用户名: 密码: 验证码:
盐胁迫对小型西瓜生长、生理代谢的影响及外源钙和腐胺的缓解效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化对农业生产的威胁是一个全球性的热点问题,是影响作物生长和产量的主要限制因素之一。国内外设施栽培中普遍存在土壤的次生盐渍化问题,严重影响着设施作物的产量和品质,是当前设施蔬菜生产中急需解决的难题。钙不仅是植物必需的矿质营养元素之一,而且作为细胞内生理生化反应的第二信使偶联胞外信号,在逆境胁迫下能通过提高胞质游离Ca~(2+)浓度,并通过Ca~(2+)与CaM结合启动一系列生理生化过程,在植物对逆境胁迫的响应过程中发挥着重要作用。多胺是生物体代谢过程中产生的一类具有生物活性的低分子量脂肪族含氮碱,在调节植物生长发育、控制形态建成、提高植物抗逆性、延缓衰老等方面具有重要的作用.
     本文通过聚类分析对国内设施栽培中常用的小型西瓜(Citrullus lanatus M.)品种进行了耐盐性鉴定和分类,并选用耐盐性较强的品种‘秀雅'和耐盐性较弱的品种‘秀丽'为材料,研究了营养液栽培中NaCl胁迫对小型西瓜的植株生长、光合作用、离子的吸收和分布及活性氧代谢的影响,分析了外源硫酸钙(CaSO_4)和腐胺(Put)对盐胁迫下小型西瓜生长抑制的缓解效应,探讨了外源Ca和Put在小型西瓜耐盐性中的生理调节功能,分析了采用外源物质提高小型西瓜耐盐性的可行性.主要研究结果如下:
     1.除根长外,100 mmol·L~(-1)NaCl胁迫使所有品种小型西瓜幼苗的形态指标和生物量显著降低;叶片质膜相对透性、MDA含量、Pro和Chl含量显著增加,根系活力的变化不同品种表现不同.以干质量相对值和与其呈显著相关性的各生长和生理指标为变量,聚类分析将供试西瓜品种分为耐盐性较强、较耐性中等和耐盐性较弱的三类.
     2.50 mmol·L~(-1)以下浓度NaCl处理对‘秀雅'幼苗的生长没有显著影响,75 mmol·L~(-1)以上浓度NaCl胁迫显著抑制了其幼苗的生长,‘秀丽'幼苗生长則随NaCl浓度提高而显著降低;在75 mmol·L~(-1)以上浓度NaCl胁迫下,随NaCl浓度提高和胁迫时间的延长,西瓜幼苗盐害指数显著增大、存活株率显著降低。与‘秀丽'品种相比,‘秀雅'幼苗在盐胁迫下生长降低幅度较小,存活株率较高,对盐胁迫的适应性较强.
     3.随NaCl浓度提高,小型西瓜叶片中光合色素含量先升高后降低,在75 mmol·L~(-1)NaCl胁迫下达到最大值;Pn、Gs和Tr均随NaCl浓度提高而显著降低;Ci在低浓度NaCl处理下降低,75 mmol·L~(-1)以上浓度胁迫下升高;Ls在较低浓度NaC1处理下增加,100 mmol·L~(-1)以上浓度下趋于稳定:WUE在较低浓度NaCl处理下增加,100mmol·L~(-1)以上浓度下降低.低浓度NaCl处理下小型西瓜叶片Pn下降的主要原因是气孔限制,高盐胁迫下则转变为非气孔因素限制。盐胁迫对‘秀雅'光合作用的抑制程度明显低于‘秀丽',是其在盐胁迫下生长较好的主要原因之一.
     4.随NaCl胁迫增强,小型西瓜幼苗体内Na~+和Cl~-含量显著升高,K~+、Ca~(2+)和Mg~(2+)含量及K~+/Na~+和Ca~(2+)/Na~+比值显著降低;各种离子在器官间呈明显的区域化分布,Cl~-主要积累在茎中,Na~+主要积累于茎和根中;茎和根中K~+含量下降幅度较大,叶中下降幅度较小;Ca~(2+)和Mg~(2+)主要存在于茎和叶中,均在叶中下降幅度较小;随NaCl浓度提高,根向茎选择性运输K~+和Ca~(2+)的能力降低,而茎向叶选择性运输的能力提高,有利于减轻NaCl胁迫对叶片的伤害.与‘秀丽'品种相比,‘秀雅'叶中K~+、Ca~(2+)含量下降幅度较小,Na~+积累量较低,K~+/Na~+和Ca~(2+)/Na~+比值均较高,离子在器官间区域化分布能力较强也是其耐盐性较强的重要原因之一.
     5.随NaCl浓度处理提高,小型西瓜叶片中O_2~(·-)产生速率、MDA含量和质膜相对透性显著增加,CAT和APX活性显著提高,POD活性在低浓度NaC1处理下降低而高浓度下提高,SOD活性的变化两品种有所不同;Pro、可溶性糖和AsA含量显著增加,可溶性蛋白含量在较低浓度NaCl处理下增加而高浓度下降低.高盐胁迫下,‘秀雅'叶片中抗氧化酶活性和渗调物质含量均明显高于‘秀丽',O_2~(·-)产生速率、MDA含量和质膜相对透性則明显低于“秀丽”.盐胁迫下,‘秀雅'品种生长受抑制程度和脂质过氧化程度较低,与其较高的抗氧化酶活性和渗调物质含量密切相关.
     6.外源CaSO_4和Put对盐胁迫下小型西瓜幼苗的生长和生理代谢具有明显影响,并呈现出明显的浓度效应。其中营养液中6 mmol·L~(-1)Ca~(2+)和1.0 mmol·L~(-1)Put处理对幼苗的生长有显著的促进作用,使叶片质膜相对透性、MDA含量显著降低,可溶性蛋白和AsA含量显著增加,是缓解NaCl胁迫对小型西瓜植株伤害的适宜浓度.
     7.外源Ca、Put或Ca+Put复配处理均可明显改善盐胁迫下小型西瓜幼苗的生长,调节各种生理代谢。使叶片光合色素含量增加,Pn、Gs、Ci和Tr提高,Ls降低,对WUE没有影响;使幼苗体内Na~+和Cl~-积累量显著降低,K~+和Ca~(2+)含量及K~+/Na~+和Ca~(2+)/Na~+比值显著提高;使叶片中O_2~(·-)产生速率、MDA含量显著降低,SOD、POD、CAT和APX活性显著提高;使NO_3~--N和可溶性蛋白含量及NR、GS和GDH活性显著提高,NH_4~+-N含量显著降低;使游离态Put、Spd和Spm含量显著增加,三种多胺氧化酶活性有所降低.研究表明,三种方式外源处理都可以通过改善幼苗光合作用、增强离子区域化分布能力,调节活性氧代谢、氮代谢和多胺代谢而提高小型西瓜幼苗的耐盐性,减轻盐胁迫对西瓜植株造成的伤害,三种外施方式对西瓜盐胁迫伤害的缓解效应依次为Ca+Put>Ca>Put,且对耐盐性较弱的‘秀丽'缓解作用较为明显。
The threat of salinization in soil to agriculture production is a focus problem in the globe,and one of the major factors limiting plant growth and production.The secondary salinization in soil is ubiquitious in the protected culture,it have seriously influenced the yield and quality of crops,and become a difficult problem imparetive to solve in the protected culture.Calcium is not only one of necessary nutrient elements,but also a second messenger in connecting external signals and the physiological and biochemical process within cell.Calcium can initiate a series of physiological and biochemical process by increasing free Ca~(2+) concentration in cytoplasm and by combining Ca~(2+) and CaM under stress condition,hence play an important role in the response of plant to stress.Polyamines are low molecular mass aliphatic nitrogen-containing compounds having biological activity, produced in nitrogen metabolism of living organism.PAs have an important function in regulating growth and development,controlling morphology building,enhancing stress resistance and delaying senescence,and so on.
     In this paper,author identified and classified the salt tolerance of 16 mini-watermelon (Citrullus lanatus M.) cultivars by using cluster analysis.A salt-tolerant watermelon cultivar 'XiuYa' and a salt-sensitive cultivar 'XiuLi' were selected as materials,the experiment was carried out to study the effects of NaCI stress on plant growth, photosynthesis,ions uptake and distribution,and metabolism of reactive oxygen speices of mini-watermelon in solution culture.At the same time,we analyzed the effect of Cacium sulphate and putrescine in alleviating growth inhibition of mini-watermelon under salinity, explored the physiological function of exogenous Ca and Put in regulating salt tolerance of mini-watermelon plant,and analyzed the feasibility of improving salt tolerance of miniwatermelon by using exogenous matters.Main results were as follows:
     1.Apart from root length,the morphological indicators and plant biomass of all mini-watermelon cultivars were dramasticly decreased under 100 mmol·L~(-1) NaCl stress; relative membrane permeability,the contents of MDA,Pro and Chl were increased significantly,while root vigor of different cultivars displayed diverse response to salinity. With RV of dry mass and RVs of other growth and physiological indicators that were significantly correlated with RV of dry mass as variables,systematic cluster analysis divided tested mini-watermelon cultivars into 3 types,including more-tolerant cultivars, middle-tolerant cultivars,less-tolerant cultivars.
     2.NaCl treatments below 50 mmol·L~(-1) concentration did not apparently influence the growth of 'XiuYa' seedlings,the growth was significantly inhibited above 75 mmol·L~(-1); with increasing NaCl concentration,the growth of 'XiuLi' seedlilng was significantly reduced.With inceaseing NaCl concentration and prolonging stress time,salt indury index was clearly increased,and survival percent was dramatically decreased under NaCl stress above 75 mmol·L~(-1) concentration.The range of growth reduction of 'XiuYa' seedlings was less,and survival percent was higher than 'XiuLi' under salinity,i.e.the acclimation of 'XiuYa' to salinity was stronger than 'XiuLi'.
     3.With increasing NaCl concentration,the contents of the photosynthetic pigments in leaves were increased under lower NaCl concentration,and decreased above 75 mmol·L~(-1); Pn,Gs and Tr were significantly decreased,Ci was reduced under lower concentration,and increased above 75 mmol·L~(-1);Ls and WUE were increased under lower concentration,and tended to stabilization for Ls,and declined for WUE above 100 mmol·L~(-1) concentration. The reduction of Pn under lower concentration NaCl treatments was the result of stomatal limitation,non-stomatal limitation became the main limitation factor under higher salinity. Compared with 'XiuLi',the inhibited extent of 'XiuYa' photosynthesis was clearly lower, this was one of the main reasons for its better growth under salinity.
     4.With enhancing NaCl stress,Na~+ and Cl~- contents dramasticly increased,K~+,Ca~(2+) and Mg~(2+) contents and K~+/Na~+ and Ca~(2+)/Na~+ ratios significantly decreased in watermelon plant.All ions showed compartmentalization,Cl~-was mainly accumulated in stem,and Na~+ was mainly in stem and root.Reduced extent of K~+ content was maximum in stem,and minimum in leaf.Ca~(2+) and Mg~(2+) mainly existed in stem and leaf,the reduced ranges were minimum in leaf.Selective transportation of K~+ and Ca~(2+) were declined for root to stem, and increased for stem to leaf,it contributed to alleviate salt damage to leaf.Compared with 'XiuLi',the reduced ranges of K~+ and Ca~(2+) contents were less,Na~+ content were lower in leaf of 'XiuYa',K~+/Na~+ and Ca~(2+)/Na~+ ratios were higher.Better ions compartmentalization among organs was one of main reasons for its more-tolerance to salinity.
     5.With increasing NaCl concentration,O_2(?)production rate,MDA content and relative membrane permeability significantly increased in leaf,CAT and APX activities dramasticly increased;POD activity declined under lower concentration,and increased under higher concentration;SOD activity showed different regulation for two mini-watermelon cultivars. The contents of Pro,soluble sugar and AsA clearly enhanced;soluble protein content increased under lower concentration,and decreased under higher concentration.The activities of antioxidative enzymes and the contents of osmotic regulation matters of 'XiuYa' were higher than "XiuLi",and O_2(?) production rate,MDA content and relative membrane permeability were lower than 'XiuLi' under higher salinity.The less extent of growth inhibition and lipid peroxidation of 'XiuLi'were closely correlated with higher activities of antioxidative enzymes and higher contents of osmotic regulation matters.
     6.Exogenous CaSO_4 and Put obviously influenced the plant growth and physiological metabolism of mini-watermelon under salinity,and showed apparent concentration effect.6 mmol·L~(-1) Ca and 1.0 mmol·L~(-1) Put in solution significantly improved the plant growth, reduced relative membrane permeability and MDA content,increased the contents of soluble protein and AsA in leaves of mini-watermelon seedlings under salinity,so 6 mmol·L~(-1) and 1.0 mmol·L~(-1) were the suitable concentrations to mitigate the salinity injury of mini-watermelon plant for Ca and Put,respectively.
