969,5(4):289-298
    70. Bond EJ. Resistance of stored product insects to fumigants. In proceedings of the 3rd International Working Conference on Stored-Product Entomology,23-28 October,1983, Manhatten, Kansas, USA. In:Mills RB, Wright VF, Pedersen JR, McGaughey WH, Beeman RW, Kramer KJ, Speirs RD, Storey CL. (eds.).1984,303-307
    71. Borah G, Chahal BS. Development of resistance, in Trogoderma granarium Everts to phosphine in the Punjab. FAO Plant Prot. Bull.,1979,27:77-80
    72.Brower AVZ, DeSalle R. Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butter flies:The utility of wingless as a source of characters for phylogenetic in ference. Insect Mol. Biol.,1998,7 (1):73-821
    73. Bui CH. Some initial results on phosphine resistance of major product insect pests in Vietnam. In:Jin Z, Liang Q, Tan X, Guan L. (eds.). Stored Prod. Protection. Proc. Int. Wkg. Conf. Stored Prod. Protec., Oct.14-19,1998, Beijing, China, Sichuan Publishing House of Sci.& Technol., Chengdu, China.1999,648-652
    74. Burkholder WE. Practical use of pheromone and other attractants for stored product insects. In: Ridgway RL, Silverstein RM. Inscoe MN. (eds.). Behavioural-Modifying Chemicals for Insect Management:Applications of Pheromones and other Attractants, Marcel Dekker, New York, USA.1990,497-515
    75.Cao Y, Song Y, Sun G. A survey of psocid species infesting stored grain in China and resistance to phosphine in field populations of Liposcelis entomophila (Enderlein) (Psocoptera: Liposcelididae). In:Credland PF, Annitage DM, Bell CH, Cogan PM, Highley E. (eds.), Advances in stored product protection. Wallingford, CAB international.2003,662-667
    76.Cao Y, Li GT, Zhou J, Li YY, Qu GQ. The inhibition effect of low oxygen on four species of stored grain insect pests. In:Proceedings of the 8th International Conference on Controlled Atmosphere and Fumigation in Stored Products,2008,39-44
    77.Cervera MT, Cabezas JA, Simon B, Martinez-Zapater JM, Beitia F, Cenis JL. Genetic relationships among biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae) based on AFLP analysis. B. Entomol. Res.,2000,90:391-396
    78.Champ BR, Dyte CE. Fao Global Survey of Pesticide Susceptibility of Stored Grain Pests. FAO Plant Protection Bulletin.1977,25:49-67
    79. Champ BR, Dyte CE. Report of the FAO global survey of pesticide susceptibility of stored grain pest. Food and Agriculture Organization of the United Nations. Rome. Series:FAO plant production and protection series,1976, NO 5:260-297
    80.Chaudhray MQ, Price NR. Comparison of the oxidant damage induced by phospine and the uptake and tracheal exchange of 32P-radiolabelled phosphine in the susceptible and resistant strains of Rhyzopertha dominica (F.) (Coleoptera:Bostrychidadw). Pestic. Biochem. Biophysiol.,1992,42:167-179
    81. Chaudhray MQ, Price NR. Insect mortality at doses of phosphine which produce equivalent uptake in susceptible and phosphine-resistant strains of Rhyzopertha dominica. J. Stored Prod. Res.,1990,26(2):101-107
    82.Chaudhry MQ. A review of the mechanisms involved in the action of phosphine as an insecticide and phosphine resistance in stored-product insects. Pestic. Sci.,1997,49:213-228
    83.Chaudhry MQ. Phosphine resistance:a growing threat to an ideal fumigant. Pesticide Outlook. June 2000,88-91
    84.Chefurka W, Kashi K P, Bond EJ. The Effect of Phosphine on Electron Transport in Mitochondria. Pestic. Biochem. Physiol.,1976,6:65-84
    85.Chugh SN, Arora V, Sharma AK. Chugh:Free radical scavanger & lipid peroxidation in acute aluminium phosphide poisoning. Indian J. Med. Res.,1996,104:190-193
    86. Collins P. Strategy to manage resistance to phosphine in the Australian grain industry. CRC Plant Biosecurity,2009,1-13
    87.Collins PJ, Daglish GJ, Nayak MK, Ebert PR, Schlipalius D, Chen W, Pavic H, Lambkin TM, Kopittke R, Bridgeman BW. Combating resistance to phosphine in Australia. In:Proc. Int. Conf. on Controlled Atmosphere and Fumigation in Stored Products, Fresno, California,2001.
    88. Collins PJ, Daglish GJ, Pavic H, Kopittke RA. Response of mixed-age cultures of phosphine-resistant and susceptible strains of lesser grain borer, Rhyzopertha dominica, to phosphine at a range of concentrations and exposure periods. J. Stored Prod. Res.,2005,41: 373-385
    89. Collins PJ. Resistance to grain protectants and fumigants in insect pests of stored products in Australia. In:Banks H JM Wright EJ, Damcevski KA. (eds.) Stored grain in Australia Canberra, CSIRO Stored Grain Research Laboratory,1998,55-57
    90.Comins HN. The development of insecticide resistance in the presence of migration. J. Theor. Biol.,1977,64:177-197
    91.Confalonieri VA, Sequeira AS, Todaro L, Vilardi JC. Mitochondrial DNA phylogeography of the grasshopper Trimerotropis pallidipennis in relation to clinal distribution of chromosome polymorphisms. Heredity,1998,81:444-452
    92.Corsini G, Manubens A, Lladser M, Lobos S, Seelenfreund D. AFLP analysis of the fruit fly Ceratitis capitata, Focus (GIBCO-BRL).1999,21:72-73
    93.Crombie AC. On oviposition, olfactory conditioning and host selection in Rhyzopertha dominica Fab. (Insecta, Coleoptera). J. Exp. Biol.,1941,18:62-79
    94. Daglish GJ, Bengston M. Resistance to phosphine in Asia. In:Stored grain in Australia. Proc. Australian Post-harvest Technical Conference, in:Banks HJ, Wright EJ, Damcevski KA (eds.). Canberra, Australia,1998,58-60
    95. Dales MJ, Hardings S, Freeman N, Gaffney H. Insect growth regulators for the control of stored-grain insect pests. Proceedings of the 6th International Working Conference of Stored-product Protection.1994,2:765-769
    96. Daly JC. Ecology and genetics of insecticide resistance in Helicoverpa annigera:interactions between selection and gene flow. Genetica,1993,90:217-226
    97.Dansi L, van Velson FL, van der Heuden CA. Methyl bromide:carcinogenic effects in the rat forestomach. Toxicolo. Appl. Pharm.,1984,72:262-271
    98. David J. Hawthorne, AFLP-Based Genetic Linkage Map of the Colorado Potato Beetle Leptinotarsa decemlineata:Sex Chromosomes and a Pyrethroid-Resistance Candidate Gene. Genetics Society of America,2001,158:695-700
    99.Demianyk CJ, Sinha RN. Effects of infestation by the larger grain borer, Prostephanus truncatus (Horn), and the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), on stored corn. Environ. Entomol.,1987,16:618-624
    100. Ding W, Wang JJ, Zhao ZM, Tsai JH. Effects of controlled atmosphere and DDVP on population growth and resistance development by the psocid, Liposcelis bostrychophila Badonnel (Psocoptera:Liposcelididae). J. Stored Prod. Res.,2002,38:229-237
    101. Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P. Refined Global Analysis of Bemisia tabaci (Hemiptera:Sternorrhyncha:Aleyrodoidea:Aleyrodidae) Mitochondrial Cytochrome Oxidase 1 to Identify Species Level Genetic Boundaries. Ann. Entomol. Soc. Am., 2010,103:196-208
    102. Donahaye E. Laboratory Selection of Resistance by the Red Flour Beetle, Tribolium Castaneum (Herbst), to a Carbon Dioxide-Enriched Atmosphere. Phytoparasitica,1990,18: 299-308
    103. Donahaye E. Laboratory Selection of Resistance by the Red Flour Beetle, Tribolium Castaneum (Herbst), to an Atmosphere of Low Oxygen Concentration. Phytoparasitica,1990, 18:189-202
    104. Dowdy AK, Mcgaughey WH. Using random amplified polymorphic DNA to differentiate strains of the Indianmeal moth (Lepidoptera:Pyalidae). Environ. Entomol.,1996,25:396-400
    105. Dua R, Gill KD. Effect of aluminium phosphide exposure on kinetic properties of cytochrome oxidase and mitochondrial energy metabolism in rat brain. Biochim. Biophys. Acta.,2004,1674(1):4-11
    106. Dyte CE, Rowlands DG. The metabolism and synergism of malathion in resistant and susceptible strains of Tribolium castaneum (Coleoptera:Tenebrionidae). J. Stored Prod. Res., 1968,4:157-173
    107. Eastwood R, Pierce NE, Kitching RL, Hughes JM. Do ants enhance diversification in lycaenid butterflies? Phylogeographic evidence from a model myrmecophile, Jalmenus evagoras. Evolution,2006,60 (2):315-327
    108. Excoffier L, smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distance among DNA haplotypes:application to human mitochondrial DNA restriction data. Genetics,1992,131:479-491
    109. Fang L, Subramanyam B, Arthur FH. Effectiveness of spinosad on four classes of wheat against five stored-product insects. J. Econ. Entomol.,2002,95(3):640-650
    110. FAO. Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides.16:Tentative method for adults of some stored cereals, with methyl bromide and phosphine. FAO Plant Prot. Bull.,1975,23:12-25
    111. Fargette M, Lollier V, Phillips M, Blok V, Frutos R. AFLP analysis of the genetic diversity of Meloidogyne chitwoodi and M.fallax, major agricultural pests. C. R. Biologies.,2005,328: 455-462
    112. Fields P, Korunic Z. The effect of grainmoisture content and temperature on the efficacy of diatomaceous earths from different geographical locations against stored-product beetles. J. Stored Prod. Res.,2000,36:1-13