     7.Exogenous Ca,Put and Ca+Put significantly improved the plant growth,regulated some physiological metabolism of mini-watermelon under salinity.Three exogenous supplement means clearly increased the contents of photosynthetic pigments in leaves, enhanced Pn,Gs,Ci,and Tr,declined Ls,not influenced WUE;siguificantly decreased the contents of Na~+ and Cl~-,increased the contents of K~+,Ca~(2+) and Mg~(2+),and the ratios of K~+/Na~+ and Ca~(2+)/Na~+ in all organs;dramatically reduced O_2(?) production rate and MDA content,increased the activities of SOD,POD,CAT and APX;obviously increased the contents of NO_3~--N and soluble protein,improved the activities of NR,GS and GDH, significantly declined NH_4~+-N content;increased the contents of free Put,Spd and Spm, decreased the activities of three polyamine oxidases under salinity.The results revealed that exogenous Ca,Put and Ca+Put treatments clearly increased salt tolerance of miniwatermelon, alleviated the salinity damage by improving photosynthesis,enhancing ions compartmentalization,regulating the metabolism of reactive oxygen species,nitrogen and polyamines.For mitigating the salinity-induced injury of mini-watermelon,the effect of three supplement means were Ca+Put>Ca>Put in turn,and the effect for 'XiuLi' seedlings was more evident than 'XiuYa'.
引文
安国勇,董发才,胡楠,等.盐胁迫条件下钙对小麦根细胞膜电位和钾离子吸收的影响.河南大学学报(自然科学版),2002,32(3):25-28
    蔡志全,曹坤芳,冯玉龙,等.夜间低温胁迫对两种生长光强下藤黄幼苗叶片荧光特征和活性氧代谢的影响.应用生态学报,2003,14(3):326-331
    曹恭,梁鸣早.钙--平衡栽培体系中植物必需的中量元素.土壤肥料,2003,(2):48-49
    陈迪新,张绍铃.多胺及其合成抑制剂对梨花粉萌发及花粉管生长的影响.果树学报,2002,19(6):377-380
    陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展.海南大学学报(自然科学版),2003,21(2):177-182
    陈京,吴应言.钙对甘薯种苗盐胁迫的缓解效应.西南师范大学学报,1996,21(1):152-157
    陈菊培.盐胁迫下植物细胞吸收Na~+的可能途径.海南大学学报(自然科学版),2005,23(4):383-390
    陈如凯,张木清.甘蔗耐盐生理研究Ⅳ.NaCl胁迫对甘蔗多胺代谢影响.作物学报,1995,21(4):479-484
    陈淑芳,朱月林,刘友良,等.NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响.园艺学报,2005,32(4):609-613
    陈文利,徐朗莱,沈文飚,等.盐胁迫下两品种大麦叶片H_2O_2累积及其清除酶活性的变化.南京农业大学学报,2004,22(4):97-100
    陈因.氨态氮和硝态氮的测定[A].见:中国科学院上海植物生理研究所、上海市生理学会编,现代植物生理学指南[C].北京:科学出版社,1999:138-140
    戴高兴,彭克勤,皮灿辉.钙对植物耐盐性的影响.中国农学通报,2003,19(3):97-101
    戴尧仁.多胺及其在植物体内的生理作用.植物学通报,1988,5(2):69
    刁丰秋,章文华,刘友良.盐胁迫对大麦叶片类囊体膜脂组成和功能的影响.植物生理学报,1997,23(2):105-110
    丁顺华,邱念伟.小麦耐盐型生理指标的选择.植物生理学通讯,2001,37(2):98-102
    段九菊,郭世荣,樊怀福,等.盐胁迫对黄瓜幼苗根系脯氨酸和多胺代谢的影响.西北植物学报,2006,26(12):2486-2492
    段九菊,郭世荣,康云艳.外源亚精胺对盐胁迫下黄瓜幼苗活性氧水平和抗氧化酶活性的影响.园艺学报,2006,33(3):639-641
    段咏新,宋松泉,傅家瑞.钙对延缓杂交水稻叶片衰老的作用机理,杂交水稻,1997,12(6):23-25
    樊怀福,郭世荣,杜长霞,等.外源NO对NaCl胁迫下黄瓜幼苗氮化合物和硝酸还原酶活性的影响.西北植物学报,2006,26(10):2063-2068
    费伟,陈火英,曹忠,等.盐胁迫对番茄幼苗生理特性的影响.上海交通大学学报(农业科学版),2005,23(1):5-10
    冯立田,卢元芳.NaCl胁迫对菠菜叶片中水分和光合气体交换的影响.植物生理学通讯,1999,35(4):59-62
    冯文新,张宝红.钙处理对盐胁迫下大豆种子萌发及其生理生化指标的影响.大豆科学,1997,16(1):48-52
    冯志红,闫立英,王久兴,等.Na_2SO_4和CaCl_2胁迫对不同黄瓜品种种子萌发和幼苗生长的影响.河北农业科学,2004,8(4):47-51
    高永生,王锁民,宫海军,等.盐胁迫下植物离子转运的分子生物学研究.草业学报,2003,12(5):18-25
    龚明,李英,曹宗巽.植物体内钙信使系统.植物学报,1990,7(3):19-29
    龚明,刘兴富.钙对玉米幼苗抗盐性的效应.植物生理学通讯,1994,30(6):429-432
    龚明,赵方杰.NaCl胁迫对大麦离子吸收和有关的酶活的影响.植物生理学通讯,1990,26(2):13-16
    龚月桦,王俊儒,荆家海.高等植物对多胺的吸收和转运.植物生理学通讯,1998,34(1):64-68
    关军锋.钙与果实生理生化关系的研究进展.河北农业大学学报,1991,14(4):105-109
    郭房庆,黄昊,汤章城.NaCl胁迫对小麦抗盐突变体根液泡膜H~+-ATP酶和H~+-pp酶活性的影响.植物生理学报,1999,25(4):395-400
    郭丽红,陈善娜,龚明.钙对玉米幼苗热激诱导抗盐性的影响.植物生理学通讯,2004,40(1):19-21
    郭书奎,赵可夫.NaCl胁迫抑制玉米幼苗光合作用的可能机理.植物生理学报,2001,27(6):461-466
    郭文忠,刘声锋,李丁仁,等.硝酸钙和氯化钠不同浓度对番茄苗期光合生理特性的影响.中国农学通报,2003,19(5):28-31
    郝治安,吕有军.植物耐盐机制研究进展.河南农业科学,2004,(11):30-33
    何龙飞,沈振国,刘友良.铝胁迫下钙对小麦液泡膜功能和膜脂组成的影响.南京农业大学学报,2000,23(1):10-13
    何生根,黄学林,傅家瑞.植物的多胺氧化酶.植物生理学通讯,1998,34(3):213-218
    侯彩霞,汤章城.细胞相溶性物质的生理功能及其作用机制.植物生理学通讯,1999,35(1):1-7
    侯彩霞.游离脯氨酸的测定[A].中科院上海植物生理所、上海市植物生理学会编.现代植物生理学实验指南[C].北京:科学出版社,1999:303
    侯振安,李品芳,龚元石.激素对植物耐盐性影响的研究现状与展望.石河子大学学报(自然科学版),2000,4(3):239-245
    胡淑明,张学英,李青云,等.多胺与植物耐盐性关系的研究.河北林果研究,2005,20(2):128-131
    胡淑明.多胺对草莓耐盐性的影响.河北农业大学硕士学位论文,2005
    黄国存,崔四平,马春红,等.水分胁迫下小麦幼苗中CaM水平及其与SOD活性的关系.植物生理学通讯,1995,31(5):335-337
    黄维玉,王亚来,袁林江.多胺对小麦离体叶片衰老的调节.植物学报,1990,32(2):125-132
    惠红霞,许兴,李前荣.外源甜菜碱对盐胁迫下枸杞光合功能的改善.西北植物学报,2003,23(12):2137-2422
    霍书新,杜国强,张小红.钙缓解植物盐害的作用机制研究进展.土壤肥料,2005,(6):3-6
    江行玉,窦君霞,王正秋.NaCl对玉米和棉花光合作用与渗透调节能力影响的比较.植物生理学通 讯,2001b,37(4):303-305
    江行玉,宋杰,范海,等.外源钙和亚精胺对NaC胁迫条件下玉米幼苗体内离子平衡和多胺水平的调节.植物生理学报,2000,42(6):539-544
    江行玉,赵可夫,窦君霞,等.NaCl胁迫下外源亚精胺和二环己基胺对滨藜内源多胺含量和抗盐性的影响.植物生理学通讯,2001a,37(1):6-9
    姜惠丽,段九菊,郭世荣,等.不同种类外源多胺缓解黄瓜植株盐胁迫伤害的效应.中国蔬菜,2007,(3):8-11
    蒋琳,沈曾佑,张志良,等.多胺对裸大麦离体叶片活性氧代谢的影响.植物生理学报,1993,35(1):367-371
    柯玉琴,潘廷国.NaCl胁迫对甘薯叶片水分代谢、光合速率、ABA含量的影响.植物营养与肥料学报,2001,7(3):337-343
    孔垂华,胡飞,谢华亮,等.外源多胺对水稻萌发和前期生长的作用及其在土壤中的滞留.应用生态学报,1996,7(4):377-380
    李长润,刘友良.盐胁迫下小麦幼苗离子吸收运输的选择性与叶片耐盐量.南京农业大学学报,1993,16(1):16-20
    李朝周,梁恕坤,焦健,等.逆境胁迫下乙烯的相关性及其对细胞膜保护系统影响的研究进展.甘肃农业大学学报,2002,37(3):265-271
    李德红,王小青,潘瑞炽.钙信使系统与植物激素信号传递.生物学杂志,1998,15(4):1-4
    李合生 主编 现代植物生理学,北京:高等教育出版社,2002a:216-222,407-409
    李合生 主编.植物生理生化实验原理与技术.北京:高等教育出版社,2002b:194-197,258-260
    李锦树,王洪春,王文英,等.干旱对玉米叶片细胞透性及膜脂的影响.植物生理学报,1983,9(3):223-229
    李军,高新吴,郭世荣,等.外源亚精胺对盐胁迫下黄瓜幼苗光合作用的影响.生态学杂志,2007,26(10):1595-1599
    李美如,刘鸿先,王以柔,等.钙对水稻幼苗抗冷性的影响.植物生理学报,1996,22(4):379-384
    李明启.光呼吸[A].见余叔文,汤章城主编.植物生理与分子生物学[C].北京:科学出版社,1998:248-261
    李青云,葛会波,胡淑明,等.钠盐和钙盐胁迫对草莓光合作用的影响.西北植物学报,2006,26(8):1713-1718
    李青云,葛会波,胡淑明,等.盐胁迫下钙对草莓叶片脂肪酸含量及组成的影响.河北农业大学学报,2004,27(6):140-143
    李太盛.多胺与植物激素(综述).亚热带植物通讯,1999,28(2):66-69
    李湘麒,熊月明,陆修闽,等.柑桔钙素营养研究综述.福建果树,2001,115(1):13-19
    李玉明,石德成,李毅丹,等.混合盐碱胁迫对高粱幼苗的影响.杂粮作物,2002,22(1):41-45
    李玉全,张海艳,沈法富.作物耐盐性的分子生物学研究进展.山东科学,2002,15(2):8-15
    李子银,张劲松,陈受宜.水稻盐胁迫应答基因的克隆、表达及染色体定位.中国科学(C辑),1999, 29(6):561-570
    林文雄,吴杏春,梁康迳,等.UV-B辐射增强对水稻多胺代谢及内源激素含量的影响.应用生态学报,2002,13(7):807-813
    刘峰,张军,张文吉.氧化钙对水稻的生理作用研究.植物学通报,2001,18(4):490-495
    刘凤荣,陈火英,刘杨,等.盐胁迫下不同基因型番茄可溶性物质含量的变化.植物生理与分子生物学学报,2004,30(1):99-104
    刘俊,吉晓佳,刘友良.检测植物组织中多胺含量的高效液相色谱法.植物生理学通讯,2002,38(6):596-598
    刘俊,刘友良.盐胁迫下大麦幼苗多胺的种类和状态与多胺氧化酶活性的关系.植物生理与分子生物学学报,2004,30(2):141-146
    刘俊,张艳艳,章文华,等.大麦根中多胺含量和转化与耐盐性的关系.南京农业大学学报,2005,28(2):7-11
    刘俊,周一峰,章文华,等.外源多胺对盐胁迫下玉米叶绿体结合态多胺水平和光合作用的影响.西北植物学报,2006,26(2):0254-0258
    刘宛,胡文玉,谢浦纬,等.NaCl胁迫及外源自由基对离体小麦叶片O_2~((?))和膜脂过氧化的影响.植物生理学通讯,1995(1):26-29
    刘伟,魏日凤,潘廷国.NaCl胁迫及外源Ca~(2+)处理下甘薯幼苗叶片多胺水平的变化.福建农林大学学报(自然科学版),2005,34(2):244-247
    刘文革,阎志红,张红梅,等.不同倍性西瓜发芽种子成苗过程中的耐盐性研究.中国西瓜甜瓜,2002,(3):1-2
    刘文革.不同染色体倍性西瓜遗传变异和抗逆机理研究.西北农林科技大学(博士学位论文),2003
    刘友良,毛才良,汪良驹.植物耐盐性研究进展.植物生理学通讯,1987,(4):1-7
    刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[A].见:余叔文,汤章城主编.植物生理与分子生物学(第二版)[C].北京:科学出版社,1998:752-769
    刘友良.中国大麦文集(第三集).中国作物学会大麦专业委员会,南昌:江西科技出版社,1993:209
    刘祖祺,张石城 主编.植物抗性生理学.北京:中国农业出版社,1993:278
    卢元芳,冯立田.NaCl胁迫对菠菜叶片中水分和光合气体交换的影响.植物生理学通讯,1999,35(4):290-292
    吕芝香,王正刚.盐胁迫下Ca~(2+)对小麦根无机离子分布和膜脂脂肪酸的影响.植物生理学报,1993,19(4):325-332
    罗庆云,於丙军,刘友良.大豆苗期耐盐性鉴定指标的检验.大豆科学,2001,20(3):177-182
    毛桂莲,许兴,杨涓.NaCl和Na_2CO_3对枸杞的胁迫效应.干旱地区农业研究,2004,22(2):100-104
    缪颖,蒋有条,曾广文,等.盐胁迫下大白菜吸收转运~(45)Ca~(2+)的变化.核农学报,1996,10(3):161-165
    缪颖,叶钢,毛节琦.缺钙玉米叶片的过氧化伤害.浙江农业大学学报,1997,23(2):163-167
    牟咏花.钙的生理功能及在果蔬生理中的重要性(综述).浙江农业学报,1995,7(6):499-501