    113. Flinn PW, Hagstrum DW, McGaughey WH. Suppression of beetles in stored wheat by augmentative releases of parasitic wasps. Environ. Entomol.,1996,25:505-511
    114. Flinn PW. Temperature effects on efficacy of Choetospila elegans (Hymenoptera: Pteromalidae) to suppress Rhyzopertha dominica (Coleoptera:Bostrichidae) in stored wheat. J. Econ. Entomol.,1998,91:320-323
    115. Fomeck A, Walker MA, Blaich R. Genetic structure of an introduced pest, grape phylloxera (Daktulosphaira vitifoliae Fitch), in Europe. Genome,2000,43:669-678
    116. Fragoso DB, Guedes RNC, Goreti A, Oliveira M. Partial characterization of glutathione S-transferases in pyrethroid-resistant and -susceptible populations of the maize weevil, Sitophilus zeamais. J. Stored Prod. Res.,2007,43:167-170
    117. Fragoso DB, Guedes RNC, Peternelli LA. Developmental rates and population growth of insecticide-resistant and susceptible populations of Sitophilus zeamais. J. Stored Prod. Res., 2005,41:271-281
    118. Fragoso DB, Guedes RNC, Rezende ST. Glutathione S-transferase detoxification as a potential pyrethroid resistance mechanism in the maize weevil, Sitophilus zeamais. Entomol. Exp.Appl.,2003,109:21-29
    119. Fuentes-Contreras E, Espinoza JL, Lavandero B, Ramirez CC. Population genetic structure of codling moth (Lepidoptera:Tortricidae) from apple orchards in central Chile. J. Eco. Entomol.,2008,101:190-198
    120. Gaviria DA, Aguilar E, Serrano HJ, Alegria AH. DNA fingerprinting using AFLP markers to search for markers associated with yield attributes in the silkworm, Bombyx mori. J. Insect Sci., 2006,6:1-10
    121. Georghiou GP. Overview of Insecticide Resistance. Acs. Sym. Ser.,1990,421:18-41
    122. Gibson JR, Slater E, Xerry J, Tompkins DS, Owen RJ. Use of an amplified-fragment length polymorphism technique to finger print and differentiate isolates of Helicobacter pylori. J. Clin. Microbiol.,1998,36:2580-2585
    123. Grant DF, Matsumura F. Glutathione S-transferase 1 and 2 in susceptible and insecticide resistant Aedes aegypti. Pestic. Biochem. Phys.,1989,33:132-143
    124. Grapputo A, Boman S, Lindstrom L, Lyytinen A, Mappes J. The voyage of an invasive species across continents:genetic diversity of North American and European Colorado potato beetle populations. Mol. Ecol.,2005,14:4207-4219
    125. Guedes RNC, Kambhampati S, Dover BA, Zhu KY. Biochemical mechanisms of organophosphate resistance in Rhyzopertha dominica (Coleoptera:Bostrichidae) from the United States and Brazil. B. Entomol. Res.,1997,87:581-586
    126. Guedes RNC, Lima JG, Santos JP, Cruz CD. Resistance to DDT and pyrethroids in Brazilian populations of Sitophilus zeamais Motsch. (Coleoptera:Curculionidae). J. Stored Prod. Res., 1995,31:145-150
    127. Gunderson CA, Samuelian JH, Evans CK, Brattsten LB. Effects of the mint monoterpene pulegone on Spodoptera eridania (Lepidoptera:Noctuidae). Environ. Entomol.,1985,14: 859-863
    128. Halliday D, Harris AH, Taylor RWD. Recent developments in the use of phosphine as a fumigant for grain and other durable agricultural produce. Chem. Ind.,1983,12:468-471
    129. Hamid, A, Ahmed M, Hassan M, Sabir AA. Survey of resistance to phosphine gas in various strains of Triboilum castaneum and R. dominica. Pak. Entomol.,1988,10:49-52
    130. Harein PK, Davis R. Control of stored-grain insects. Storage of cereal grains and their products. D. B. Sauer. American Association of Cereal Chemists, Inc. St. Paul MN, USA.1992, 492-534
    131. Harwood SH, Moldenke AF, Berry RE. Toxicity of monoterpenes to the variegated cutworm (Lepidoptera:Noctuidae). J. Econ.Entomol.,1990,83:1761-1767
    132. Haubruge E, Arnaud A. Fitness consequences of malathion-specific resistance in red flour beetle (Coleoptera:Tenebrionidae) and selection for resistance in the absence of malathion. J. Econ. Entomol.,2001,94:552-557
    133. Hillesheim E, Ritter W, Bassand D. First data on resistance mechanisms of Varroa jacobsoni (OUD) against tau-fluvalinate. Exp. Appl. Acarol.,1996,20:283-296
    134. Ho SH, Winks RG. The Response of Liposcelis Bostrychophila Badonnel and Liposcelis Entomophila (Enderlein) (Psocoptera) to Phosphine. J. Stored Prod. Res.,1995,31:191-197
    135. Hole BD, Bell CH, Mills KA, Goodship G. The toxicity of phosphine to all developmental stages of thirteen species of stored product beetles. J. Stored Prod. Res.,1976,12:235-244
    136. Hsu CH, Chi BC, Casida JE. Melatonin reduces phosphine-induced lipid and DNA oxidation in vitro and in vivo in rat brain. J. Pineal Res.,2002a,32:53-58
    137. Hsu CH, Chi BC, Liu MY, Li JH, Chen CJ, Chen RY. Phosphine-induced oxidative damage in rats:Role of glutathione. Toxicology.2002b,179:1-8
    138. Hsu CH, Quistad GB, Casida JE. Phosphine-induced oxidative stress in Hepa 1c1c7 cells. Toxicol. Sci.,1998,46:204-210
    139. Huang F, Subramanyam B, Toews MD. Susceptibility of laboratory and field strains of four stored-product insect species to spinosad. J. Econ. Entomol.,2004,97(6):2154-2159
    140. Huang YZ, Yang CJ, Xue D, Akinkurolere RO, Yao YJ. Contact and repellency activities of ethanol extracts from twenty medicinal plants against Rhizonpertha dominica (Fab.) (Coleoptera:Bostrichidae). Acta Entomologica. Sinica,2007,50(2):118-124