    宁建凤,刘兆普,刘玲,等.NaCl对库拉索芦荟的胁迫效应研究.华北农学报,2005,20(5):70-75
    宁运旺,张永春.设施土壤次生盐渍化的发生与防治.江苏农业科学,2001,(4):49-52
    钱琼秋,魏国强,朱祝军,等.不同品种黄瓜幼苗光合机构对盐胁迫的响应.科技通报,2004,20(5):459-463
    邱全胜.跨膜Ca~(2+)梯差对大豆下胚轴H~+-ATPase质膜活力的影响.生物物理学报,1997,13(3):399-404
    阮成江,谢庆良.盐胁迫下沙棘的渗透调节效应.植物资源与环境学报,2002,11(2):45-47
    阮海华,沈文飚,叶茂炳,等.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应.科学通报,2001,46(23):1993-1997
    邵桂花,常汝镇,陈一舞.大豆耐盐性研究进展.大豆科学,1993,12(3):244-248
    沈惠娟,李梅枝,梁成喜.盐胁迫下ABA对刺槐幼苗体内腐胺、脯氨酸和保护酶系统的影响.浙江林学院学报,1992,9(3):290-296
    沈惠娟,曾斌,李梅枝.渗透胁迫下多效唑对刺槐幼苗体内多胺、脯氨酸和保护酶系统的影响.植物生理学报,1993,19(1):53-60
    沈慧娟,谢寅峰.多胺(PAs)与植物的几种胁迫反应.南京林业大学学报.1997,12(4):26-30
    沈伟其.测定水稻叶片叶绿素含量的混合液提取法.植物生理学通讯,1988,(3):62-64
    沈文飚,叶茂炳,徐朗莱,等.小麦旗叶自然衰老过程中清除活性氧能力的变化.植物学报,1997,39(7):634-640
    施木田,陈如凯.锌硼营养对苦瓜产量品质与叶片多胺、激素及衰老的影响.应用生态学报,2004,15(1):77-80
    史庆华,朱祝军,钱琼秋.等渗Ca(NO_3)_2和NaCl胁迫对番茄光合作用的影响.植物营养与肥料学报,2004,10(2):188-191
    史跃林,罗庆熙,刘佩英.Ca~(2+)对盐胁迫下黄瓜幼苗中CaM、MDA含量和质膜透性的影响.植物生理学通讯,1995,31:347-349
    斯琴巴特尔,吴红英.盐胁迫对玉米种子萌发及幼苗生长的影响.干旱区资源与环境,2000,14(4):76-80
    宋士清,郭世荣,尚庆茂,等.外源SA对盐胁迫下黄瓜幼苗的生理效应.园艺学报,2006c,33(1):68-72
    宋士清,贺字典,郭世荣,等.外源亚精胺对黄瓜幼苗盐胁迫逆境的诱抗作用机理.河北科技师范学院学报,2006a,20(3):1-6
    宋士清,刘微,郭世荣,等.化学诱抗剂诱导黄瓜抗盐性及其机理.应用生态学报,2006b,17(10):1871-1876
    苏国兴,宋卫平,洪法水.盐胁迫对桑树NH_4~+-N同化和谷氨酰胺合成酶活性的影响.蚕业科学,2003,29(1):90-94
    苏梦云,范铭庆.渗透胁迫和钙处理对杉木幼苗膜脂过氧化及保护酶活性的影响.林业科学研究,2000,13(4):391-396
    孙大业,郭艳林.细胞信号系统.北京:科学出版社,1991:140-203
    孙大业.植物细胞信号转导研究进展.植物生理学通讯,1996,32(2):81-91
    孙小芳,刘友良.NaCl胁迫下棉花体内Na~+、K~+分布与耐盐性.西北植物学报,2000,20(6):1027-1033
    孙小芳,刘友良.棉花品种耐盐性鉴定指标可靠性的检验.作物学报,2001,27(6):794-801
    孙小芳,郑青松,刘友良.缩节安和氯化钙浸种对种子萌发出苗期棉株耐盐性的调节.江苏农业学报,2000,16(4):204-207
    谈建康,安树青.钠盐胁迫对小麦叶片核酸损伤和多胺积累的影响.农业环境科学学报,2004,23(3):428-431
    檀建新,董永华,张伟,等.钙对渗透胁迫下玉米内源激素和多胺含量的影响.植物生理学通讯,1998,34(2):94-96
    汤章城.逆境条件下植物脯氨酸积累及其可能的意义.植物生理学通讯,1984,(1):15-21
    同楼,段培,王宝山.不同抗盐性小麦叶鞘的Na~+/K~+选择性.植物生理与分子生物学学报,2006,32(1):123-126.
    童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,1991,18(2):159-162
    汪良驹,刘友良.无花果耐盐机理的研究Ⅰ-盐逆境下脯氨酸和可溶性蛋白的积累.南京农业大学学报,1989,12(4):124-125
    汪良驹,马凯,姜卫兵.五种落叶果树的氯离子分布与耐盐性研究.中国南方果树,1996,25(4):34-38
    汪良驹.钙在无花果细胞盐诱导脯氨酸积累中的作用.植物生理学报,1999,25(1):38-42
    汪沛洪.植物多胺代谢的酶类与胁迫反应.植物生理学通讯,1990,26(1):1-7
    汪天,郭世荣,刘俊,等.多胺氧化酶检测方法的改进及其在低氧水培黄瓜根系中的应用.植物生理学通讯,2004,40:358-360
    王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系.植物生理学通讯,1990,26(6):55-57
    王宝山,李明亮,张宝泽,等.盐胁迫下外源脯氨酸和丙二醛对冰叶松叶菊愈伤组织中离子和脯氨酸含量的影响.植物生理学通讯,1993,29(3):182-184
    王宝山,赵可夫.小麦叶片中Na、K提取方法的比较.植物生理学通讯,1995,31(1):50-52
    王宝山.Na、K、ABA对盐胁迫下大麦液泡膜ATPase活性的影响.植物学报,1991,17(4):403-406
    王宝增,赵可夫.低浓度NaCl对玉米生长的效应.植物生理学通讯,2006,42(4):628-632
    王春裕.关于土壤盐渍化的生态控制的讨论.1997,16(6):67-71
    王恒彬,王学臣,陈珈,等.蚕豆保卫细胞原生质体ABA结合蛋白的理化特性.植物学报.1997,28:22-29
    王仁雷,华春,罗庆云,等.盐胁迫下水稻叶绿体中Na~+、Cl~-积累导致叶片净光合速率下降.植物生理与分子生物学学报,2002,28(5):385-390
    王素平,郭世荣,胡晓辉,等.盐胁迫对黄瓜幼苗叶片光合色素含量的影响.江西农业大学学报,2006b,28(2):32-38
    王素平,郭世荣,周国贤,等.NaCl胁迫下黄瓜幼苗体内K~+、Na~+和Cl~-分布及吸收特性的研究.西 北植物学报,2006a,26(11):2281-2288
    王素平,贾永霞,郭世荣,等.多胺对盐胁迫下黄瓜(Cucumis sativus L.)幼苗体内K~+、Na~+和Cl~-含量及器官间分布的影响.生态学报,2007,27(3):1122-1129
    王素平,李娟,郭世荣,等.NaCl胁迫对黄瓜植株生长和光合特性的影响.西北植物学报,2006c,26(3):0455-0461
    王晓云,李向东,邹琦.外源多胺、多胺合成前体及抑制剂对花生连体叶片衰老的影响.中国农业科学,2000,33(3):30-35
    王晓云,邹琦.多胺与植物衰老关系研究进展.植物学通报,2002,19(1):11-20
    魏国平,朱月林,刘正鲁,等.NaCl胁迫对茄子嫁接苗生长和离子分布的影响.西北植物学报,2007,27(6):1172-1178
    魏国强,朱祝军,方学智,等.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响.中国农业科学,2004,37(11):1754-1759
    翁伯琦,江福英,应朝阳,等.低温胁迫对圆叶决明的伤害及施用Ca肥防护效果的研究.农业工程学报,2005,21(6):110-113
    吴家梅,刘兆普,刘玲,等.库拉索芦荟幼苗对海水胁迫的响应.西北植物学报,2005,25(8):1584-1588
    吴明才,肖昌珍.大豆钙素营养.中国油料作物学报,1998,20(3):60-63
    吴以平,董树刚.钙对高盐胁迫下浒苔和孔石莼生理生化过程的影响.海洋科学,2000,24(8):11-14
    席玉英,郭栋生,宋玉仙,等.钙、锌对玉米幼苗吸收铅的影响.山西大学学报(自然科学版),1994,17(1):101-103
    夏天翔,刘兆普,王景艳.盐分和水分胁迫对菊芋幼苗离子吸收及叶片酶活性的影响.西北植物学报,2004,24(7):1 241-1 245
    肖静.钙防治果实生理病害的研究概况.河北果树,2003,(1):3-5
    谢寅峰,沈慧娟,李梅枝.酸胁迫对林木内源多胺及活性氧代谢的影响.林业科学,1999,35(1):117-121
    徐秋曼,陈宏,程景胜.外源Ca~(2+)对水稻幼苗生长的影响.天津师大学报(自然科学版),1999,19(4):49-58
    徐仰仓,王静,刘华,等.外源精胺对小麦幼苗抗氧化酶活性的促进作用.植物生理学报,2001,27(4):349-352
    徐颖.盐胁迫下不同的钙盐对小麦幼苗耐盐特性的研究.山东教育学院学报,2003,100(6):144-146
    徐云岭,余叙文.植物适应盐逆境过程中的能量消耗.植物生理学通讯.1990,6(26):54-55
    许大全 主编.光合作用效率.上海:上海科学技术出版社,2002
    许大全.气孔的不均匀关闭与光合作用的非气孔限制.植物生理学通迅,1995,31(4):246-252
    许兴,李树华,惠红霞,等.NaCl胁迫对小麦幼苗生长、叶绿素含量及Na~+、K~+吸收的影响.西北植物学报,2002,22(2):278-284
    阎国华.Ca(NO_3)_2对盐胁迫下大豆离体胚再生植株保护系统的影响.山西农业大学学报,1996,16 (3):222-225
    阎志红,刘文革,赵胜杰,等.NaCl胁迫对不同西瓜种质资源发芽的影响.植物遗传资源学报,2006,7(2):220-225
    颜振兰.Ca~(2+)对蕃茄幼苗盐害效应的降低作用.曲阜师范大学学报,2000,26(2):140-141
    晏斌,戴秋杰,刘晓忠,等.钙提高水稻耐盐性的研究.作物学报,1995,21(6):685-690
    杨根平,高向阳,荆家海.水分胁迫下钙对大豆叶片光合作用的改善效应.作物学报,1995,21(6):711-716
    杨洪兵,陈敏,王宝山.小麦幼苗拒Na~+部位的拒Na~+机理.植物生理与分子生物学报,2002,28(3):181-186
    杨洪兵,韩振海,许雪峰.三种苹果属植物幼苗拒Na~+机理的研究.园艺学报,2004,31(2):143-148
    杨立飞,朱月林,胡春梅,等.NaCl胁迫对营养液栽培嫁接黄瓜生物量及离子分布的影响.西北植物学报,2006,26(12):2500-2505
    杨立飞,朱月林,胡春梅,等.NaCl胁迫下营养液栽培嫁接西瓜生长动态及叶片生理生化特性的研究.西南农业学报,2005,18(4):439-443
    杨廷良,崔国贤,罗中钦,等.钙与植物抗逆性研究进展.作物研究,2004,5:380-384
    杨晓英,杨劲松.盐胁迫对黑麦草幼苗生长的影响及磷肥的缓解作用.土壤通报,2005,36(6):899-902
    杨晓英,章文华,王庆亚,等.江苏野生大豆的耐盐碱性和离子在体内的分布及选择性运输.应用生态学报,2003,14(12):2 237-2 240
    於丙军,吉晓佳,刘俊,等.氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化.应用生态学报,2004,15(7):1 223-1 226
    於丙军,李锁娜,刘友良.大豆苗期盐害离子效应的研究.南京农业大学学报,2002,25(1):5-9
    於丙军,罗庆云,刘友良.NaCl胁迫下野生和栽培大豆幼苗体内离子的再转运.植物生理与分子生物学学报,2003,29(1):39-44
    於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆生长和离子分布的影响.作物学报,2001,27(6):776-780
    郁万文,曹帮华,吴丽云.盐胁迫下刺槐无性系生长和矿质营养平衡研究.西北植物学报,2005,25(10):2 097-2 102
    宰学明.Ca~(2+)对花生幼苗耐热性和活性氧代谢的影响.中国油料作物学报.2001,23(1):46-50
    曾韶西,王以柔,李美如.不同胁迫预处理提高水稻幼苗抗寒期间膜保护系统变化比较.植物学报,1997,39(4):308-314
    翟风林,曹鸣庆,等.植物的耐盐性及其改良.农业出版社,1989
    张恩平,张淑红,司龙亭,等.NaCl胁迫对黄瓜幼苗子叶膜脂过氧化的影响.沈阳农业大学学报,2001,32(6):446-448
    张古文,朱月林,杨立飞,等.NaCl胁迫对番茄嫁接苗生物量及离子含量的影响.西北植物学报,2006,26(10):2069-2074
    张华云,牟其云,孙风兰,等.叶片喷钙对梨果实生长及果实PPO和POD活性的影响.莱阳农学院学报,1995,12(4):265-267
    张金盛,任顺荣,赵振达.蔬菜保护地土壤硝酸盐积累及盐分变化.天津农业科学,1998,4(4):36-39
    张木清,陈如凯,余松烈.多胺对渗透胁迫下甘蔗愈伤组织诱导和分化的作用.植物生理学通讯,1996,(3):175-178
    张乃华,高辉远,邹琦.Ca~(2+)缓解NaCl胁迫引起的玉米光合能力下降的作用.植物生态学报2005,29(2):324-330
    张乃华.外源Ca~(2+)对盐胁迫玉米叶片光抑制的缓解效应.山东农业大学硕士学位论文,2004
    张其德.盐胁迫对植物及其光合作用的影响.植物杂志,2000,1:28-29
    张润花,郭世荣,樊怀福,等.外源亚精胺对盐胁迫下黄瓜幼苗体内抗氧化酶活性的影响.生态学杂志,2006a,25(11):1333-1337
    张润花,郭世荣,樊怀福.外源亚精胺对盐胁迫下黄瓜植株氮化合物含量和硝酸还原酶活性的影响.武汉植物学研究,2006b,24(4):381-384
    张胜,刘怀攀,陈龙,等.亚精胺提高大豆幼苗的抗旱性.华北农学报,2005,20(4):25-27
    张士功,高吉寅,宋景芝,等.硝酸钙对小麦幼苗生长过程中盐害的缓解作用.麦类作物,1998,18(5):60-64
    张士功,高吉寅,宋景芝.外源甜菜碱对盐胁迫卜小麦幼苗体内几种与抗逆能力有关物质含量以及钾钠吸收和运输的影响.植物生理学通讯,2000,36(1):23-26
    张淑红,张恩平,庞金安,等.NaCl胁迫对黄瓜幼苗光合特性及水分利用率的影响.中国蔬菜,2005,(1):11-13
    张晓燕,武爱兵,芦春莲,等.Ca~(2+)在植物诱导抗病性中的作用.河北林果研究,2002,17(1):169-172
    张新春,庄炳昌,李自超.植物耐盐性研究进展.玉米科学,2002,10(1):50-56
    张有福,蔺海明,肖雯,等.盐胁迫下不同树龄枸杞各器官的盐离子分布.西北植物学报,2006,26(1):0 068-0 072
    张云起,刘世琦,王海波.耐盐砧木嫁接对西瓜幼苗抗盐特性的影响.上海农业学报,2004,20(3):62-64
    章文华,陈亚华,刘友良.钙在植物细胞盐胁迫信号转导中的作用.植物生理学通讯,2000,36(2):146-153
    章文华,刘友良.钙对大麦幼苗盐胁迫的缓解效应.植物生理学通讯,1992,28(3):176-181
    章文华,刘友良.盐胁迫下钙对大麦和小麦离子吸收分配及H~+-ATP酶活性的影响.植物学报,1993,35(6):435-440
    赵福庚,何龙飞,罗庆云.生态植物逆境生理学.北京:化学工业出版社,2004:137-154
    赵福庚,刘友良.大麦幼苗多胺合成比脯氨酸合成对盐胁迫更敏感.植物生理学报,2000b,26(4):343-348
    赵福庚,刘友良.高等植物体内特殊形态多胺的代谢及调节.植物生理学通讯,2000a,36(1):1-6
    赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通报,1999,16(5):540-546
    赵福庚,束怀瑞.NaCl处理下大麦根系质膜微囊结合多胺与Na~+/H~+逆向运输的关系.植物生理与分子生物学学报,2002,28(5):333-338
    赵福庚,孙诚,刘友良,等.ABA和NaCl对碱蓬多胺和脯氨酸代谢的影响.植物生理与分子生物学学报,2002,28(2):117-120
    赵福庚,孙诚,章文华,等.盐胁迫对大麦类囊体膜上两种形态多胺含量和膜蛋白合成的影响.植物生态学报,2003,27(1):137-140
    赵会杰.抗坏血酸含量及抗坏血酸过氧化物酶活性的测定[A].中国科学院上海植物生理研究所、上海市植物生理学会编.现代植物生理学实验指南[C].北京:科学出版社,1999:315-316
    赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999
    赵可夫,卢元芳,张宝泽,等.Ca对小麦幼苗降低盐害效应的研究.植物学报,1993,35(1):51-56
    赵可夫.盐分过多对植物的伤害作用.曲阜师范大学学报.植物抗盐生理专刊,1984:5-221
    赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993:25-30,230-231
    赵可夫.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报,1997,14(增刊):235-240
    赵明范.世界土壤盐渍化现状及研究趋势.世界林业研究,1997,(2):84-86
    赵维峰,孙光明,李绍鹏,等.多胺与植物的抗逆性.广西农业科学,2004,35(6):443-447
    郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响.植物生理学报,2001,27(4):325-330
    周芬,曾长立,王建波.外源钙降低拟南芥幼苗盐害效应.武汉植物学研究,2004,22(2):179-182
    周俊国,朱月林,刘正鲁,等.NaCl胁迫对中国杂交南瓜和黑籽南瓜幼苗生长的影响.农业工程学报,2007,23(7):202-205
    周卫,林葆.植物钙素营养机理研究进展.土壤学进展,1995,23(2):12-17
    周希琴.木麻黄幼苗对酸雨胁迫的生理效应.山地农业生物学报,2004,23(3):210-214
    皱邦基 主编.植物的营养.北京:农业出版社,1997
    朱速松,刘友良.6-苄基腺嘌呤对大麦耐盐性的调节机理.南京农业大学学报,1996,19(3):12-16
    朱晓军,梁永超,杨劲松,等.盐胁迫下钙对水稻幼苗抗氧化酶活性和膜脂过氧化的影响.土壤学报,2005,42(3):454-460
    朱晓军,杨劲松,梁永超,等.盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响.中国农业科学,2004,37(10):1497-1503
    朱新广,张其德.NaCl对光合作用影响的研究进展.植物学通报,1999,16(4):332-338
    朱新广,张其德.NaCl对小麦光合功能的伤害主要是由离子效应造成的.植物学通报,2000,17(4):360-365
    朱祝军,喻景权,Gerendas J,等.氮素形态和光照强度对烟草的生长和H_2O_2清除酶活性的影响.植物营养与肥料学报,1998,4(4):379-385
    宗会,胡文玉.钙信使系统在苹果果肉圆片衰老中的作用.植物生理学通讯,2000,36(4):305-307
    宗会,胡文玉.植物钙调素(CAM)研究进展.园艺学年评,1996,(2):177-196
    宗会,李明启.钙信使在植物适应非生物逆境中的作用.植物生理学通讯,2001,37(4):330-335
    AbdElBaki G K,Siefritz F,Man H M,et al.Nitrate reductase in Zea mays L.under salinity.Plant Cell Environment,2000,23:15-521
    Adams P,Thomas J C,Vernon D M,et al.Distinct cellular and organismic responses to salt stress.Plant Cell Physiology,1992,33:1215-1223
    Agasfian P,Kingsley S J,Vivekanandan M.Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes.Photosynthetica,2000,38:287-290
    Ahmed S,Nawata E,Hosokawa M,et al.Alterations in photosynthesis and some antioxidant enzymatic activies of mungbean subjected to waterlogging.Plant Science,2002,163:117-123
    Aiabadi D,Aguero M S.Arginase Arginine decarboxylase ornithine decarboxylase and polyamine in tomato ovaries.Plant Physiology,1996,112:1237-1244
    Alamgir A N M,Ali M Y.Effect of salinity on leaf pigments,sugar and protein concentrations and chloroplast ATPAase activity of rice(Oryza sativa L.).Bangladesh Journal of Botany,1999,28:145-149
    Aldesuquy H S.Effect of seawater salinity and gibbedlic acid on abscisic acid,amino acids and wateruse efficiency of wheat plants.Agrochimica,1998,42:147-157
    Ali R M.Role of putrescine in salt tolerance of Atropa belladonna plant.Plant Science,2000,152:173-179
    Ali Z,Salam A,Azhar F M,et al.Genotypic variation in salinity tolerance among spring and winter wheat(Triticum aestivum L.) accessions.South African Journal of Botany,2007,73:70-75
    AliDinar H M,Ebert G,Ludders P.Growth,chlorophyll content,photosynthesis and water relations in guava(Psidium guajava L.) under salinity and different nitrogen supply.Gartenbauwissenschaft,1999,64:54-59
    Al-Karaki G N.Growth,water use efficiency,and sodium and potassium acquisition by tomato cultivars grown under salt stress.Journal of Plant Nutrition,2000,23:1-8
    Allakhverdiev S I,Sakamoto A,Nishiyama Y,et al.Ionic and osmotic effects of NaCl-induced inactivation of photosystems Ⅰ and Ⅱ in Synechococcus sp.Plant Physiology,2000,123:1047-1056
    Antony T,Thomas T,Shirahata A.Selectivity of polyamines on the stability of RNA-DNA hybrids containing phosphodiestor and phosphorothioate oligodeoxyribonucleotides.Biochemistry,1999,28:10 775-10 784
    Applewhite P B,Kaur-Sawhney R,Galston A W.A role for spermidine in the bolting and flowering of Arabidopsis.Physiologia Plantarum,2000,108:314-320
    Apse M P,Aharon G S,Snedden W A,et al.Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiporter in Arabidopsis. Science, 1999,285: 1256-1258
    Apse M P, Blumwald E. Engineering salt tolerance in plants. Current Opinon Biotechnology, 2002,13:146-150
    Asada K, Takahashi M. Production and scavenging of active oxygen radicals in photosynthesis. In: Kyle D J, Osmond C B, Arntzen C J (Eds.), Photoinhibition, vol. 9. Elsivier, Amsterdam, 1987:227-288
    Asada K. The role of ascorbate peroxidase and monodehydroascorbate reductase in H_2O_2 scavenging in plants[A]. In: Scandalios J G (Ed.), Oxidative and the Molecular Biology of Antioxidant Defenses [C]. Cold Spring Harbor Laboratory Press, NewYork, 1997: 715-735
    Ashraf M, Ahmad S. Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L). Field Crops Research, 2000, 66: 115-127
    Ashraf M, Foolad M A. Role of glycine betaine and proline in improving plant abiotic stress resistance.Environmental and Experimental Botany, 2007, 59: 206-216
    Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plants. Plant Science,2004,166: 3-16
    Ashraf M, O'Leary J W. Distribution of cations in leaves of salt-tolerant and salt-sensitive lines of sunflower under saline conditions. Journal of Plant Nutrition, 1995,18: 2 379-2 388
    Ashraf M, O'Leary J W. Does pattern of ion accumulation vary in alfalfa at different growth stages?.Journal of Plant Nutrition, 1994, 17(18): 1 443-1 461
    
    Aziz A, Martin-Tanggu Y J, Larher F. Salt-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiologia Plantarum, 1998, 104: 195-202
    Aziz A, Martin-Tanguy J, Larher F. Plasticity of polyamine metabolism associated with high osmotic stress in rape leaf discs and with ethylene treatment. Plant Growth Regulation, 1997,21:153-163
    Basra A S, Singh B, Malik C P. Priming-induced changes in polyamine levels in relation to vigor of aged onion seeds. Botany Bulletin of Academy Sinica, 1994, 35: 19-23
    Basu R, Ghosh B. Polyamines in various rice genotypes with respect to NaCl salinity. Physiologia Plantarum, 1991, 82: 575-581
    Bayuelo-Jimenez J S, Debouck D G, Lynch J P. Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions. Field Crops Research, 2003, 80:207-222
    Benavides M P, Marconi P L, Gallego S M, et al. Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum. Austrilian Journal of Plant Physiology, 2000,27:273-278
    Berry J A, Downton W J S. Environmental regulation of photosynthesis. In: Govind J (ed). Photosynthesis (Vol II). NewYork: Academic Press, 1982: 263-345
    Bethke P C, Drew M C. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity.Plant Physiology,1992,99:219-226
    Bhivare V N,Nimbalkar J D.Salt stress effects on growth and mineral nutrition of French beans.Plant and Soil,1974,80:91-98
    Biondi S.Polyamine and ethylene in relation to adventitious root formation in Pranus auium shoot cultures.Plant Physiology,1990,78:475-483.