    141. Hilseyin G, Zubeyir D. Determination of Genetic Variation in Populations of Bemisia tabaci in Antalya. Turk. J. Agric. For.,2002,26:211-216
    142. Hussain I, Sbir AM, Suhail A. Gas to various strains of Triboliun castaneum Hbst (Coleoptera:Tenebriondae). Pak. J. Biolog. Sci.,2000,3(5):874-875
    143. Jian F, Jayas DS, White NDG. Toxic action of phosphine on the adults of the copra mite Tyrophagus putrescentiae (Astigmata:Acaridae). Phytoprotection,2000,81:23-28
    144. Jilani G, Saxena RC, Khan AA. Ethylene production as an indicator of germination and vigor loss in stored rice seed infested by Rhyzopertha dominica (F.) (Coleoptera:Bostrichidae). J. Stored. Prod. Res.,1989,25:175-178
    145. Jood S, Kapoor AC, Singh R. Available carbohydrates of cereal grains as affected by storage and insect infestation. Plant Foods Hum. Nutr.,1993,43:45-54
    146. Katiyar SK, Chandel G, Tan Y, Zhang Y, Huang B, Nugaliyadde L, Fernando K, Bentur JS, Inthavong S, Constantino S, Bennett J. Biodiversity of Asian rice gall midge (Orseolia oryzae Wood Mason) from five countries examined by AFLP analysis. Genome,2000,43(2):322-332
    147. Kazachkova N, Meijer J, Ekbom B. Genetic diversity in pollen beetles(Meligenthes aeneus) in Sweden:role of spatial, temporal and insecticide resistance factors. Agr. Forest Entomol., 2007,9:259-269
    148. Kocher TD, Thomas WK, Meyer A. Dynamics of mitochondria DNA evolution in animals: amplification and sequencing with conserved primers. Pro. Natl. Acad. Sci. USA,1989,86: 6196-6200
    149. Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, Losos JB. Genetic variation increases during biological invasion by a Cuban lizard. Nature,2004,431:177-181
    150. Kranthi KR, Armes NJ, Rao NGV, Raj S, Sundaramurthy VT. Seasonal dynamics of metabolic mechanisms mediating pyrethroid resistance in Helicoverpa armigera in central India. Pesti. Sci.,1997,50(2):91-98
    151. Lall GK, Darby AC, Nystedt B, Macleod ET, Bishop RP, Welburn SC. Research Amplified fragment length polymorphism (AFLP) analysis of closely related wild and captive tsetse fly (Glossina morsitans morsitans) populations. Parasites & Vectors,2010,3:47
    152. Lan SB. Study on farm grain storage in China,9th International Working Conference on Stored Product Protection, Sao Paulo, Brazil.2006,47-52
    153. Lee SE. Biochemical mechanisms conferring cross-resistance to fumigant toxicities of essential oils in a chlorpyrifos-methyl resistant strain of Oryzaephilus surinamensis L. (Coleoptera:Silvanidae). J. Stored Prod. Res.,2002,38:157-166
    154. Legg JP, French R, Rogan D, Okao-Okuja G Brown JK. A distinct Bemisia tabaci (Gennadius) (Hemiptera:Sternorrhyncha:Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Mol. Ecol.,2002,11:1219-1229
    155. Leong ECW, Ho SH. Relative tolerance of Liposcelis bostrychophila (Bad) and L-entomophila (End) to some organophosphorus and carbamate insecticides. Insect Science and Its Application,1994,15:343-349
    156. Liu H, Beckenbach AT. Evolution of the mitochondrial cytochrome oxidase Ⅱ gene among ten orders of insects. Mol. Phylogenet. Evol.,1992,1:41-52
    157. Liu YD, Wu KM, Guo YY. Population structure and introduction history of the pink bollworm, Pectinophora gossypiella, in China. Entomol. Exp. Appl.,2009,130:160-172
    158. Longstaff BC. An experimental study of the fitness of susceptible and resistant strains of Sitophilus oryzae (L.) (Coleoptera:Curculionidae) exposed to insecticide. J. Stored Prod. Res., 1991,27:75-82
    159. Lorini I, Collins PJ, Daglish GJ, Nayak MK, Pavic H. Detection and characterization of strong resistance to phosphine in Brazilian Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Pest Manag. Sci.,2007,63:358-364
    160. Lorini I, Collins PJ. Resistance to phosphine in Rethzopertha dominica (F.) (Coleoptera: Bostrychidae) collected from wheat storages in Brazil.9th International Working Conference on Stored Product Protection. Brazil,15 to 18 October,2006,319-323
    161. Lorini I, Galley DJ. Deltamethrin resistance in Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), a pest of stored grain in Brazil. J. Stored Prod. Res.,1999,35:37-45
    162. Mackill DJ, Zhang Z, Redona ED, Colowit PM. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome,1996,39:969-977
    163. Mantel NA. The detection of disease clustering and generalized regression approach. Cancer Res.,1967,27:209-220
    164. Mau Y. Comparative genetic and toxicological analysis of phosphine resistance in the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera:Bostrichidae).2007, PhD Thesis University of Queensland.
    165. Mikac KM, Fitzsimmons NN. Genetic structure and dispersal patterns of the invasive psocid Liposcelis decolor (Pearman) in Australian grain storage systems. B. Entomol. Res.,2010,100: 521-527
    166. Miller MP. AMOVA-PREP 1.01:A program for the preparation of Analysis of molecular variance (MOVA) input files from dominant-markers raw data.1998. Computer software.
    167. Mills KA, Athie I. Control of immature stages of Sitophilus oryzae (L.) strains susceptible and resistant to phosphine by phosphine fumigation. Braz. J. Food Technol.,2001,3:171-176
    168. Mills KA. Phosphine Resistance:Where to now? In:Donahaye EJ, Navarro S, Leesch JG. (Eds.) Proc. Int. Conf. Controlled Atmosphere and Fumigation in Stored Products, Fresno, CA. 29 Oct. to 3 Nov.2000, Executive Printing Services, Clovis, CA, USA.2001,583-591
    169. Mills KA. Resistance to the fumigant hydrogen phosphide in some stored-product species associated with repeated inadequate treatments. Mitteilung Deutsche Gesellschaft fur Allgemeine und Angewandte Entomologie,1983,4:98-101
    170. Mock KE, Benta BJ, O'neill EM, Chong JP, Orwin J, Pfrender ME. Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponderosae). Mol.Ecol.,2001,16:553-568
    171. Mondal KAMSH, Port GR. Effect of cyromazine on larval growth and adult population of susceptible and malathion-resistant strains of Tribolium castanewn Herbst.1995, J. Biol. Sci., 3:1-10
    172. Mozaffarian F, Mardi M, Sarafrazi A, Ganbalani GN. Assessment of geographic and host-associated population variations of the caron moth, Ectomyelois ceratoniae, on pomegranate, fig, pistachio and walnut, using AFLP markers. Insect Sci.,2010,8:1536-2442
    173. Mummigatti SG, Raghunathan AN, Karanth NGK. Bacillus thuringinensis variety tenebrionis (DSM-203) in the control of Coleopteran pests of stored wheat. Porceeding of the 6th International Working Conference of Stored-Product Protection.1994,2:1112-1115
    174. Nagaraja GM, Nagaraju J. Genome fingerprinting in silkworm, Bombyx mori using random arbitrary primers. Electrophoresis.1995,16:1633-1638
    175. Nagaraju J, Reddy KD, Nagaraja GM, Sethuraman BN. Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori. Heredity, 2001,86:588-597
    176. Nagaraju J, Sharma A, Sethuraman BN, Rao GV. DNA fingerprinting in silkworm Bombyx mori using banded krait 9 minor satellite DNA-derived probe. Electrophoresis,1995,16: 1639-1642
    177. Nakakita H, Winks RG. Phosphine resistance in immature stages of a laboratory selected strain of Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae). J. Stored Prod. Res.,1981, 17:43-52
    178. Nakakita H. Stored rice and stored product insects. In:Rice Inspection Technology Manual. ACE Corporation, Tokyo, Japan,1998,49-65
    179. Nakakita H. The inhibitory site of phosphine. J. Peslic. Sci.,1976,1:235-238
    180. Nakakita H. The mode of action of phosphine. J. Pestic. Sci,1987,12:299-309
    181. Nansen C, Flinn P, Hagstrum D, Toews MD, Meikle WG. Interspecific associations among stored-grain beetles. J. Stored. Prod. Res.,2009,45:254-260
    182. Nayak MK, Collins PJ, Pavic H. Resistance to phosphine in psocids:Challenges ahead!, In: Wright EJ, Banks HJ, Highley E. (eds.), Proceedings of the 2nd Australian Postharvest Technical Conference, August 1-4,2000. Adelaide, Australia.2002,113-118
    183. Nayak MK, Collins PJ, Pavic H. Cao Y. Developments in phosphine resistance in China and possible implications for Australia. In:Wright MC, Webb MC, Highley E (eds.), Stored grain in Australia 2003, Proceedings of the Australian Postharvest Technical Conference, Canberra, 25-27 June 2003. CSIRO Stored Grain Research Laboratory Canberra.2003,156-159
    184. Nayak MK, Collins PJ. Influence of concentration, temperature and humidity on the toxicity of phosphine to the strongly phosphine-resistant psocid Liposcellis bostrychophila Badonnel (Psocoptera:Liposcelididae). Pest Manag. Sci.,2008,64(9):971-976
    185. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics,1978,89:583-590
    186. Normark BB, Lanteri A A. Incongruence between morphological and mitochondrial DNA characters suggests hybrid origins of parthenogenetic weevil lineages (genus Aramigus). Syst. Biol.,1998,47(3):475-494
    187. Normark BB. Phylogeny and evolution of parthenogenetic weevils of the Aramigus tessellatus species complex (Coleoptera:Curculionidae:Naupactini):Evidence from mitochondrial DNA sequences. Evolution,1996,50:734-745
    188. Pacheco IA, Sartori MR, Taylor RWD. Levantamento de resistencia de insetos-praga de graos armazenados a fosfina, no Estado de Sao Paulo. Coletdnea do ITAL,1990,20:144-154
    189. Papachristos DP, Stamopoulos DC. Selection of Acanthoscelides obtectus (Say) for resistance to lavender essential oil vapour. J. Stored Prod. Res.,2003,39:433-441
    190. Park SH, Arthur FH, Bean SR, Schober J. Impact of differing population levels of Rhyzopertha dominica (F.) on milling and physicochemical properties of sorghum kernel and flour. J. Stored. Prod. Res.,2008,44:322-327