    Blatt M R,Grabor A.Signalling gates in abscisic acid-mediated control of gourd cell ion channels.Physiologia Plantarum,1997,100:481-490
    Blumwald E,Aharon G S,Apse M P.Sodium transport in plant cells.Biochimica and Biophysica Acta,2000,1465:140-151
    Bohnert H J,Jensen R G.Strategies for engineering water-stress tolerance in plants.Trends in Biotechnology,1996,14:89-97
    Bohnert H J,Nelson D E,Jensen R G.Adaptations to environmental stresses.Plant Cell,1995,7:1099-1111
    Bor M,(?)zdemir F,T(u|¨)rkan I.The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L.and wild beet Beta maritima L.Plant Science,2003,164:77-84
    Bouchereau A,Aziz A,Lather F,et al.Polyamines and environmental challenges:recent development.Plant Science,1999,140:103-125
    Braam J,Davis R W.Rain-,wind- and touch-induced expression of calmodulin and calmodulin related genes in Arabidopsis.Cell,1990,60:357-364
    Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Analysis of Biochemistry,1976,72:248-254
    Bressan R A,Hasegawa P M,Pardo J M,et al.Plant use calcium to resolve salt stress.Trends in Plant Science,1998,3(11):411-412
    Brugnoli E,Bj(o|¨)rkman O.Growth of cotton under conditionous salinity stress:influence on allocation pattern,stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy.Planta,1992,187:335-347
    Brugnoli E,Lauteri M.Effects of salinity on stomatal conductance,photosynthetic capacity,and carbon isotope discrimination of salt-tolerance(Gossypium hirsutum L.) and salt-sensitive(Phaseolus vulgaris L.) C_3 non-halophytes.Plant Physiology,1991,95:628-635
    Cachorro P,Ortiz A.Growth,water relations,and solute composition of Phaseolus vulgaris L.shoots under salt stress.Journal of Plant Growth Regulation,1993,14:99-104
    Caldeira H D Q M,Caldeira G.Free polyamine accumulation in unstressed and NaCl-stressed maize plants.Agronomia Lusitana,1999,47:209-215
    Carolina C,Culianez-Macia F A.Tomato abiotic stress enhanced tolerance by trehalose biosynthesis.Plant Science,2005,169:75-82
    Chartzoulakis K,Klapaki G.Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages.Scientia Horticulturae,2000,86:247-260
    Chattopadhyay M K,Gupta S,Sengupta D N,et al.Expression of arginine decarboxylase in seedlings of indica rice(Oryza sativa L.) cultivars as affected by salinity stress.Plant Molecular Biology,1997,34:477-483
    Chattopadhyay M K,Tiwari B S,Chattopadhyay G,et al.Protective role of exogenous polyamines on salinity-stressed rice(Oryza sativa) plants.Physiologia Plantarum,2002,116:192-199
    Chaudhuri K,Choudhuri M A.Effect of short-term NaCl stress on water relations and gas exchange of two jute species.Biologia Plantarum,1997,40:373-380
    Cha-um S,Slipaibulwatana K.Water relation,photosynthetic ability and growth of Thaijasmine rice (Oryza saliva L.ssp indica cv.KDML 105) to salt stress by application of exogenous glycinebetaine and choline.Journal of Agronomy and Crop Science,2006,192(1):25-36
    Cheeseman J M.Mechanism of salinity tolerance in plants.Plant Physiology,1988,87:547-550
    Chen,Li J,Wang S,et al.Salt,nutrient uptake and transport,and ABA of Populus euphratica;a hybrid in response to increasing soil NaCl.Trees-Structure Functure,2001,45:186-194
    Cherian S,Reddy M P,Pandya J B.Studies on salt tolerance in Avicennia marina(Forstk.) Vierh.:effect of NaCl salinity on growth,ion accumulation and enzyme activity.Indian Journal of Plant Physiology,1999,4:266-270
    Chinnusamy V,Jagendorf A,Zhu J K.Understanding and improving salt tolerance in plants.Crop Science,2005,45(2):437-448
    Colmer T D,Fan T W M,Higashi R M,et al.Effects of Ca~(2+) and NaCl salinity on the ionic relations and praline accumulation in the primary root tip of sorghum bicolor.Plant Physiology,1996,97:421-424
    Comez C A,Tadeo F R.Involvement of abscisicaeid and ethylenein the responses of citrus seedings to salt stock.Physiologia Plantarum,1998,103(4):475-484
    Cona A,Cenci F,Cervelli M,et al.Polyamine oxidase,a hydrogen peroxide-producing enzyme,is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl.Plant Physiology,2003,131(2):803-813
    Cowan A K,Richardson G R,Maurel J C G.Stress-induced abseistie acid transients and stimulus-response-coupling.Physiologia Plantarum,1997,100:491-499
    Cramer G R,Abdel B R,Seemann J R.Salinity calcium interactions on root growth and osmotic adjustment of two corn cultivars differing in salt tolerance.Jouranl of Plant Nutrition,1990a,13:1453-1462
    Cramer G R,Epstein E,L(a|¨)uchli A.Effects of sodium,potassium and calcium on salt-stressed barley.I.growth analysis.Physiologia Plantarum,1990b,80:83-88
    Cramer G R,L(a|¨)uchli A,Epstein E.Effects of NaCl and CaCl_2 on ion activities in complex nutrient and root growth of cotton.Plant Physiology,1986,81:792-797
    Cramer G R,Lauchli A,Polite V S.Displacement of Ca~(2+) by Na~+ from the plasmalemma of root cells.Plant Physiology,1955,79:207-211
    Cuartero J,Fernádez-Munoz R.Tomato and salinity.Scientia Horticulturae,1999,78:83-125
    Cushman J C,Meyer G,Michalowski C B,et al.Salt stress leads to differential expression of two isogenes of PEPCase during CAM induction in the common Ice plant.Plant Cell,1959,1:715-725
    Daniels G R,Atmar V J,Kuehn G D.Leaf senescence:correlated with incressed levels of membrane permeability and lipid peroxidation,and decreased levels of superoxide dismutase and catalase tobacco.Biochemistry,1951,20:2 525-2 532
    Das S,Bose A,Ghosh B.Effect of salt stress on polyamine metabolism in Brassica campestris.Phytoehemistry,1995,39:283-285
    Dasgan H Y,Aktas H,Abak K,et al.Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses.Plant Science,2002,163:695-703
    de Bruxelles G L,Peacock W J,Dennies E S,et al.Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis.Plant Physiology,1996,111:381-391
    Debouba M,Gouia H,Suzuki A,et al.NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato "Lycopersicon esculentum" seedlings.Journal of Plant Physiology,2006,163:1247-1258
    Deifine S,Aivino A.Concettavillani M,et al.Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress.Plant Physiology,1999,119:1101-1106
    Demir Y,Kocacaliskan I.Effect of NaCI and proline on bean seedlings cultured in vitro.Biologia Plantatrum,2002,45(4):597-599
    Demiral T,Türkan I.Comparative lipid peroxidation,antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance.Environmental and Experimental Botany,2005,53:247-257
    Demiral T,Türkan I.Exogenous glycinebtaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCI stress.Environmental and Experimental Botany,2006,56:72-79
    Dhindsa R S,Plumb-Dhindsa P,Thorpe T A.Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased leavels dismutase and catalase.Jurnal of Experimental Botany,1982,32:91-101
    Dionisio-Sese M L,Tobita S.Antioxidant responses office seedlings to salinity stress.Plant Science,1998,135:1-9
    Dondini L,Bonazzi S.Acclimation of chloroplast transglutaminase to high NaCi concentration in a polyamine-deficient variant strain of Dunaliella salina and in its wild type.Plant Physiology,2001,155:185-197.
    Downton W J S,Grant W J R,Robinson S P.Photosynthetic and stomatal responses of spinach leaves to salt stress. Plant Physiology, 1985, 77: 85-88
    Drolet G, Dumbroff E B, Legge R L, et al. Radical scavenging properties of polyamines. Phytochemistry,1986, 25: 367-371
    Dubey R S, Singh A K. Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolizing enzymes in rice plants. Biologia Plantarum, 1999,42: 233-239
    Dunn G M, Neales T F. Are the effects of salinity on growth and leaf gas exchange related?.Photosynthetica, 1993, 29: 33-42
    Echevarria C, Garcia-Mauriflo S, Alvarez R, et al. Salt stress increases the Ca~(2+)-independent phosphoenol pyruvate carboxylase kinase activity in Sorghum leaves. Planta, 2001,214: 283-287
    Ehret D L, Ho L C. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. Journal of Horticultural Science, 1986, 61:361-7
    Ehret D L, Plant A L. Salt tolerance in crop plants. In: Dhaliwal, G.S., Arbra, R. (Eds.), Environmental Stress in Crop Plants. Commonwealth Publishers, NewDelhi, India, (Chapter 5), 1999: 69-120
    Ellul P, Rios G, Atares A, et al. The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) M. Theory and Application of Genetics, 2003,107: 46-469
    
    Elsamad HMA. Salt tolerance of soybean cultivars. Biologia Plantarum, 1997, 39(2): 263-269
    Elshintinawy F, Elshourbagy M N. Alleviation of changes in protein metabolism in NaCl-stressed wheat seedlings by thiamine. Biology of Plant, 2001,44: 541-545
    Epstein E. How calcium enhances plant salt tolerance. Science, 1998, 280: 1906
    Epstein M. Advance in salt tolerance. Plant and Soil, 1987, 99:17-29
    Erdei L, Szegletes Z, Barabas K, et al. Response in polyamine titer under osmotic and salt stress in sorghum and maize seedlings. Journal of Plant Physiology, 1996,147: 599-603.
    Erdei L, Trivedi S, Takeda K, et al. Effects of osmotic and salt stresses the on accumulation of polyamines in leaf segments from wheat varieties differing in salt and drought tolerance. Journal of Plant Physiology, 1994, 137: 165-168
    Ershov P V, Reshetova O S, Trofimova M S, et al. Activity of ion transporters and salt tolerance in barley. Russian Journal of Plant Physiology, 2005, 52(6): 765-773
    Even-Chen Z, Mattoo A K, Goren R. Inhibition of ethylene biosynthesis by aminoethoxyvinylglycine and by polyamines. Plant Physiology, 1982,69(2): 385-388.