    191. Pedersen JR. Insects:Identification, damage, and detection. In:Sauer DB (Ed.), Storage of Cereal Grains and Their Products, American Association of Cereal Chemists International. 1992,615
    192. Perez-Mendoza J. Survey of insecticide resistance in Mexican populations of maize weevil, Sitophilus zeamais Motschulsky (Coleoptera:Curculionidae). J. Stored Prod. Res.,1999,35: 107-115
    193. Peterson MA, Denno RF. The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. Am. Nat.,1998,152:428-446
    194. Pike V. Laboratory assessment of the efficacy of phosphine and methyl bromide fumigation against all life stages of Liposcelis entomophilus (Enderlein). Cropprot.,1994,13:141-145
    195. Pimental MAG, Faroni LRD'A, Totola MR, Guedes RNC. Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Manag. Sci.,2007,63:876-881
    196. Pimentel MAG, Faroni LRD'A, Batista MD, Silva FH. Resistance of stored-product insects to phosphine. Pesq. agropec. bras. Brasilia,2008,43(12):1671-1676
    197. Pimentel MAG, Faroni LRD'A, Guedes RNC, Sousa AH, Totola MR. Phospine resistance in Brazilian populations of Sitophilus zeamais Motschulsky (Coleoptera:Curculionidae). J. Stored Prod. Res.,2009,45:71-74
    198. Pimentel MAG, L Faroni LRD'A, Silva FH, Batista MD, Guedes RNC. Spread of phosphine resistance among Brazilian populations of thee species of stored product insects. Neotrop. Entomol.,2010,39(1):101-107
    199. Pogson GH, Mesa KA, Boutilier RG. Genetic population structure and gene flow in the Atlantic Cod Gadus morhua:A comparison of allozyme and nuclear RFLP Loci. Genetics, 1995,139:375-385
    200. Potter C. The biology and distribution of Rhyzopertha dominica (Fab.). Trans. R. Ent. Soc. Gond.,1935,83:449-482
    201. Price NR, Dance SJ. Some biochemical aspects of phosphine action and resistance in three species of stored product beetles. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology,1983,76:277-281
    202. Price NR, Walter CM. A comparison of some effects of phosphine, hydrogen cyanide and anoxia in the lesser grain borer, Rhyzopertha dominica. Comp. Biochem. Physiol.,1987,86: 33-36
    203. Price LA, Mills KA. The toxicity of phosphine to the immature stages of resistant and susceptible strains of some common stored product beetles, and implications for their control. J. Stored Prod. Res.,1988,24:51-59.
    204. Price NR. Some aspects of the inhibition of cytochrome c oxidase by phosphine in susceptible and resistant strains of Rhyzopertha dominica. Insect Biochem.,1980,10:147-150
    205. Quistad GB, Sparks SE, Casida JE. Chemical model for phosphine-induced lipid peroxidation. Pest Manag. Sci.,2000,56:779-783
    206. Ravel S, Monteny N, Olmos DV, Verdugo JE, Cuny GA. preliminary study of the population genetics of Aedes aegypti (Diptera:Culicidae) from Mexico using microsatellite and AFLP markers. Acta Tropica.,2001,78:241-250
    207. Reddy KD, Abraham EG, Nagaraju J. Microsatellites in the silkworm, Bombyx mori: abundance, polymorphism and strain characterization. Genome,1999,42:1057-1065
    208. Reddy KD, Nagaraju J, Abraham EG. Genetic characterization of the silkworm, Bombyx mori by simple sequence repeat (SSR)-anchored PCR. Heredity,1999,83:681-687
    209. Reineke A, Karlovsky P, Zebitz CPW. Amplified fragment length polymorphism analysis of different geographic populations of the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). B. Entomol. Res.,1999,89:79-88
    210. Rejendran S. Phosphine resistance in stored grain insect pests in India. In:Jin Z, Liang Q, Tan X, Guan L. (eds.). Stored product protection. Proceedings of the Seventh International Working Conference on Stored-product Protection, Beijing, China,14-19 October 1998. Chengdu, Sichuan publishing house of science and technology,1999,635-641
    211. Reubeke A, Karkovsky P, Zebitz CPW. Preparation and purification of DNA from insects for AFLP analysis. Insect. Mol. Biol.,1998,7:95-99
    212. Ribeiro BM, Guedes RNC, Oliveira EE, Santos JP. Insecticide resistance and synergism in Brazilian populations of Sitophilus zeamais (Coleoptera:Curculionidae).J. Stored Prod. Res., 2003:39:21-31
    213. Ristaino J, Thomas W. Agriculture, methyl bromide, and the ozone hole:can we fill the gap?. Plant Dis.,1998,81:964-977
    214. Roehrdanz RL. Genetic differentiation of southeastern boll weevil and thurberia weevil populations of Anthonomus grandis (Coleoptera:Curculionidae) using mitochondrial DNA. Ann. Entomol. Soc. Am.,2001,94(6):928-935
    215. Rohlf FJ. NTSYSPC:Numerical Taxonomy and Multivariate Analysis System, Version 2.1. 1993, Exeter Software.
    216. Rossi E, Cosimi S, Loni A. Insecticide resistance in Italian populations of Tribolium flour beetles. B.Insectol.,2010,63(2):251-258
    217. Saim N, Meloan CE. Compounds from leaves of bay (Laurus nobilis L.) as repellents for Tribolium castaneum (Herbst) when added to wheat flour. J. Stored Prod. Res.,1986,22: 141-144
    218. Salvato P, Battisti A, Concato S, Masutti L, Patarnello T, Zane L. Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampa-wilkinsoni complex), inferred by AFLP and mitochondrial DNA markers. Mol. Ecol.,2002,11:2435-2444
    219. Sartori MR, Pacheco IA, Vilar RM. Resistance to phosphine in stored grain insects in Brazil. In:International Working Conference on Stored-Product Protection,5. Bordeaux, Proceedings. Bordeaux:Inra,1990,1041-1050
    220. Savoldelli S, Suss L. Preliminary investigations about tolerance to phosphine in Tribolium strains (Coleoptera:Tenebrionidae) in Italy. IOBC/WPRS Bulletin,2008,40:313-317
    221. Saxena RC, Dixit DP, Harshan V. Insecticidal action of Lantana camara against Callosobruchus chinensis (Coleoptera:Bruchidae). J. Stored Prod. Res.,1992,28:279-281
    222. Sayaboc PD, Gibe AJG, Caliboso FM. Resistance of Rhizopertha dominica F. (Coleoptera: Bostrychidae) to phosphine in the Philippines. Philip. Entomol.,1998,12:91-95
    223. Scataglini MA, Lanteri AA, Confalonieri VA. Diversity of boll weevil population in South America:a phylogeographic approach. Genetica,2006,126:353-368
    224. Schlipalius DI, Chen W, Collins PJ, Ebert PR. Gene interactions constrain the course of evolution of phosphine resistance in the lesser grain borer, Rhyzopertha dominica. Heredity, 2008,100:506-516
    225. Sequeira A, Lanteri AA, Scataglini MA, Confalonieri VA, Farell B. Are flightless Galapaganus weevils older than the Galapagos Islands they inhabit?. Heredity,2000,85:20-29
    226. Sharma A, Niphadkar MP, Kathirvel P, Nagaraju J. DNA fingerprint variability within and among the silkworm Bombyx mori varieties and estimation of their genetic relatedness using Bkm-dcrived probe. J. Hered.,1998,90:315-319
    227. Shoda E, Kubota K, Makihara H. Geographical structuring of mitochondrial DNA in Semanotus japonicus (Coleoptera:Cerambycidae). Appl. Entomol. Zool.,2003,38(3):339-345
    228. Shufran KA, Burd JD, Anstead JA, Lushai G. Mitochondrial DNA sequence divergence among greenbug (Homoptera:Aphididae) biotypes:evidence for host-adapted races. Insect Mol. Biol.,2000,9(2):179-184
    229. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Ent. Soc. Am.,1994,87:651-701
    230. Singh S, Bhalla A, Verma SK, Kaur A, Gill K. Cytochrome-c oxidase inhibition in 26 aluminum phosphide poisoned patients. Clin. Toxicol.,2006,44:155-158
    231. Srivastava JL. Pesticide residue in food grains and pest resistance to pesticides. Bulletin of Grain Technology,1980,18
    232. Stamopoulos DC. Effects of four essential oil vapours on the oviposition and fecundity of Acanthoscelides obtectus (Say) (Coleoptera:Bruchidae):laboratory evaluation. J. Stored Prod. Res.,1991,27:199-203
    233. Stathers TE, Denniff M, Golob P. The efficacy and persistence of diatomaceous earth admixed with commodity against four tropical stored product beetle pests. J. Stored Prod. Res., 2004,40:113-123
    234. Subramanyam B., Swanson CL, Madamanchi N, Norwood S. Effectiveness of insecto, a new diatomaceous earth formulation, in suppressing several stored-grain insect species. Proceedings of the 6th international working conference on stored product protection.1994,2: 650-659
    235. Takami Y, Koshio C, Ishii M, Fujii H, Hidaka T, Shimizu I. Genetic diversity and structure of urban populations of Pieris butterflies assessed using amplified fragment length polymorphism. Mol. Ecol.,2004,13:245-258
    236. Tamra CM, Kerry LS. Use of AFLP Markers in Surveys of Arthropod Diversity. Method. Enzymol.,2005,395:161-177
    237. Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol.,2007,24:1596-1599
    238. Taylor R. The Use of Phosphine as a MB Alternative in Post-Harvest Treatments. In:Proc. UNEP-Regional Workshop on Methyl bromide alternatives for post harvest treatments in eastern and central Europe. Sofia, Bulgaria, May 2002.2002,28-30
    239. Taylor RWD, Halliday D. The geographical spread of resistance to phosphine by coleopterous pests of stored products.1986-British Crop Protection Conference Pests and diseases Volume 2 Proceedings of a conference held at Brighton Metropole, England, November 17-20.1986,607-613
    240. Taylor RWD. Phosphine-a major fumigant at risk. Int. Pest Contr.,1989,31:10-14
    241. Thaler R, Brandstatter A, Meraner, A, Chabicovski M, Parson W, Zelger R, Dalla Via J, Dallinger R. Molecular phylogeny and population structure of the codling moth(Cydia pomonelld) in Central Europe:Ⅱ. AFLP analysis reflects human-aided local adaptation of a global pest species. Mol. Phylogenet. Evol.,2008,48:838-849
    242. Toews MD, Cuperus GW, Phillips TW. Susceptibility of eight US wheat cultivars to infestation by Rhyzopertha dominica (Coleoptera:Bostrichidae). Environ. Entomol.,2000,29: 250-255
    243. Toews MD, Subramanyam B. Contribution of contact toxicity and wheat condition to mortality of stored-product insects exposed to spinosad. Pest Manag. Sci.,2003,59:538-544
    244. Tripathi AK, Prajapati V, Aggarwal KK, Khanuja SPS, Kumar S. Repellency and toxicity of oil from Artemisia annua to certain stored-product beetles. J. Econ. Entomol.,2000,93:43-47
    245. Tripathi AK, Prajapati V, Khanuja SPS, Kumar S. Effect of d-Limonene on Three Stored-Product Beetles. J. Econ. Entomol.,2003,96(3):990-995
    246. Tubiello FN, Soussana JF, Howden SM. Crop and pasture response to climate change. Proceedings of the National Academy of Sciences of the United States of America,2007,104: 19686-19690
    247. Tyler PS, Taylor RWD, Rees DP. Insect resistance to phosphine fumigations in food warehouses in Bangladesh. Int. Pest Contr.,1983,25:10-31
    248. Upitis R, Monro HAU, Bond EJ. Some aspects of inheritance of tolerance to methyl bromide by Sitophilus granarius (L.). J. Stored Prod. Res.,1973,9:13-17
    249. Valmas N, Ebert PR. Comparative toxicity of fumigants and a phosphine synergist using a novel containment chamber for the safe generation of concentrated phosphine gas. PLoS ONE. 2006, PLoS ONE 1(1):e130. doi:10.1371/journal. pone.0000130
    250. Vayias BJ, Athanssiou CG. Factors affecting efficacy of the diatomaceous earth formulation SilicoSec against adults and larvae of the confused beetle Tribolium confusum Du Val (Coleoptera:Tenebrionidae). Crop Prot.2004,23:565-573