    Everard J D, Gucci R, Kann S C, et al. Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiology, 1994,106: 281-292
    FAO. Global network on integrated soil management for sustainable use of salt-affected soils, http://www. fao.org/ag/AGL/agll/spush/intro.html, 2000
    FAO. Salt-affected Soils and Their Management. Rome. 1988
    FAO. The Use of Saline Waters for Crop Production. Rome, 1992
    Farquhar J,Sharkey T D.Stomatal conductance and photosynthesis.Annual Review of Plant Physiology,1982,33:317-345
    Federico G W,Pedro J A.Characterization of the blue light-induced extracellular alkalinization associated with the monovalent anion uptake by Monoraphidium braunii:competition between NO_3~- and Cl~-.Physiologia Plantarum,1995,94:545-52
    Flores H E,Galston A W.Polyamines and plant stress:Activation of putrescine biosynthasis by osmotic shock.Science,1982,217:1259-1261
    Flores P,Botella M A,Martinez V,et al.Ionic and osmotic effects on nitrate reductase activity in tomato seedlings.Journal of Plant Physiology,2000,156:552-557
    Flowers T J,Troke P F,Yeo A R.The mechanism of salt tolerance in halophytes.Annual Review of Plant Physiology,1977,28:89-121
    Flowers T J.Improving crop salt tolerance.Journal of Experimental Botany,2004,55:307-319
    Forster B P,Ellis R P,Thomas W T B,et al.The development and application of molecular markers for abiotic stress tolerance in barley.Journal of Experimental Botany,2000,51:19-27
    Frandson G,Uri Muller F,Nielsen et al.Novel plant Ca~(2+) binding protein expressed in reponse to abscisic acid and osmotic stress.Journal of Biological Chemistry,1996,27(1):343-348
    Friedman R,Altman A.The effect of salt stress on polyamine biosynthesis and content in mung bean plants and in halophytes.Physiologia Plantarum,1989,76:295-302
    Gadallah M A A.Effects of proline and glycinebetaine on Vicia faba response to salt stress.Biology of Plant,1999,42:249-257
    Galston A W,Kaur-Sawhney R,Altabella T,et al.Plant polyamines in reproductive activity and response to abiotic stress.Botany Acta,1997,110:197-207
    Galston A W,Kaur-Sawhney R.Polyamines in plant physiology.Plant Physiology,1990,94(2):406-410
    Galston A W.Polyamines as modulators of plant development.Biology science,1983,33:382-388
    Gao Z F,Sagi M,Lips S H.Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato(Lycopersicon esculentum L.) as affected by salinity.Plant Science,1998,135:149-159
    Garcfa-Maurino S,Monreal J A,Alvarez R,et al.Characterization of salt stress-enhanced phosphoenol pyruvate carboxylase kinase activity in leaves of Sorghum vulgare:independence from osmotic stress,involvement of ion toxicity and significance of dark phosphorylation.Planta,2003,216:648-655
    Ghazi N,Karaki A.Growth of mycorrhizal tomato and mineral acquisition under salt stress.Mycorrihiza,2000,10:51-54
    Ghoulam C,Foursy A,Fares K.Effects of salt stress on growth,inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars.Environmental and Experimental Botany,2002,47:39-50
    Giannopolitis C N,Ries S K.Purification and quantitative relationship with water-soluble protein in seedling. Plant Physiology, 1977, 59: 315-318
    GomezCadenas A, Arbona V, Jacas J, et al. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. Journal of Plant Growth Regulation, 2002, 21: 234-240
    Gorham J, Wan-jonesr G, Donnell E M C. Some mechanism of salt tolerance in crop plants. Plant and Soil, 1985,89: 15-40
    
    Gossett D R, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 1994,34: 706-714
    Greenway H, Munns R. Mechanisms of salt tolerance in non-halophytes. Annuals Review of Plant Physiology, 1980, 31: 149-190
    Groppa M D, Benavides M P. Polyamines and abiotic stress: recent advances (Review Article). Amino Acids, 2007
    Gueta-Dahan Y, Yaniv Z, Zilinskas B A, et al. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta, 1997,203: 460-469
    Gupta S, Chattopadhyay M K, Chatterjee P, et al. Expression of abscisic acid-responsive elementbinding protein in salt tolerant indica rice (Oryza saliva L. cv. Pokkali). Plant Molecular Biology, 1998,137:629-637
    Ha H C, Sirisoma N S, Kuppusamy P. The natural polyamine spermine functions directly as a free radical scavenger. Proceedings of the National Academy of Sciences of USA, 1998, 95:11140-11145
    Hamada A M, El-Enany A E. Effect of NaCl salinity on growth, pigment and mineral element contents,and gas exchange of broad bean and pea plants. Biology of Plant, 1994,36: 75-81
    Hanson A D, Nelsen C E, Everson E H. Evalution of free Proline accumulation as an index of drought resistance using two contrasting barey cultivars. Crop Science, 1977, 17: 720
    Hanson J B. The functions of calcium in plant nutrition . In: Advances in Plant Nutrition, Tinker P B. and Lauchli A., eds (NewYork: Praeger Pubishiers), 1984: 149-208
    Haro R, Baneulosma H, Quintero F J, et al .Genetic basis of sodium exclusion and sodium tolerance in yeast: A model for plants. Plant Physiology, 1993, 89: 868-874
    Hasegawa M, Bressan R. The dawn of plant salt tolerance genetics. Trends in Plant Science, 2000, 5(8):317-319
    Hasegawa P M., Bressan R A, Zhu J K,et al. Plant cellular and molecular responses to high salinity.Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51:463-499
    Havir E A, Mchale N A. Biochemical and developmental characterization of multiple forms of catalase in tobacco-leaves. Plant Physiology, 1987, 84: 450-500
    Health R L, Packer L. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry Biophysics, 1986,125:189-198
    Hernandez J A, Campillo A, Jimenez A, et al. Response of antioxidant systems and leaf water relations to NaCl stress in pea plants.NewPhytologists,1999,141:241-251
    Hernandez J A,Ferrer M A,Jimenez A,et al.Antioxidant systems and O_2~-/H_2O_2 production in the apoplast of pea leaves.Its relation with salt-induced necrotic lesions in minor veins.Plalnt Physiology,2001,127:817-831
    Hernandez J A,Olmos E,Corpas F J,et al.Salt-induced oxidative stress in chloroplasts of pea plants.Plant Science,1995,105:151-167
    Hernandez J,Jimenez A,Mullineaux P,et al.Tolerance of pea plants(Piston sativum) to long-term salt stress is associated with induction of antioxidant defences.Plant Cell Environment,2000,23:853-862
    Heuer B.Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants.Plant Science,2003,165:693-699
    Heuer B.Photosynthetic carbon metabolism of crops under salt stress.In:Pesserkali M.(Ed.),Hand Book of Photosynthesis.Marshal Dekar,Baten Rose,USA,1996:887-896
    Hiatt A C.Malmberg R L.Utilization of putrescine in tobacco cell lines resistant to inhibitors of polyamine syntheses.Plant Physiology,1988,86:441-446
    Hilda P,Graciela R,Sergio A,et al.Salt tolerant tomato plants showincreased levels ofjasmonic acid.Plant Growth Regulation,2003,41:149-158
    Hoai N T T,Shim Ie S,Kobayashi K,et al.Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice(Oryza sativa L.) seedlings.Plant Growth Regulation,2003,41:159-164
    Hossain Z,Mandal A K A,Shulda R,et al.NaCl stress-its chromotoxic effects and antioxidant behavior in roots of Chrysanthemum morifolium Ramat.Plant Science,2004,166:215-220
    Hsu S Y,Kao C H.Differential effect of sorbitol and polyethylene glycol on antioxidant enzymes in rice leaves.Plant Growth Regulation,2003,39:83-90
    Hu Y,Schmidhaiter U.Spatial distribution of inorganic ions and sugars contributing to osmotic adjustment in elongating wheat leaf under saline conditions.Australian Journal of Plant Physiology,1998,25:591-597
    Imlay J A,Linn S.DNA damage and oxygen radical toxicity.Science,1988,240:1302-1309
    Iqbal M,Ashraf M.Changes in growth,photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L) due to pre-sowing seed treatment with polyamines.Plant Growth Regulation,2005,46:19-30
    lyengar E R R,Reddy M P.Photosynthesis in highly salttolerant plants.In:Pesserkali M.(Ed.),Hand book of photosynthesis.Marshal Dekar,Baten Rose,USA,1996:897-909
    Jain M,Mathur G,Koui S,et al.Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut(Arachis hypogea L.).Plant Cell Reprodution,2001,20:463-468
    Jain S,Nainawatee H S,Jain R K,et al.Proline status of genetically stable salt-tolerant Brassica juncea L. somaclones and their parent cv 'Parkash'. Plant Cell Reprodution, 1991, 9: 684-687
    Jiang Q Z, Roche D, Monaco T A, et al. Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Research, 2006,96: 269-278
    Jiang XY, Song J, Fan H, et al. Regulations of exogenous calcium and spermidine on ion balance and polyamine levels in maize seedlings under NaCl stress. Acta Phytophysiology Sinica, 2000, 26(6):539-544
    Jouve L, Hoffmann L, hausman J F. Polyamine, carbohydrate, and proline content changes during salt stress exposure of aspen (Populus tremula L.): involvement of oxidation and osmoregulation metabolism. Plant Biology, 2004,6(1): 74-78
    Juan M, Rivero R M, Romero L, et al. Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environmental and Experimental Botany, 2005,54:193- 201
    Kafi M, Stewart W S, Borland A M. Carbohydrate and Proline Contents in Leaves, Roots and Apices of Salt-Tolerant and Salt-Sensitive Wheat Cultivars. Russian Journal of Plant Physiology, 2003, 50 (2):155-162
    Kakkar R K, Bhaduri S, Rai V K, et al. Amelioration of NaCI stress by arginine in rice seedlings:changes in endogenous polyamines. Biologia Plantarum, 2000,43:419-422
    Kakkar R K, Sawhney V K. Polyamine research in plants-a changing prespective. Physiologia Plantarum, 2002, 116:281 -292
    Kant S, Kant P, Lips H, et al. Partial substitution of NO_3~-by NH_4~+ fertilization increases ammonium assimilating enzyme activities and reduces the deleterious effects of salinity on the growth of barley.Journal of Plant Physiology, 2007, 164: 303-311
    Kao W Y, Tsai H C, Tsai T T. Effect of NaCl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species, Kandelia candel L. Druce. Journal of Plant Physiology, 2001,158:841-846
    Kao W Y, Tsai T T, Shih C N. Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica, 2003,41:415-419
    Kao WY, Tsai TT, Tsai H C, et al. Response of three Glycine species to salt stress. Environmental and Experimental Botany, 2006, 56(1): 120-125
    Kasinathan V, Wingler A. Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiologia Plantarum, 2004, 121:101-107
    Kasukabe Y, He L, Nada K, et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenic Arabidopsis thaliana. Plant and Cell Physiology, 2004,45: 712-722
    Kaur-Sawhney R, Galston A. Physiological and biochemical studies on antisenescence properties of polyamines in plants.In:Slocum R D,Flores H E(eds).Biochemistry and Physiology of Polyamines in Plants.Boca Raton:CRC Press,1991:201-212
    Kawasaki S,Borchert C,Deyholos M,et al.Gene expression profiles during the initial phase of salt stress in rice.Plant Cell,2001,13(4):889-905
    Kaya C,Kimak H,Higgs D.Effects of supplementary potassium and phosphorus on physiological development and mineral nutrition of cucumber and pepper cultivars grown at high salinity(NaC 1).Journal of Plant Nutrition,2001,24(9):1457-1471
    Kaya C,Tuna A.L,Ashraf M,et al.Improved salt tolerance of melon(Cucumis melo L.) by the addition of proline and potassium nitrate.Environmental and Experimental Botany,2007,60:397-403
    Kennedy B F,De Fillippis L F.Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria.Journal of Plant Physiology,1999,155:746-754
    Kerepesi I,Galiba G.Osmotic and salt stress-induced alteration in soluble,carbohydrate content in wheat seedlings.Crop Science,2000,40:482-487
    Khan M A,Ungar I A,Showalter A M,et al.NaCl-induced accumulation of glyeinebetaine in four subtropical halophytes from Pakistan.Physiologia P lantarum,1998b,102:487-492
    Khan M A,Ungar I A,Showalter A M.Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum.Communication of Soil Science and.Plant Analysis,2000,31:2763-2774
    Khan M A,Ungar,I A,Showalter A M.Effects of salinity on growth,ion content,and osmotic relations in Halopyrum mocoronatum(L.) Stapf.Journal of Plant Nutrition,1999,22:191-204
    Khan M A.Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta.PakistanAquatical Botany,2001,70:259-268
    Khan M G,Srivastava H S.Changes in growth and nitrogen assimilation in maize plants induced by NaCl and growth regulators.Biologia Plantarum,1998a,41(1):93-99
    Khan N A,Quemener V,Moulinoux J P.Polyamine membrane transport regulation.Cell Biology International Reports,1991,15:9-24
    Khatkar D,Kuhad M S.Short-term salinity induced changes in two wheat cultivara at different growth stages.Biology of Plant,2000,43:629-632
    Khavarinejad R A,Chaparzadeh N.The effects of NaCl and CaCl_2 on photosynthesis and growth of alfalfa plants.Photosynthetica,1998,35:461-466