    251. Vontas JG, Small GJ, Hemingway J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem. J.,2001,357:65-72.
    252. Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. Aflp-a New Technique for DNA-Fingerprinting. Nucleic. Acids. Res., 1995,23:4407-4414
    253. Walthall WK, Stark JD. A comparision of acute mortality and population growth rate as endpoints of toxicological effect. Ecotoxicol. Environ. Safe,1997,37:45-52
    254. Wang JJ, Zhao ZM, Tsai JH. Resistance and some enzyme activities in Liposcelis bostrychophila Badonnel (Psocoptera:Liposcelididae) in relation to carbon dioxide enriched atmospheres. J. Stored Prod. Res.,2000,36:297-308
    255. Wang D, Qin Z, Song W. LS/T1201-2002 Fumigation regulation of phosphine recirculation. The Standard of State Administration of Grain. Beijing:Standard Publishing House of China. 2002.
    256. White NDG, Bell RJ. Relative fitness of a malathion-resistant strain of Cryptolestes ferrugineus (Coleoptera:Cucujidae) when development and oviposition occur in malathion-treated and untreated wheat kernels. J. Stored Prod. Res.,1990,26:23-37
    257. Winterbottom DC. Weevil in wheat and storage of grain in bags. In A record of Australian experience during the war period (1915 to 1919):South Australian Government Printer.1922.
    258. WMO. Scientific Assessment of Ozone Depletion:World Meteorological Organization Report No.25. World Meteorological Organization of the United Nations, Geneva,1991.
    259. Wolstenholme DR, Clary DO. The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. J. Mol. Evol.,1985,22:252-271
    260. World Meteorological Organization (WMO). Scientific assessment of ozone depletion:1994, World Meteorological Organization global ozone research and monitoring project.1995, Report No.37
    261. Wu DX, Scharf ME, Neal JJ, Suiter DR, Bennett GW. Mechanisms of fenvalerate resistance in the German cockroach, Blattella germanica (L.). Pestic. Biochem. Phys.,1998,61:53-62
    262. Xu W, Jameson D, Higgs PG. The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. J.Mol. Evol.,2006,63 (3): 375-392
    263. Yan G, Romero-Severson J, Walton M, Severson DW. Population genetics of the yellow fever mosquito in Trinidad:comparisons of amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. Mol. Ecol.,1999,8:951-963
    264. Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre.1997.
    265. Yu SJ, Nguyen SN. Insecticide susceptibility and detoxication enzyme activities in permethrin-selected diamondback moths. Pestic. Biochem. Phys.,1996,56:69-77
    266. Yu SJ. Insect glutathione S-transferases. Zool. Stud.,1996,35:9-19
    267. Yu SJ. Substrate specificity of glutathione S-transferases from the fall armyworm. Pestic. Biochem. Phys.,2002,74:41-51
    268. Zabeau M, Vos P. Selective restriction fragment amplification:A general method for DNA fingerprinting. European patent application no.92402629.7, publication no.0534858 Al. 1993.
    269. Zeng L. Development and countermeasures of phosphine resistance in stored grain insects in Guangdong of China. In:Jin Z, Liang Q, Tan X, Guan L. (eds.). Stored product protection: proceeding of 7th International Working Conference of stored product protection. Chengdu: Sichuan Publishing House of Science & Technology,1999,642-647
    270. Zettler LJ, Cuperusi GW. Pesticide Resistance in Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera:Bostrichidae) in Wheat. J. Econ. Entomol.,1990,83:1677-1681
    271. Zhang LP, Zhang YJ, Zhang WJ, Wu QJ, Xu BY, Chu D. Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. J. Appl. Entomol.,2005,129:121-128
    272. Zhou XM, Wu QJ, Zhang YJ, Bai LY, Huang XY. Effects of abamectin selection on the genetic differentiation within Plutella xylostella (Lepidoptera:Plutellidae) based on amplified fragment length polymorphism. Insect Sci.,2010,17:353-360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700