    Khavarinejad R A,Mostofi Y.Effects of NaCl on photosynthetic pigments,saceharides,and chloroplast ultrastrueture in leaves of tomato eultivars.Photosynthetica,1998,35:151-154
    Kirkby E A.Pilbeam D J.Calcium as a plant nutrient.Plant Cell Environment,1984,7:397-405
    Knight H,Trewavas A J,Knight M R.Calcium signaling in Arabidopsis thaliana responding to drought and salinity.Plant Journal,1997,12:1067-1078
    Krishnamurthy R, Bhagnat K A. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiology, 1984, 91: 500-504
    Krishnamurthy R. Amelioration of salinity effect in salt tolerant rice (Oryza sativa L.) by foliar application of putrescine. Plant and Cell Physiology, 1991, 32: 699-703
    Kumar A, Altaella T, Taylor M A, et al. Recent advances in polyamine research. Trends in Plant Science,1997,2: 124-130
    Kurban H, Saneoka H, Nehira K, et al. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.). Soil Science and Plant Nutrition,1999,45:851-862
    Kurth E, Cramer G R, Lauchli A, et al. Effects of NaCl and CaCl_2 on cell enlargement and cell production in cotton roots. Plant Physiology, 1986, 82: 1102-1106
    Lacerda C F, Cambraia J, Oliva M A, et al. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany, 2005, 54: 69-76
    Lauchli A, Epstein E. Plant responses to saline and sodic cond. In: Tanji K K. (Ed.), Agricultural Salinity Assessment and Management.American Society of Civil Engineering, New York, 1990:113-137
    Lauchli A, Schubert S. The role of calcium in the regulation of membrane and cellular growth processes under salt stress. NATO ASI Ser. G19,1989: 131-137
    Lechno S, Zamski E, TelOr E. Salt stress-induced responses in cucumber plants. Journal of Plant Physiology, 1997, 150: 206-211
    Lee D H, Kim Y S, Lee C B. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal of Plant Physiology, 2001,158: 737-745
    Lee T M, Lur H S, Chu C. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings:II. Modulation of free polyamine levels. Plant Science, 1997,126:1-10
    Lefevre I, Gratia E, Lutts S. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Science, 2001,161(5): 943-952
    Lefevre I, Lutts S. Effects of salt and osmotic stress on free polyamine accumulation in moderately salt-resistant rice cultivar Aiwu. International Rice Research Notes, 2000, 25(3): 36-37
    Lei T W, Xiao J N, Li G Y, et al. Effect of Drip Irrigation with Saline Water on Water Use Efficiency and Quality of Watermelons. Water Resources Management, 2003,17: 395-408
    Li J, Lee Y R J, Assmann S M. Guard cells possess a calcium-dependent proteinkinase that phospholates the KAT: a potassium channel. Plant Physiology, 1998,166: 785-795
    Li Z Y, Chen S Y. Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses. Theoretical Appllied Genetics, 2000,100:782-788
    Liu J,Zhu J K.A calcium sensor homolog required for plant salt tolerance.Science,1998,280:1943-1945
    Lopeza V,Sattia S M E.Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress.Plant Science,1996,114:19-27
    Lφvaas E.Antioxidative and metal-chelating effects of polyamines.Advance on Pharmacology,1997,38:119-149
    Lu C M,Vonshak A.Characterization of PS Ⅱ photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis.NewPhytology,1999,141:231-239
    Lutts S,Kinet J M,Bouharmont J.Effects of salt stress on growth,mineral nutrition and proline accumulation in relation to osmotic adjustment in rice(Oryza sativa L.) cultivars differing in salinity tolerance.Plant Growth Regulation,1996,19:207-218
    Lutts S,Kinet J M.NaCI effects on proline metabolism in rice(Oryza sativa) seedlings.Physiologia Plantarum,1999,105:450-458
    Lynch J A,Polite V S,Lauehli A.Salinity stress increase cytoplasmic Ca activity in maize root protoplasts.Plant Physiology,1989,90:1271-1274
    Lynch J,Cramer G R,L"auehli A.Salinity reduces membraneassociated calcium in corn root protoplasts.Plant Physiology,1987,83:390-394
    Lynch J,Lauehli A.Salinity affects intracellular calcium in eom root protoplasts.Plant Physiology,1988,87:351-356
    Maathuis F J M,Amtmarm A.K~+ nutrition and Na~+ toxicity:the basis of cellular K~+/Na~+ ratios.Annals of Botany,1999,84:123-133
    Madhava R K V,Sresty T V S.Antioxidative parameters in the seedlings of pigeonpea(Cajanus cajan L.Millspaugh) in response to Zn and Ni stresses.Plant Science,2000,157:113-128
    Magalhaes J R,Huber D M.Response of ammonium assimilation enzymes to nitrogen form treatments in different plant species.Journal of Plant Nutrition,1991,14:175-85
    Maiale S,Sanehez D H,Guirado A,et al.Spermine accumulation under salt stress.Journal of Plant Physiology,2004,161(1):35-42
    Makela P,Karnen J,Somersalo S.Effect of glycinebetaine on chloroplast ultrastrueture,chlorophyll and protein content,and RuBPCO activities in tomato grown under drought or salinity.Biologia Plantarum,2000,43(3):471-475
    Mane Y,Takeda K.Varietal variation -and effects of some major genes on salt tolerance in barley seedlings.Bulletin of Research Institute Bioresource of Okayama University,1995,3:71-81
    Mansour M M F,Al-Mutawa M M.Stabilization of plasma membrane by polyamines against salt stress.Cytobiosystem,1999,100:7-17
    Mansour M M F.Nitrogen containing compounds and and aptation of plants to salinity stress.Biologia Plantarum,2000,43:491-500
    Marcelis L F M, VanHooijdonk J. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant and Soil, 1999,215: 57-64
    Mark T, Romola D. Na~+ tolerance and Na~+ transport in higher plants. Annals of Botany, 2003, 91(5):503-527
    
    Marschner H. Mineral nutrition of higher plants, Acad Press, London, 1995: 232-239
    Martin-Tanguy J. Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regulation, 2001,34: 135-148
    Mattioni C, Lacerenze N G, Troccoli A, et al. Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiologia Plantarum, 1997,101: 787-792
    McAinsh M R, Browlee C, Hetherington A M. Abscisic acid-induced elevation of guard cell cytoplasmic Ca~(2+) precedes stomatal closure. Nature, 1990,343: 186-188
    McAinsh M, Clayton H, Mansfield T A, et al. Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiology, 1996, 111: 1031-1042
    McAinsh P R, Brownlee A M, Hetherington A M, Calcium ions as second messengers in guard cell signal transduction. Physiologia Plantarum, 1997,100: 16-29
    McLaughlin SB, Wimmer R. Calcium physiology and terrestrial ecosystem processes. New Phytologist,1999,142:373-417
    Meloni D A, Oliva M A, Ruiz H A, et al. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition, 2001,24: 599-612
    Messiaen J, van Cutsem P. Polyamines and pectins. II. Modulation of pectic-signal transduction. Planta,1999, 208: 247-256
    Mishra S N, Makkar K, Verma S. Polyamines in plant growth and development. In: Hemantranjan A (ed). Advances in Plant Physiology. India: Scientific Publishers, 2003:155-224
    Mishra S, Das A B. Effect of NaCl on leaf salt secretion and antioxidative enzyme level in roots of a mangrove, Aegiceras corniculatum. Indian Journal o f Experimental Biology, 2003,41: 160-166
    Misra A N, Sahu S M, Mishra M, et al. Sodium chloride induced changes in leaf growth and pigment and protein contents in two rice cultivars. Biology of Plant, 1997, 39: 257-262
    Misra N, Dwivedi U N. Genotypic difference in salinity tolerance of green gram cultivars. Plant Science,2004, 166: 1 135-1 142
    Mitsuya S, Takeoka Y, Miyake H. Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. Journal of Plant Physioloyg, 2000,157: 661-667
    Mittova V, Guy M, Tal M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: increased activities of antioxidant enzymes in root plastids. Free Radical Research, 2002a, 36:195-202
    Mittova V, Tal M, Volokita M, et al. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species.Physiologia Plantarum,2002b,115:393-400
    Mittova V,Tal M,Volokita M,et al.Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii.Plant Cell and Environment,2003,26:845-856
    Mohammad M,Shibli R,Ajouni M,et al.Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition.Journal of Plant Nutriton,1998,21:1667-1680
    Morales F,Abadía A,Gómez-Aparisi J,et al.Effect of combined NaCl and CaCl_2 salinity on photosynthetic parameters of barley grown in nutrient solution.Plant Physiology,1992,86:419-426
    Munns R,Termatt A.Whole plant responses to salinity.Australian Journal of Plant Physiology,1986,13:143-160
    Munns R.Comparative physiology of salt and water stress.Plant Cell and Environment,2002,25:239-250
    Munns R.Physiological process limiting plant growth in saline soils:Some dogmas and hypotheses.Plant Cell and Environment,1993,16:15-24
    Muranaka S,Shimizu K,Kato M.Ionic and osmotic effects of salinity on single-leaf photosynthesis in two wheat cultivars with different drought tolerance.Photosynthetica,2002,40:201-207
    Murillo-Amador B,Troyo-Die'guez E,Garci'a-Herna'ndez J L,et al.Effect of NaCl salinity in the genotypic variation of cowpea(Vigna unguiculata) during early vegetative growth.Scientia Horticulturae,2006,108:423-431
    Nakamura Y,Tanaka K,Ohta E,et al.Protective effect of external Ca~(2+) on elongation and the intracellular concentration of K~+ in intact mung bean roots under high NaCl stress.Plant and Cell Physiology,1990,31:815-821
    Nakano Y,Asada K.Hydrogen peroxide is scaveged by ascoraplate-specific peroxidase in spinach chloroplasts.Plant Cell Physiology,1981,22:867-880.
    Ndayiragije A,Lutts S.Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl? Journal of Plant Physiology,2006,163(5):506-516
    Netondo G W,Onyango J C,Beck E.Sorghum and salinity:Ⅰ.Response of growth,water relations,and ion accumulation to NaCi salinity.Crop Science,2004,44(3):797-805
    Neumann P.Salinity resistance and plant growth revisited.Plant Cell Environment,1997,20:1193-1198
    Noctor G,Foyer C H.Ascorbate and glutathione:keeping active oxygen under control.Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:249-279
    Ogawa K,Soutome R,Hiroyama K,et al.Co-regulation of nitrate reductase and nitrite reductase in cultured spinach cells.Journal of Plant Physiology,2000,157:299-306
    Ouerghi Z,Cornic G,Roudani M,et al.Effect of NaCl on photosynthesis of two wheat species(Triticum durum and T.aestivum) differing in their sensitivity to salt stress.Journal of Plant Physiology,2000, 156:335-340
    Pardossi A,Malorgio D,Oriolo D.Water relations and osmotic adjustment in Apitum graveolens during long-term NaCl stress and subsequent relief.Physiologia Plantarum,1998,102:369-376
    Parida A K,Das A B,Mittra B.Effects of NaCl stress on the structure,pigment complex composition,and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts.Photosynthetiea,2003,41:191-200
    Parida A K,Das A B.Effects of NaCl stress on nitrogen and phosphorous.metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture.Journal of Plant Physiology,2004,161:921-928
    Parida A K,Das A B.Salt tolerance and salinity effects on plants:a review.Eeotoxieology and Environmental Safety,2005,60:324-349
    Parida A,Das A B,Das P.NaCI stress causes changes in photosynthetic pigments,proteins and other metabolic components in the leaves of a true mangrove,Bruguiera parviflora,in hydroponic cultures.Journal of Plant Biology,2002,45:28-36
    Petrusa L M,Winicov I.Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCI.Plant Physiology and Biochemistry,1997,35:303-310
    Peuke A D,Glaab J,Kaiser W M,et al.The uptake and flow of C,N and ions between roots and shoots in Rieinus eommunis L.Ⅳ.Flow and metabolism of inorganic nitrogen and malate depending on nitrogen nutrition and salt treatment.Journal of Experimental Botany,1996,47:377-385
    Polle A.Dissecting the superoxide dismutase-ascorbate-glutathione pathway in chloroplasts by metabolic modeling,computer simulations as a step towards flux analysis.Plant Physiology,2001,126:445-462
    Poovalah B W,Leopold A C.Deferral of leaf senescence with calcium.Plant Physiology,1973,52:236-239
    Poovalah B W,Reddy A S N.Calcium and signal transduction in plants.Critical Reviews of Plant Sciences,1993,12(3):185-211
    Popova L P,Stoinova Z G,Maslenkova L T.Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L during salinity stress.Journal of Plant Growth Regulation,1995,14:211-218
    Poustini K,Siosemardeh A.Ion distribution in wheat cultivars in response to salinity stress.Field Crops Research,2004,85:125-133
    Prarkash L,Prathapasenan G.Putrescine reduces NaCl-induced inhibition of germination and early seedling growth of rice(Oryza sativa L.).Australian Journal of Plant Physiology,1988,15:761-767
    Qureshi R H,Rashid A,Abroad N.Genetic Aspects of Plant Mineral Nutrition.Bassam N.E.et al.(Eds).Netherlands:Kluwer Academic Publishers,1990:315-324
    Ral S P,Luthra R,Kumar S.Salt-tolerant mutants in glycophytic salinity response(GSR) genes in Catharanthus roseus.Theory and Applicaton of Genetics,2003,106(2):221-230
    Rajesh A,Arurnugam R,Venkatesalu V.Growth and photosynthetic charaeterics of Ceriops roxburghiana under NaCl stress.Photosynthetica,1998,35:285-287
    Reina-Sáehez A,Romero-Aranda R,Cuartero J.Plant water uptake and water uptake and water use efficiency of greenhouse tomato eultivars irrigated with saline water.Agricultural Water Management,2005,78:54-66
    Rhodes D,Hanson A D.Quaternary ammonium and tertiary sulphonium compounds in higher plants.Annual Review of Plant Physiology and Plant Molecular Biology,1993,44:357-384
    Rodriguez P,Dell'Amico J,Morales D.Effects of salinity on growth,shoot water relations and root hydraulic conductivity in tomato plants.Journal of Agricultural Science,1997,128:439-444
    RodriguezRosales M P,Kerkeb L,Bueno P,et al.Changes induced by NaCl in lipid content and composition,lipoxygenase,plasma membrane H~+-ATPase and antioxidant enzyme activities of tomato(Lycopersicon esculantum Mill) ealli.Plant Science,1999,143:143-150
    Romero L,Belakbir A,Ragala L,et al.Response of plant yield and leaf pigments to saline conditinns:effectiveness of different rootstocks in melon plants(Cucumis melo L.).Soil Science and Plant Nutrition,1997,43:855-862
    Romero-Aranda R,Soda T,Cuartero J.Tomato plant-water uptake and plant-water relationships under saline growth conditions.Plant Science,2001,160:265-272
    Roy M,Wu R.Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance.Plant Science,2002,163:987-992
    Roy P,Niyogi K,SenGupta D N,et al.Spermidine treatment to dee seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H~+-ATPase in salt-tolerant and salt-sensitive rice cultivars.Plant Science,2005,168:583-591
    Royo A,Aragues R.Salinity-yield response functions of barley genotypes assessed with a triple line source sprinkler system.Plant andSoil,1999,209:9-20
    Rubio F,Gassmann W,Schroeder J I.Sodium-driven potassium uptake by the plant potassium transporter HKTl and mutations conferring salt tolerance.Science,1995,270:1660-1663
    Sairam R K,Rao K V,Srivastava G C.Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress,antioxidant activity and osmolyte concentration.Plant Science,2002,163:1 037-1 046
    Saneoka H,Shiota K,Kurban H,et al.Effoct of salinity on growth and solute accumulation in two wheat lines differing in salt tolerance.Soil Science andPlant Nutrition,1999,45:873-880
    Santa-Cruz A,Aeosta M,Pérez-Alfocea F,et al.Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species.Physiologica Plantarum,1997,101(1):341-346
    Santa-Cruz A,PereAIfocea F,Caro M,et al.Polyamines as short-term salt tolerance traits in tomato.Plant Science,1998,138:9-16
    Sayed R H,Athar H R,Ashraf M,et al.Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance.Environmental and Experimental Botany,2007,60:368-376
    Serafini-Fracassini D.Plant transglutaminase.Phytochemistry,1995,40:355-365
    Serraj R,Sinclair T R.Osmolyte accumulation:can it really help increase crop yield under drought conditions.Plant Cell Environment,2002,25:333-341
    Serrano.R,Mulet J M,Rios G,et al.A glimpse of the mechanisms of ion homeostasis during salt stress.Journal of Experimental Botany,1999,50:1 023-1 036
    Shabala S N,Shabala S I,Martynenko A I,et al.Salinity effect on bioelectrie activity,growth,Na~+accumulation and chlorophyll fluorescence of maize leaves:a comparative survey and prospects for screening.Australian Journal of Plant Physiology,1998,25:609-616
    Shalata A,Tal M.Effects of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennilii.Physiologia Plantarum,1998,104:169-174
    Shannon M C,Grieve C M.Tolerance of vegetable crops to salinity.Scientia Horticulturae,1999,78:5-38
    Shaterian J,Waterer D,Jong H D,et al.Differential stress responses to NaCl salt application in earlyand late-maturing diploid potato(Solanum sp.) clones.Environmental and Experimental Botany,2005,54:202-212
    Shear C B.Calcium-related disorders of fruits and vegetables.HortScience 1995,10:361-365
    Singh A K,Dubey R S.Changes in chlorophyll a and b contents and activities ofphotosystems Ⅰ and Ⅱ in rice seedlings induced by NaCl.Photosynthetica,1995,31:489-499
    Singh D B,Varma S,Mishra S N.Putrescine effect on nitrate reductase activity,organic nitrogen,protein,and growth in heavy metal and salinity stressed mustard seedlings.Biologia Plantarum,2002,45(4):605-608
    Singh M P,Pandey S K,Singh M,et al.Photosynthesis,transpiration,stomatal conductance and leaf chlorophyll content in mustard genotypes grown under sodie conditions.Photosynthetica,1990,24:623-627
    Singh S K,Sharma H C,Goswami A M,et al.In vitro growth and leaf composition of grapevine eultivars as affected by sodium chloride.Biologia Plantarum,2000,43:283-286
    Singh S,Singh M.Genotypic basis of response to salinity stress in some crosses of spring wheat Triticum aestivum L.Euphytica,2000,115:209-214
    Sivakumar P,Sharmila P,Pardha S P.Proline alleviates salt-stress-induced enhancement in ribulose-1,5-biphosphate oxygenase activity.Biochemistry Biophysiology Resource Communication,2000,279:512-515
    Sivritepe N,Sivritepe H O,Eris A.The effects of NaCI priming on salt tolerance in melon seedlings grown under saline conditions.Scientia Horticulturae,2003,97:229-237
    Slocum R D,Kaur-Sawhney R,Galston A W.The physiology and biochemistry of polyamines in plants.Archives of Biochemistry and Biophysics,1984,235(2):283-303
    Slocum R D.Polyamine biosynthesis in plants.In:Slocum R D,Flores H E.(eds.),The Biochemistry and Physiology of Polyamines in Plants.CRC Press,1991a:23-40
    Slocum R D.Tissue and subcellular localization of polyamines and enzymes of polyamine metabolism.In:Slocum R D and Flores H E(eds).Biochemistry and Physiology of Polyamines in Plants.Boca Raton,Florida,USA:CRC Press,1991b:94-101
    Smith T A.Polyamines.Annual Review of plant physiology and plant molecular biology.1985,36:117-143
    Song S Q,Lei Y B,Tian X R.Proline metabolism and cross-tolerance to salinity and heat stress in germinating wheat seeds.Russian Journal of Plant Physiology,2005,52(6):793-800
    Soussi M,Lluch C,Ocana A.Comparative study of nitrogen fixation and carbon metabolism in two chick-pea(Ciser arietinum L.) cultivars under salt stress.Journal of Experimental Botany,1999,50:1701-1708
    Soussi M,Liuch C,Ocana A.Effects of salt stress on growth,photosynthesis and nitrogen fixation in chick-pea(Cicer arietinum L.).Journal of Experimental Botany,1998,49:1329-1337
    Spychalla J P,Desborough S L.Superoxide dismutase,catalase,and alpha-tocopherol content of stored potato tubers.Plant Physiology,1990,94:1214-1218
    Strogonov B P.Structure and function of plant cell in saline habitats.NewYork:Halsted Press,1973:78-83
    Sumithra K,Jutu P P,Dalton C B,et al.Salinity-induced changes in two cuitivars of Vigna radiata:responses of antioxidative and proline metabolism.Plant Growth Regulation,2006,50:11-22
    Sun C,Liu Y L,Zhang W H.Mechanism of the effect of polyamine on the activity of tonoplasts of barley roots under salt stress.Acta Botany Sinica,2002,44(10):1 167-1 172
    Swabel A W,Hassan H A.Generation of wheat producing high levels of the osmoprotectant proline.Biotechnology Letters,2002,24:721-725
    Tachibana S,Konishi N.Diurnal variation of in vivo and in vitro nitrate reductase activity in cucumber plants.Journal of the Japanese Society for Horticultural Science,1991,60:593-599
    Tadolini B.Polyamine inhibition of lipoperoxidation.The influence of polyamines on iron oxidation in the presence of compounds mimicking phospholipid polar heads.Biochemical Journal,1988,249:33-36
    Taha R,Mills D,Heimer Y.The relationship between low K~+/Na~+ ratio and salt-tolerance in the wild tomato species Lycopersicon pennellii.Plant Physiology,2000,157(1):59-63
    Takemura T,Hanagata N,Sugihara K,et al.Physiological and biochemical responses to salt stress in the mangrove Bruguiera gymnorrhiza.Aquatical Botany,2000,68:15-28
    Tang W,Newton R J.Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine.Plant Growth Regulation,2005,46:31-43
    Tassoni A,van Buuren M,Franceschetti M,et al.Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant developmlent.Plant Physiology and Biochemistry,2000,38(5):383-393
    Thomas J C,McElwain E F,Bohnert H J.Convergent induction of osmotic stress responses.Plant Physiology,1992,100:416-423
    Tibureio A F,Campos J L,Figueras X,et al.Recent advances in the understanding of polymine functions during plant development.Plant Growth Regulation,1993,12:330-340
    Tiwari B S,Bose A,Ghosh B.Photosynthesis in rice under a salt stress.Photosynthetica,1997,34:303-306
    Tuna L,Kaya C,AshrafM,et al.The effects of calcium sulphate on growth,membrane stability and nutrient uptake of tomato plants grown under salt stress.Environmental and Experimental Botany,2007,59:173-178
    Vaidyanathan H,Sivakumar P,Chakrabarty R,et al.Scavenging of reactive oxygen species in NaCl stressed dee(Oryza sativa L.) differential response in salt-tolerant and sensitive varieties.Plant Science,2003,165:1411-1418
    Vaidyanathan R,Kuruvilla S,Thomas G.Characterization and expression pattern of an abscisie acid and osmotic stress responsive gene from rice.Plant Science,1999,140:21-30
    Van Assche F,Clijsters C.Effects of metals on enzyme activity in plants.Plant Cell and Environment,1990,13:195-206
    Verma S,Mishra S N.Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system.Journal of Plant Physiology,2005,162:669-677
    Walker R R,Blackmore D H,Sun Q.Carbon dioxide assimilation and foliar ion concentration in leaves of lemon(citrus limon L.) trees irrigated with NaCl or Na_2SO_4.Australian Journal of Plant Physiology,1993,20:173-185
    Wang Y,Nil N.Changes in chlorophyll,ribulose biphosphate carboxylase-oxygenase,glycine betaine content,photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress.Journal of Horticultural Science Biotechnology,2000,75:623-627
    Wei Jun.Post-harvest changes of EFE activity ACC and polyamine contents cortex and pith of pear fruits and its relation to ethylene production.Acta Phytophysiololgica Sinica,1995,21(2):136-142
    Winicov I.Newrnolecular approaches to improving salt tolerance in crop plants.Annuals of Botany,1998,82:703-710
    Xiong L,Schumaker K S,Zhu J K.Cell signaling during cold,drought,and salt stress.Plant Cell,2002,14:165-183
    Xu Y,Huystee R B,Assciation of calcium and calmodulin to peroxidase secretion and activation. Journal of Plant Physiology,1993,141(2):141-146
    Yamaguchi T,Blumwald E.Developing salt-tolerant crop plants:challenges and opportunities.Trends in Plant Science,2005,10(12):615-620
    Yaneey P,Clark M E,Had S C,et al.Living with water stress:evolution of osmolyte system.Science,1982,217:1214-1222
    Yeo A R.Predicting the interaction between the effects of salinity and climate change on crop plants.Science of Horticure(Amsterdam) 1999,78:159-174
    Yeo A.Molecular biology of salt tolerance in the context of whole-plant physiology.Journal of Experimental Botany,1998,49:915-929
    Zeid I M.Response of bean(Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress.Pakistan Journal of Biological Sciences,2004,7(2):219-225
    Zhang H X,Blumwald E.Transgenic salt-tolerant tomato plants accumulate salt in foliage,but not in fruit.Nature Biotechnology,2001,19:765-768
    Zhao F G,Qin P.Protective effect of exogenous polyamines on root tonoplast function against salt stress in barley seedlings.Plant Growth Regulaiton,2004,42(2):97-103
    Zhao F G,Sun C,Liu Y L,et al.Effects of salinity stress on the levels of covalently and noncovalently conjugated polyamines in plasma membrane and tonoplast isolated from barley seedlings.Acta Botanica Sinica,2000,42(9):920-926
    Zhao F G,Sun C,Liu Y L,et al.Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings.Acta Botanica Sinica,2003,45(3):295-300
    Zhao L Q,Zhang F,Guo J K,et al.Nitric oxide functions as a signal in salt resistance in the calluses from two eeotypes of reed.Plant Physiology,2004,134:849-857
    Zbeleva D,Tsonev T,Sergiev I,et al.Protective effect of exogenous polyamines against atrazine in pea plants.Journal of Plant Growth Regulation,1994,13:203-211
    Zhifang G,Loescher W H.Expression of a celery mannose 6-phosphate reduetase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glueosyl-mannitol dimmer.Plant Cell and Environment,2003,26:275-283
    Zhu J K.Plant salt tolerance.Trends in Plant Science,2001,6(2):66-71
    Zhu J K.Regulation of ion homeostasis under salt stress.Current Opinion in Plant Biology,2003,6:441-445
    Zhu J K.Salt and drought stress signal transduction in plants.Annual Review Plant Physiology and Plant Molecular Biology,2002,53:247-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700